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Motivation: Stabilizing Performance

Given the time-varying arrival rates, we are interested in an algorithm
that can stabilize performance of the queueing system, e.g.
expected delay, delay probability, expected queue length.

Earlier papers that study server-staffing to stabilize performance in
multi-server queues with time-varying arrivals.

M. Defraeye and I. Van Niewenhuyse (2013) Controlling excessive waiting
times in small service systems with time-varying demand: an extension of the
ISA algorithm. Decision Support Systems 54(4), 1558 – 1567.

Y. Liu and W. Whitt (2012) Stabilizing customer abandonment in
many-server queues with time-varying arrivals. Oper. Res. 60(6), 1551 – 1564.

O.B. Jennings, A. Mandelbaum, W.A. Massey and W. Whitt (1996) Server
staffing to meet time-varying demand. Manag. Sci. 42(10), 1383 –1394.
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Motivation: Service-Rate Controls

Problem: systems with only a few servers or with inflexible staffing.

In many applications, it is possible to change the processing rate.

Example (use a service-rate control)

1 Hospital Surgery Rooms

2 Airport Security Inspection Lines
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Our Contributions

We use simulation to study service-rate controls to stabilize performance
in a single-server queue with time-varying arrival rates.

We conduct simulation experiments to evaluate the performance of
alternative service-rate controls.

We develop an efficient algorithm for simulating a time-varying
queue with a service-rate control.
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The Model
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The Gt/Gt/1 queue

Gt/Gt/1 Single-Server Queueing Model

Single server

Time-varying arrival rate function

First-Come First-Served service policy

Unlimited waiting space

Service rate is subject to control

i.i.d. service requirements separate from the service rate
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The Arrival Process

A time-transformation of a stationary counting process:

A(t) ≡ Na(Λ(t)) ≡ Na(

∫ t

0
λ(s) ds), t ≥ 0, (1)

where

Λ is the cumulative arrival rate function:
Λ(t) =

∫ t
0 λ(s) ds, t ≥ 0.

Na is a rate-1 counting process with unit jumps.

check: E [A(t)] = E [Na(Λ(t))] = Λ(t) =
∫ t
0 λ(s)ds.

All the stochastic variability is separated from the deterministic arrival
rate function.
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The Service Process

Queue Length and Departure Process

Q(t) ≡ A(t)− D(t), t ≥ 0, (2)

D(t) ≡ Ns(

∫ t

0
µ(s)1{Q(s)>0} ds), t ≥ 0, (3)

where

Ns is a rate-1 counting process with unit jumps, independent of Na.

E [D(t)|Q(s), 0 ≤ s ≤ t] =
∫ t
0 µ(s)1{Q(s)>0} ds.

The service requirement process Ns is separated from the
deterministic service-rate function µ(t).
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The Service-Rate Controls

Rate-matching control

µ(t) ≡ λ(t)

ρ
, t ≥ 0. (4)

PSA-based square-root control

µ(t) ≡ λ(t) +
λ(t)

2

(√
1 +

ζ

λ(t)
− 1

)
, t ≥ 0, (5)

based on the PSA approximation:
E [W (t)] ≈ ρ(t)V /µ(t)(1− ρ(t)) = λ(t)V /(µ(t)2 − µ(t)λ(t)).

Supporting treory in Whitt (2015)
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Generating the Arrival Process

Let Ak and Tk be arrival times of processes A and Na

Ak = Λ−1(Tk). (6)

Problem: need to compute Λ−1 for each arrival in each simulation
run.

Compute the inverse function Λ−1 for one cycle outside of simulation
and do table lookup when simulating.

Λ−1(kC + t) = kC + Λ−1(t) for 0 ≤ t ≤ C , where C is the length of a
cycle.

(See the paper for the details.)
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Generating the Service Times

Let Ak , Bk and Dk be customer’s arrival time, begin service time and
departure time; Vk and Wk be customer’s service time and waiting
time in queue.

Let sequence of service requirements {Sk : k ≥ 1} be specified as
the times between events in the counting process Ns .

We have the basic recursions:
Bk = max{Dk−1,Ak}, Dk = Bk + Vk and Wk = Bk − Ak .

But Vk is not formulated.
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Generating the Service Times

Exact service time formula:

Sk =

∫ Bk+Vk

Bk

µ(s) ds, k ≥ 1. (7)

If we let

M(t) ≡
∫ t

0
µ(s) ds, t ≥ 0, (8)

then
Vk = M−1(Sk + M(Bk))− Bk , k ≥ 1. (9)
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Simulation Experiments
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Simulation Experiments: Arrival Rates

The arrival process has the sinusoidal arrival rate function

λ(t) ≡ 1 + β sin (γt) (10)

with

β=0.2, γ=0.001, 0.01, 0.1, 1, 10.

To cover a range of difference cycle lengths of 2π/γ.
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Simulation Experiments: Stochastic Components

Use renewal processes with mean 1 for the base process Na and Ns , and
consider three different i.i.d. interval time distributions.

exponential (c2 = 1)

hyperexponential (mixture of two exponentials, c2 > 1)

Erlang (sum of two i.i.d. exponentials, c2 = 0.5)
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Simulation and Estimation Methods

Consider a fixed time interval [0, T] with T= 2× 104 for γ = 0.001
and T= 2× 103 for the other values of γ.

For each simulation replication, calculate performance measures at
deterministic times dt, 2dt, 3dt,...T.

Compute virtual waiting time W(t) and number of customers in system
Q(t)

Generate 10,000 independent replications to estimate mean values
and to construct confidence intervals of performance measures.

Take the average over all replications to estimate E(W(t)) and E(Q(t))

Use t statistics to construct 95% confidence intervals for E(W(t)) and
E(Q(t))
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Simulation Results
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Simulation Results: The Rate-Matching Control

1. γ=0.001

Cycle length is 6.28× 103.
The left graph is Markovian model; the right graph shows (H2/H2),
(H2/E2) and (E2/E2).
E(Q(t)) stabilized at target, but E(W(t)) is periodic.
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Simulation Results: The Rate-Matching Control

2. γ=0.1

Cycle length is 62.8, only last 3 to 4 cycles are displayed.
E(Q(t)) stabilized at target, but E(W(t)) is periodic.
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Simulation Results: The Rate-Matching Control

3. γ=10

Cycle length is 0.63, only last 3 cycles are displayed.
By Whitt (1984) the system converges to stationary case.
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Simulation Results: The Square-Root Control

1. γ=0.001

Cycles are long, and arrival rates change slowly, thus PSA is
appropriate. [Whitt, 1991]
E(W(t)) is stabilized, while E(Q(t)) is periodic.
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Simulation Results: The Square-Root Control

2. γ=0.1

PSA does not hold as cycles are short.
Neither E(W(t)) nor E(Q(t)) is stabilized.
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Thank You!
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Generating the Arrival Process

Construct the table of Λ−1 over an cycle.

Calculate Λ value for nx equally spaced points of [0,C ], let spacing be
η = C/nx .

Construct approximation J of Λ−1 over ny equally spaced points in
[0,Λ(C] = [0,C ], let spacing be δ = C/ny .

Using J(jδ) = kη, 1 ≤ j ≤ ny ,
where 0 ≤ k ≤ nx and kη is closest point greater equal to the true
inverse value.

Extend J to [0,C ] by letting J(t) = J(bt/δcδ).
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Results From [Whitt, 2015]: The Rate Matching Control

Theorem 2.1 (time transformation of a stationary model)

For (A,D,Q) with the rate-matching service-rate control and the
stationary single-server model (A1,D1,Q1),

(A(t),D(t),Q(t)) = (A1(Λ(t)),D1(Λ(t)),Q1(Λ(t))), t ≥ 0. (11)

Theorem 3.2 (stabilizing the queue-length distribution and the
steady-state delay probability)

Let Q1(t) be the queue length process when λ(t) = 1, t ≥ 0. If
Q1(t)⇒ Q1(∞) as t →∞, where P(Q1(∞) <∞) = 1, then also

Q(t)⇒ Q1(∞) in R as t →∞, (12)

and
P(W (t) > 0) = P(Q(t) ≥ 1)→ ρ as t →∞. (13)
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Results From [Whitt, 2015]: The Square-Root Control

Section 6.3 (stabilizing the expected time-varying virtual waiting time)

We assume that the Pointwise Stationary Approximation (PSA) is
appropriate. Then the square-root control (14) stabilizes E [W (t)] at the
target w for all t under heavy traffic.

µ(t) ≡ λ(t) +
λ(t)

2

(√
1 +

ζ

λ(t)
− 1

)
, t ≥ 0, (14)

where ζ is inversely proportional to w .

Pointwaise Stationary Approximation (PSA)

Performance at different times can be regarded as approximately the same
as the performance of the stationary system with the model parameters
operating at those separate times.
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Theorem From [Whitt, 2015]

Theorem 6.1 (impossibility of stabilizing both the waiting time
distribution and the mean number in queue)

Consider a Gt/Gt/1 system starting empty in the distant past. Suppose
that a service-rate control makes P(W (t) > x) independent of t for all
x ≥ 0. Then the only arrival rate functions for which the mean number
waiting in queue E [(Q(t)− 1)+] is constant, independent of t, are the
constant arrival rate functions.
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Theorem From [Whitt, 1984]

Theorem 1 (Convergence of point processes)

The point process D(t) has predictable stochastic intensity Λ(t), then it
can be represented as the random-time transformation

D(t) = Π(C (t)), t ≥ 0, (15)

where Π(t) is a Poisson process with unit intensity and C (t) =
∫ t
0 Λ(u)du.

If Cn(t)⇒ ct in R as n→∞ for each t, then Dn ⇒ Πc in D[0,∞) as
n→∞, where Πc is a Poisson process with intensity c .

Section 3.2 (Applications to queues)

Apply rescaling

Dn(t) = D̂n(t)(t/n) and Cn(t) = Ĉn(t)(t/n) (16)

for t ≥ 0.
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