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ABSTRACT

We use computer simulation to study the performance of
alternative real-time delay estimators in heavily loaded mul-
tiserver queueing models. These delay estimates may be
used to make delay announcements in call centers and
related service systems. We consider the classical delay
estimator based on the queue length, QLs, which multiplies
the queue length plus one times the mean interval between
successive service completions, ignoring customer aban-
donment. We show that QLs has a superior performance in
the GI/M/s model, but that there is a need to go beyond
it in the GI/GI/s+GI model, allowing abandonment. To
this end, we propose new, simple and effective, delay es-
timators based on the queue length. We also consider a
delay estimator based on recent customer delay history in
the system: the delay of the last customer to enter service,
LES.

1 INTRODUCTION

We investigate alternative ways to estimate, in real time, the
delay (before entering service) of an arriving customer in a
service system. There is empirical evidence suggesting that
long waits lead to poor service evaluation, especially when
coupled with feelings of uncertainty about the length of the
wait; see Taylor (1994). Announcing delay estimates to
arriving customers is a relatively inexpensive way to reduce
this uncertainty, thereby increasing customer satisfaction
with the service provided. We are thinking of making
these delay announcements in call centers, where queues
are invisible, so that customers are unable to estimate their
own delays upon arrival to the system; see Gans et al.
(2003) for background on call centers.

We quantify the effectiveness of a delay estimator by
the mean squared error(MSE), which we estimate via
simulation by computing theaverage squared error(ASE).
A lower MSE (or ASE) corresponds to a more effective
delay estimator. Alternative delay estimators also differ in

the type and amount of information that their implementation
requires. For example, this information may involve the
model, the system state upon arrival, or the history of
delays in the system. Comparing the alternative delay
estimators is therefore complicated: We would like to have
an effective delay estimator, but we would also like to have
a simple delay estimator, which can be easily implemented
in a real-life system, i.e., one that uses information that
is readily available. An important insight, which applies
broadly, is that simplicity and ease of implementation are
often obtained at the expense of statistical precision. Our
main contributions are: (i) to propose a new effective and
simple way to do better delay estimations and (ii) to describe
results of simulation experiments evaluating a wide range of
alternative delay estimators in heavily loaded many-server
queues.

The rest of this paper is organized as follows: In§2,
we describe our delay estimation framework and in§3
we explain how we quantify the performance of a delay
estimator. In§4, we introduce candidate delay estimators
and in §5 use simulation to compare their performance in
theGI/M/s model. The first five sections summarize some
results from Ibrahim and Whitt (2007). There, we studied the
performance of alternative delay-history-based estimators,
both analytically and with simulation in theGI/M/smodel.
Here, we only show a sample of the simulation results.

In the second part of this paper, we give initial results
of ongoing research on delay estimation in the overloaded
GI/GI/s+GI model, with customer abandonment. We in-
troduce more queue-length-based delay estimators for this
case with customer abandonment in§6 and show simula-
tion results quantifying their performance in§7. We make
concluding remarks in§8. Extensions of these results will
appear in Ibrahim and Whitt (2008).

2 THE DELAY ESTIMATION FRAMEWORK

We are interested in large, heavily loaded service systems,
in which the arrival rate approaches or exceeds the total
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service rate. These systems mimic existing call centers, par-
ticularly service-oriented ones in which emphasis is placed
on efficiency rather than on quality of service. In heavily
loaded systems, many customers will be delayed before
receiving service and these delays will often be relatively
long. This setting is appropriate for our delay estimation
problem because we are only concerned here with delayed
customers. Moreover, when the delays are negligible, there
is little incentive to give delay announcements.

To each delayed customer, upon arrival, we give a
single-number delay estimate of that customer’s delay until
he starts service. In this work, we assume that these delay
estimates have no impact on customer behavior.

3 QUANTIFYING PERFORMANCE

3.1 Average Squared Error (ASE)

In our simulation experiments, we quantify the performance
of a delay estimator by computing theaverage squared error
(ASE), defined by:

ASE≡ 1
k

k

∑
i=1

(ai −ei)2 ,

whereai is thepotentialdelay of customeri, ei is the delay
estimate given to customeri andk is the number of customers
in our sample. As in Garnett et al. (2002), a customer’s
potential delay is the delay he would experience, if he had
infinite patience (his patience is quantified by his abandon
time). In our simulation experiments, we measureai for
both served and abandoning customers. For abandoning
customers, we compute the delay experienced, had the
customer not abandoned, by keeping him “virtually” in
queue until he would have begun service . Such a customer
does not affect the waiting time of any other customer in
queue. The ASE should approximate the expectedmean
squared error(MSE) in steady state.

3.2 Mean Squared Error (MSE)

Let WQ(n) represent a random variable with the conditional
distribution of the potential delay of an arriving customer,
given that this customer must wait before starting service
and given that the queue length at the time of his arrival,t,
not counting the new arrival, isQ(t) = n. In this framework,
the event “Q(t) = 0” corresponds to all servers being busy
and our arriving customer being the first in queue. Let
θQL(n) be some given single-number delay estimate which
is based on the queue length,n. Then, the MSE of the
corresponding delay estimator is given by:

MSE≡MSE(θQL(n))≡ E[(WQ(n)−θQL(n))2] .

Note that the MSE of a queue-length-based delay estimator is
a function ofn, the number of customers seen in queue upon
arrival. It is known that the conditional mean,E[WQ(n)],
minimizes the MSE. Unfortunately, it is often difficult to
find a closed-form expression for this mean, so we develop
approximations of it.

4 CANDIDATE DELAY ESTIMATORS

4.1 The Simple Queue-Length-Based Estimator (QLs)

As in Whitt (1999), a system havings agents each of
whom, on average, completes one service request inm
minutes, may predict that a customer findingn customers
in queue upon arrival, will be able to begin service in
(n+ 1)m/s minutes. Let QLs refer to this simple queue-
length-based delay estimator, commonly used in practice.
Let the estimator, as a function ofn, be:

θQLs(n)≡ (n+1)m/s . (1)

The QLs estimator is appealing due to its simplicity
and its ease of implementation: It uses information about
the system that usually is readily available.

4.2 The Last-To-Enter-Service (LES) Delay Estimator

As in Armony et al. (2006), a candidate delay estimator
based on recent customer delay history is the delay of the
last customer to have entered service, prior to our customer’s
arrival. That is, lettingw be the delay of the last customer to
have entered service, the corresponding LES delay estimate
is: θLES(w)≡ w.

The LES estimator is appealing because it does not
make any assumptions about the model and uses very little
information about the system. It is robust, i.e., it responds
automatically to changes in system parameters (e.g., number
of servers, mean service time, arrival rate), because it does
not require knowledge of these parameters. It also extends
directly to unconventional queueing models, including multi-
class skill-based routing scenarios.

4.3 Alternative Delay-History-Based Estimators

In Ibrahim and Whitt (2007), we consider alternative delay-
history-based estimators, in addition to LES. Closely related
is the elapsed waiting time of the customer at the head of
the line (HOL), assuming that there is at least one customer
waiting at the new arrival epoch.

Another alternative delay estimator is the delay of the
last customer to have completed service, LCS. We naturally
would want to consider this alternative estimator if we only
learn customer delay experience after they complete service.
That might be the case for customers and outside observers.
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Under some circumstances, the LCS and LES estimators
will be similar, but they actually can be very different when
s is large, because the last customer to complete service
may have experienced his waiting time much before the last
customer to enter service. We emphasize that customers
need not depart in order of arrival.

Thus, we are led to propose other candidate delay es-
timators based on the delay experience of customers that
have already completed service. RCS is the delay experi-
enced by the customer that arrived most recently (and thus
entered service most recently) among those customers who
have already completed service. We found that RCS is far
superior to LCS whens is large.

Through analysis and extensive simulation experiments,
we concluded that the LES and HOL estimators are very
similar, with both being slightly more accurate than RCS
and much more accurate than LCS. Here we only discuss
LES.

5 DELAY ESTIMATION IN THE GI/M/s MODEL

The standardGI/M/smodel has independent and identically
distributed (i.i.d.) interarrival times with meanλ−1 and a
general distribution. We only use the i.i.d. assumption on
the interarrival times when simulating this model: It is not
required for the implementation of our delay estimators.
There ares homogeneous servers working in parallel and
the service times are i.i.d. exponential with meanµ−1. Let
the traffic intensity beρ ≡ λ/sµ. It is well known that the
GI/M/s model is stable if and only ifρ < 1. This model
has unlimited waiting space and no customer abandonment.
Arriving customers are served in the order of their arrival
times; i.e., we use the first-come-first-served (FCFS) service
discipline.

5.1 QLs in the GI/M/s Model

For this model,WQ(n) is the time necessary to have ex-
actly n+ 1 consecutive departures from service (service
completions). But, the times between successive service
completions when all servers are busy are i.i.d. random
variables distributed as the minimum ofs exponential ran-
dom variables, each with rateµ, which makes them i.i.d.
exponential with mean 1/sµ. The optimal delay estima-
tor, under the MSE criterion, is the one announcing the
conditional mean,E[WQ(n)]. But, following the analysis,

E[WQ(n)] = (n+1)/sµ . (2)

Since (2) coincides exactly with the QLs delay estima-
tion, θQL(n) in (1), the optimality of QLs in the GI/M/s
model, under the MSE criterion, is mathematically demon-
strated. We also have an expression for the MSE of the

QLs estimator:MSE(θQLs) = Var[WQ(n)] = (n+1)/(sµ)2,
where “Var” denotes the variance of a random variable.

As discussed in Whitt (1999), QLs has the desirable
property that it is relatively more accurate for larger values
of n. The squared coefficient of variation is given by

c2
WQ(n) ≡

Var[WQ(n)]
(E[WQ(n)])2 =

1
n+1

, (3)

so thatc2
WQ(n) → 0 asn→ ∞.

To help judge the performance of QLs, we can com-
pare it to the no-information (NI) steady-state delay es-
timator θNI ≡ E[(W∞|W∞ > 0)], with W∞ denoting the
steady-state waiting time before beginning service. Then,
MSE(θNI) = Var[(W∞|W∞ > 0)]. The NI estimator exploits
no state information at all, so any other estimator exploiting
additional real-time information should do at least as well
to be worth serious consideration.

For theM/M/smodel, there are simple expressions for
the average MSE’s of those two estimators, in steady state.
LetQw

∞ be a random variable with the conditional distribution
of the steady-state queue length upon arrival, given that
the customer must wait before beginning service. In the
M/M/smodel, it is well known thatQw

∞ +1 has a geometric
distribution with mean 1/(1−ρ) and that(W∞|W∞ > 0) has
an exponential distribution with mean 1/sµ(1− ρ) (e.g.,
this follows from section 5.14 of Cooper (1981)). Hence,

E[MSE(θQLs)] =
∞

∑
n=0

Var[WQ(n)]P(Qw
∞ = n)

= E[Var(WQ(Qw
∞))]

=
1

(sµ)2(1−ρ)
,

so that the corresponding ratio is:

MSE(θNI)
E[MSE(θQLs)]

=
Var[(W∞|W∞ > 0)]
E[Var(WQ(Qw

∞))]

=
1/(sµ)2(1−ρ)2

1/(sµ)2(1−ρ)

=
1

1−ρ
.

Clearly, asρ approaches 1, the MSE ratio increases. For
example, whenρ = 0.95 the MSE for NI is 20 times greater
than the average MSE for QLs, and whenρ = 0.98 it is 50
times greater. In contrast, we will see in section 5.3.2 that
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the LES estimator produces a corresponding ratio of only
approximatelyc2

a +1 = 2 for values ofρ approaching 1.

5.2 LES in the GI/M/s Model

Let WLES(w) be a random variable with the conditional
distribution of the waiting time of a new arrival given that
the new arrival must join the queue and given that the delay
of the last customer to have entered service isw. WLES(w)
has a relatively complicated exact distribution because we
do not know precisely what happens in the interval between
the time that the LES customer arrived and the new arrival
epoch.

Since the current queue length is approximately equal to
the number of arrivals during this LES waiting time,w, the
increase in MSE in going from QLs to LES is primarily due
to the variability in the arrival process. That is confirmed
by our simulation experiments.

5.3 Simulation Experiments For theGI/M/s Model

5.3.1 Description of the Experiments

In Tables 1 and 2, we report point and confidence interval
estimates for the ASE’s of QLs and LES in theM/M/100
andD/M/100 (deterministic interarrival times) models, as
a function of the traffic intensityρ. We only consider values
of ρ larger than or equal to 0.9 since we are interested in
heavily loaded systems (but we haveρ < 1 to guarantee
the stability of the system). We fixµ and varyλ to get
different values ofρ.

Our simulations are steady-state simulations. Therefore,
we could potentially encounter estimation error caused by
the classical problem of the initial transient, i.e., when the
system is not started in steady state. A possible solution
is to delete an initial segment of the data, i.e., to have a
warmup period which we later discard. We determine the
length of this warmup period (roughly) by computing the
relative errors that we get for different period lengths: We
consider an error of less than 5% to be negligible.

Simulation results for theGI/M/s model are based on
10 independent replications of 5 million events each. An
event is either a service completion or an arrival event.
That is, we end each simulation run when the sum of the
number of service completions and arrival events equals
5 million. We collect statistics without deleting an initial
segment of the data because we found that the impact of
having a warmup period is negligible in this setting.

5.3.2 The Simulation Results forGI/M/s

Table 1 shows that the QLs estimator significantly outper-
forms the LES estimator in theM/M/100 model, where
the interarrival times have squared coefficient of variation

(SCV, denoted byc2
a, equal to the variance divided by the

square of the mean) equal to 1. In this case, we see that
the ratio ASE(LES)/ASE(QLs) is approximately equal to
2/ρ, especially whenρ is large (e.g.,ρ = 0.98). To bet-
ter assess the accuracy of the estimators, we compute the
corresponding RASE (relative average squared error, equal
to the ASE divided by the mean squared). For the QLs

estimator, the RASE ranges from about 10% whenρ = 0.9
to about 2% whenρ = 0.98. As implied by (3), we see
that the QLs estimation is relatively more accurate asρ

approaches 1. The RASE for LES ranges from about 22%
when ρ = 0.9 to about 4% whenρ = 0.98. These results
suggest that the LES estimator, too, is relatively more ac-
curate asρ approaches 1. In Ibrahim and Whitt (2007), we
give supporting analytical results: We show that the relative
error of the LES estimator is asymptotically negligible in
heavy-traffic.

For theD/M/100 model, where the interarrival times
have SCV equal to 0, Table 2 shows that the reported ASE’s
are closer. Here, ASE(LES)/ASE(QLs) is approximately
equal to 1/ρ. The RASE of the QLs estimator ranges from
about 20% whenρ = 0.9 to about 4% whenρ = 0.98. The
RASE of the LES estimator ranges from about 25% when
ρ = 0.9 to about 4% whenρ = 0.98. Both estimators are
relatively more accurate asρ approaches 1.

These results confirm our initial observation: When
the variability of the arrival process is low, these two delay
estimators perform nearly the same. In Ibrahim and Whitt
(2007), we analyze the performance of LES and QLs in the
GI/M/s model and prove that the ratio of the respective
ASE’s, ASE(LES)/ASE(QLs), is asymptotically equal to
(c2

a +1)/ρ ass grows orρ approaches 1.

5.4 Simulation Experiments for the GI/GI/s Model

Simulation experiments for theGI/GI/smodel, with gener-
ally distributed i.i.d. service times, yield similar results. For
the service-time distribution, we considerD andH2 (hyper-
exponential with SCV equal to 4 and balanced means). We
try different combinations of interarrival and service-time
distributions and study the performance of QLs and LES in
each case. As before, QLs is more effective than LES, and
the difference in performance is greater when the arrival pro-
cess is highly variable; e.g., the ratio ASE(LES)/ASE(QLs)
is slightly larger than 1 (roughly equal to 1.06) in the
D/H2/s model, but is close to 2.6 in the H2/D/s model,
for all values ofρ considered.

6 CUSTOMER ABANDONMENT

We now consider delay estimation when there is customer
abandonment. We also allow for non-exponential distribu-
tions. TheGI/GI/s+ GI model has i.i.d. service times
again with meanµ−1, but now with a general distribution.
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Table 1: ASE in theM/M/100 model in units of 10−3

ρ QLs LES

0.98 5.115 10.67
±0.0473 ±0.0987

0.95 2.053 4.311
±0.00383 ±0.00801

0.93 1.432 3.014
±0.00319 ±0.00719

0.90 0.9948 2.215
±0.00192 ±0.00442

Table 2: ASE in theD/M/100 model in units of 10−3

ρ QLs LES

0.98 2.448 2.603
±0.00424 ±0.00472

0.95 1.012 1.162
±0.00347 ±0.00358

0.93 0.7363 0.8830
±0.00318 ±0.00314

0.9 0.5356 0.6840
±0.00689 ±0.00747

Associated with each arriving customer is an abandonment
time quantifying his patience. Abandonment times are i.i.d.
with meanα−1 and a general distribution.

6.1 The Need to go Beyond QLs

Intuitively, we expect that when there is significant cus-
tomer abandonment, the QLs estimator will overestimate
the potential delay, because many customers in queue may
abandon before entering service, and QLs fails to take that
into account. That is confirmed by our simulation results
for the GI/GI/s+GI model in §7. Consequently, we are
motivated to consider new delay estimators. Here, we go
beyond QLs, and propose two other delay estimators based
on the queue-length in the system upon arrival: (i) the
Markovian queue-length-based delay estimator, QLm, and
(ii) the simple-refined queue-length-based delay estimator,
QLsr. In Table 3, we summarize the information needed
for the implementation of each queue-length-based delay
estimator considered in this paper.

6.2 Markovian Queue-Length-Based Delay Estimator

This delay estimator approximates the service-time and
abandonment-time distributions by the exponential distri-

bution. That is, it approximates theGI/GI/s+GI model
by the corresponding,GI/M/s+ M model with the same
service-time and abandon-time means. For theGI/M/s+M
model, we have the representation:

WQ(n)≡
n

∑
i=0

Yi ,

where theYi are independent random variables withYi being
the minimum ofs exponential random variables with rateµ

(corresponding to the remaining service times of customers
in service) andi exponential random variables with rateα

(corresponding to the abandonment times of the remaining
customers waiting in line). That is,Yi is exponential with
ratesµ + iα. Therefore,

E[WQ(n)] =
n

∑
i=0

E[Yi ] =
n

∑
i=0

1
sµ + iα

.

The QLm estimator is defined by the corresponding
delay estimate,θQLm(n), given to a customer findingn
customers in queue upon arrival:

θQLm(n) =
n

∑
i=0

1
sµ + iα

.

Note that QLm is the best possible, under the MSE
criterion, in theGI/M/s+M model since the corresponding
delay estimate is equal to the conditional mean, which
minimizes the MSE, but we find that it is not always so
good for the more generalGI/GI/s+GI model.

6.3 The Simple-Refined Estimator (QLsr)

We design a simple refinement of QLs by making use of the
steady-state fluid approximations to the generalG/GI/s+GI
model, in the efficiency driven (ED) limiting regime, as
developed by Whitt (2006). The ED approximations are
appropriate when the number of serverss and the arrival
rate λ are large, with the traffic intensityρ held fixed at
a value greater than 1. We first introduce some notation.
Let F be the cumulative distribution function (cdf) of the
abandon-time distribution. In the steady-state fluid limit, all
customers wait the same deterministic amount of time,w,
and they all see the same number of customers,q, in queue
upon arrival. These deterministic quantities are given by
equations (3.6) and (3.7) of Whitt (2006), which we restate.
Since “rate in”≡ λFc(w) = sµ ≡ “rate out”, we have:

ρFc(w) = 1

and
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q = λ

∫ w

0
Fc(x)dx= sρµ

∫ w

0
Fc(x)dx .

In the fluid limit, QLs estimates a customer’s delay as
the deterministic quantity:

θQLs(q) =
q+1
sµ

≈ q
sµ

= ρ

∫ w

0
Fc(x)dx .

For QLsr, we propose computing the ratioβ = w/(q/sµ) =
wsµ/q (after solving numerically forw andq) and using it
to refine the QLs estimator. That is, the new delay estimate
is:

θQLsr(n)≡ β ×θQLs(n) = β (n+1)/sµ .

The QLsr estimator is appealing because it makes use
of the simple form of the QLs estimator, but performs much
better in models with customer abandonment, as we show
next. Note that in addition tos, n andµ, we need to know
ρ or, equivalently,λ in order to implement QLsr. It is
significant that both QLs and QLm, on the other hand, are
independent of the arrival process: For these two estimators,
the arrival process can be arbitrary, even non-stationary.

7 MORE SIMULATION RESULTS

In this section, we present simulation results quantifying
the performance of our alternative delay estimators in the
GI/GI/s+ GI model. Here, we let the interarrival and
service times be exponential and vary the abandonment-
time distribution. We use a Poisson arrival process because
it is usually a good model. We use exponential service
times because Whitt (2006) showed that the steady-state
performance in the ED regime depends strongly upon the
time-to-abandon distribution beyond its mean, but hardly at
all upon the service-time distribution beyond its mean. We
also conducted simulations with non-exponential interarrival
and service times, which we describe in Ibrahim and Whitt
(2008).

7.1 Description of the Simulation Experiments

Figures 1, 2 and 3 show point estimates of the ASE’s
of our alternative delay estimators as a function of the
number of servers,s. For the abandonment-time distribution,
we considerM (exponential),H2 (hyperexponential), and
E10 (Erlang, sum of 10 exponentials) distributions. We
consider large values ofs since we are interested in large
service systems (s= 100,300,500,700 and 1000). We let
ρ = 1.4 in all models. This value is chosen to let our
systems be significantly overloaded. We letµ = α = 1

Table 3: Information required for queue-length estimators

QLs Q(t), s, µ

QLsr Q(t), s, µ, F(x), λ

QLm Q(t), s, µ, α

and varyλ to get a fixed value ofρ for alternative values
of s. Because of the abandonment, the congestion is not
extraordinarily high. For example, withs= 100 servers and
exponential abandonments, the mean queue length is about
q≈ (ρ −1)s/α ≈ 40, while the average potential waiting
time is aboutw≈ q/sµ ≈ 0.4/µ (less than half a mean
service time).

Simulation results for theM/M/s+M andM/M/s+H2

models are based on 10 independent replications of 5 million
events each: The effect of the initial transient period is
negligible in these models (relative error less than 5%) so
we don’t include any warmup period. Note that an event
in this case is either a service completion, an arrival event
or an abandonment from the system. Simulation results
for the M/M/s+E10 model are based on 10 independent
replications of 6 million events each, with an initial transient
period of 1 million events.

7.2 Simulation Results

7.2.1 M/M/s+M Model

For this model, Figure 1 shows that the Markovian queue-
length-based delay estimator, QLm, is the best possible,
under the MSE criterion. The RASE for QLm ranges from
about 2% fors= 100 to about 0.2% whens= 1000. We see
that the accuracy of this estimator improves as the number
of servers increases. Note that all estimators are relatively
accurate for this model (with QLs being the least accurate).
For example, the RASE of LES ranges from about 5% for
s= 100 to about 0.5% for s= 1000.

It is interesting to note that QLsr performs nearly as
well as QLm, particularly when the number of serverss is
large. This is so because the fluid approximation is more
appropriate with a large number of servers (under heavy
loading). The ratio ASE(QLsr)/ASE(QLm) is close to 1 for
all values ofs.

The LES estimator performs worse than QLm and QLsr.
The ratio ASE(LES)/ASE(QLm) is close to 2 for all values of
s, but mathematical support for this has yet to be provided.

The QLs estimator performs significantly worse than
the other three estimators and its performance gets worse
ass increases. The ratio ASE(QLs)/ASE(QLm) ranges from
about 3 whens= 100 to nearly 16 whens= 1000. This
shows the need to go beyond QLs when customer abandon-
ment is included.
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Figure 1: M/M/s+M model.

7.2.2 M/M/s+H2 Model

Figure 2 shows that the best delay estimator for this model
is the QLsr delay estimator. The corresponding RASE
ranges from about 5% fors = 100 to about 0.6% when
s = 1000. Once more, we see that the accuracy of this
estimator improves as the number of servers increases. The
remaining estimators, too, are relatively more accurate for
a larger number of servers. For example, the RASE of the
LES estimator ranges from about 9% whens= 100 to about
1% whens= 1000.

The QLm estimator performs well but it is now slightly
outperformed by QLsr. The two are nearly the same when
s= 100; the ratio ASE(QLm)/ASE(QLsr) is close to 1 when
s= 100 but closer to 2 whens= 1000.

The LES estimator performs worse than both QLm and
QLsr when s = 100 but nearly the same as QLm when
s= 1000. The ratio ASE(LES)/ASE(QLsr) is close to 2 for
all values ofs.

As above, the efficiency of QLs is degrading as the num-
ber of servers increases. The ratio ASE(QLs)/ASE(QLsr)
ranges from about 2 whens= 100 to about 10 whens= 1000.
Once more, the need to go beyond QLs is evident.

7.2.3 M/M/s+E10 Model

Figure 3 shows that, in contrast to previous cases, LES is
the most effective delay estimator here. The corresponding
RASE ranges from about 2% whens= 100 to about 0.1%
when s= 1000. Compared to LES, QLsr performs worse
as the number of servers increase: ASE(QLsr)/ASE(LES)
ranges from nearly 1 whens= 100 to nearly 3 whens= 1000.

The QLm estimator is effective whens= 100 but be-
comes significantly worse than LES whens= 1000 (in that
case, the ratio of respective ASE’s is close to 6).
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Figure 2: M/M/s+H2 model.

The QLs estimator is consistently the least ef-
fective delay estimator in this model too; the ratio
ASE(QLs)/ASE(LES) ranges from about 9 whens= 100
to nearly 60 whens= 1000. That is why the corresponding
ASE curve is not even included in Figure 3.
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Figure 3: M/M/s+E10 model.

8 CONCLUSIONS

In this work, we used computer simulation to compare the
performance of alternative real-time delay estimators in the
GI/M/s and GI/GI/s+GI queueing models. Simulation
plays a critical role in studying the performance of all the
candidate estimators, because analytical results are hard to
come by.

The delay estimation problem is easier in theGI/M/s
model without abandonment, where it is easy to justify that
QLs is the optimal single-number delay estimator, under the
MSE criterion. However, LES has the important advantage
of not relying on any model information. We quantified
the performance of QLs and LES and we showed that the
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difference in performance between the two need not be
great, especially when the variability of the arrival process
is low.

The GI/GI/s+GI model, with abandonment, is more
complicated. We showed the need to go beyond QLs. We
proposed a new simple and effective queue-length-based
delay estimator, QLsr. Our simulation results in§7 suggest
that the performance of the alternative delay estimators
proposed differ according to the particular model at hand.
Nevertheless, these delay estimators can perform remarkably
well in the models considered: This good performance is
quantified by the RASE reported in§7.

In Ibrahim and Whitt (2008), we hope to propose other
queue-length-based delay estimators for theGI/GI/s+GI
model, that are even more effective than the estimators that
we consider here.
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