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A DYNAMIC THEORY OF HOLDUP

BY YEON-KOO CHE AND JÓZSEF SÁKOVICS1

The holdup problem arises when parties negotiate to divide the surplus generated
by their relationship specific investments. We study this problem in a dynamic model
of bargaining and investment which, unlike the stylized static model, allows the parties
to continue to invest until they agree on the terms of trade. The investment dynamics
overturns the conventional wisdom dramatically. First, the holdup problem need not
entail underinvestment when the parties are sufficiently patient. Second, inefficiencies
can arise unambiguously in some cases, but they are not caused by the sharing of surplus
per se but rather by a failure of an individual rationality constraint.
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1. INTRODUCTION

ECONOMIC AGENTS OFTEN NEED to make sunk investments whose returns are
vulnerable to ex post expropriation by their partners. One such phenomenon
arises when trading partners negotiate to divide their trade surplus after mak-
ing relationship-specific investments. This problem, known as holdup, is inher-
ent in many bilateral exchanges. For instance, workers and firms often invest in
firm-specific assets whose returns are shared through subsequent wage negoti-
ation. Manufacturers and suppliers customize their equipment and production
processes to their partners, knowing well that the benefit will be shared through
future (re)negotiation. Assuring specific investments is critically important in
modern manufacturing, with the increased need for coordination across differ-
ent production stages and the availability of the technologies facilitating such
coordination.2 Elements of holdup are also present in other settings such as
team production, reallocation/dissolution of partnership assets, and even in

1Both authors are grateful for comments from the editor and two anonymous referees as well
as from Jennifer Arlen, Kyle Bagwell, Hongbin Cai, Prajit Dutta, Jeff Ely, Ian Gale, Don Hausch,
Jinwoo Kim, Bart Lipman, Bentley MacLeod, Leslie Marx, Steven Matthews, Paul Milgrom, John
Moore, Michael Riordan, Larry Samuelson, Bill Sandholm, Jonathan Thomas, and the seminar
participants at the Universities of Arizona, Bristol, Edinburgh, Florida, Heriot-Watt, Pescara,
Southampton, Southern California (John Olin Law School Lecture), Texas, UCLA, and Wash-
ington, and Boston, Columbia, Duke, Northern Illinois, Northwestern (Kellogg School of Man-
agement), Ohio State, Vanderbilt Universities, University College London, and the 2003 SITE
conference. Part of this research was conducted while the first author was visiting, and the sec-
ond author was employed at, the Institut d’Anàlisi Econòmica (CSIC) in Barcelona. The former
author wishes to acknowledge their hospitality as well as the financial support provided through
the Spanish Ministry of Education and Culture. He also acknowledges financial support from the
Wisconsin Alumni Research Foundation and National Science Foundation (SES-0319061).

2For example, Asanuma (1989) describes how suppliers customize parts for buyers even when
“specific investments � � � have to be incurred to implement such customization.” Xerox incorpo-
rates supplier-designed components into many of its products, which requires idiosyncratic adap-
tations of production lines and procedures to individual suppliers (Burt (1989)). Some Japanese
auto makers pay for consultants to work with suppliers, possibly for months, to improve produc-
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political lobbying (e.g., a campaign contribution can be seen as a “sunk invest-
ment”).

The risk of these investors being held up has inspired much of the modern
contract and organization theory. Various remedies have been proposed as
safeguards against holdup, ranging from vertical integration (Klein, Crawford,
and Alchian (1978), Williamson (1979)), property rights allocation (Grossman
and Hart (1986), Hart and Moore (1990)), contracting on renegotiation
rights (Chung (1991), Aghion, Dewatripont, and Rey (1994)), option contracts
(Nöldeke and Schmidt (1995, 1998)), production contracts (Edlin and Reichel-
stein (1996)), relational contracts (Baker, Gibbons, and Murphy (2002)), fi-
nancial rights allocation (Aghion and Bolton (1992), Dewatripont and Tirole
(1994), and Dewatripont, Legros, and Matthews (2003)) and hierarchical au-
thority (Aghion and Tirole (1997)) to injecting market competition (MacLeod
and Malcomson (1993), Acemoglu and Shimer (1999), Cole, Mailath, and
Postlewaite (2001), Felli and Roberts (2000), and Che and Gale (2003)). Un-
derlying all these theories is the premise that, without these special protections,
the holdup problem will lead parties to underinvest in specific assets (see Grout
(1984) and Tirole (1986)). The purpose of the current paper is to reexamine
this “conventional wisdom.”3

Our point of departure is the observation that the stylized model predict-
ing underinvestment does not capture the rich dynamic interaction present
in many trading relationships. For instance, the standard two-stage model as-
sumes that the trading partners invest only once, at a pre-specified time, and
that bargaining can only begin after all investments are completed. In practice,
however, the timing of investment and bargaining is—at least to some extent—
chosen endogenously by the parties, and the investment and bargaining stages
are often intertwined. In particular, when one agent makes a specific invest-
ment targeted at a particular partner, it is plausible for him to approach this
partner to negotiate trade terms even before his investment is completed.

We develop a model that introduces dynamic interaction between invest-
ment and bargaining, by allowing the parties to continue to invest until they
agree on how to divide the trading surplus. Specifically, our extensive form has
the following structure. In each period, both parties choose how much (more)
to invest, and then a (randomly chosen) party offers some terms of trade. If the
offer is accepted, then trade occurs according to the agreed terms and the game
ends. If the offer is rejected, however, the game moves on to the next period
without trade, and the parties can further invest to add to the existing stock

tion methods (Dyer and Ouchi (1993)). Vauxhall “regularly works in partnerships with suppliers
to improve efficiency and trim costs. It helped suppliers reduce costs by 30-40%” (“An Industry
that is Good in Parts,” The Engineer, October 24, 1996).

3Hence, rather than looking for additional possible remedies, we investigate whether such
remedies are warranted in the first place. In Section 8 we discuss several implications of our
results for the incomplete contracts view on organization.
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of investments, which is again followed by a round of bargaining of the same
form, and the same process is repeated until there is agreement. Except for
the investment dynamics, our model retains the essential features of the static
model of holdup: we assume that no ex ante contracts exist and that the trade
partners invest before they begin negotiating the terms of trade and complete
their investments before they agree on trade.

Our analysis focuses on the sustainability of an outcome that approaches effi-
ciency as the parties’ discount factor approaches 1 (or equivalently, as the time
interval shrinks to zero). Whether such asymptotic efficiency holds depends
on a version of individual rationality, which, roughly speaking, requires that
each party recoup his investment costs at the efficient investment pair when
the parties split the gross trade surplus in proportion to their relative bargain-
ing power (i.e., just as they would in the static equilibrium). Clearly, this con-
dition is not sufficient for the efficient investment to arise in the static model.
In our dynamic model, however, it is sufficient for the existence of a (Markov
Perfect) equilibrium whose outcome approaches the first-best outcome as the
parties’ discount factor tends to 1 (Proposition 1). In this equilibrium, holdup
still arises on the equilibrium path in that a party receives only a fraction of
the gross surplus commensurate with his bargaining power. Yet, this does not
stop the party from investing efficiently. The key reason is the investment dy-
namics. Suppose that a party invests low today, but that he is expected to raise
his investment tomorrow in case no agreement is reached today. Then, there
will be more surplus to divide tomorrow than there is today. Since the cost of
tomorrow’s investment will be borne solely by the investor, the prospect of the
investor raising his investment tomorrow causes his partner to demand more
to settle today. The investment dynamics thus results in a worse bargaining po-
sition for the party upon investing low, and thus creates a stronger incentive
for raising investment, than would be possible if such investment dynamics was
not allowed. (This point will be illustrated in an example in the next section.)

Next, we show that the individual rationality condition (in a slightly weaker
version) is also necessary for asymptotic efficiency, when the parties’ invest-
ments are weakly substitutable (in a sense to be made precise later): If the
individual rationality constraint fails, then the cumulative investment pair sus-
tainable in any subgame perfect equilibrium is bounded away from the first-
best pair, regardless of the discount factor (Proposition 3). If the investments
are complementary, however, the parties may be able to exploit the investment
dynamics to adjust their bargaining shares and thus attain asymptotic efficiency
even when our individual rationality condition fails.

These results have several broad implications. First, they suggest that a
simple—and reasonable—investment dynamics alone can virtually eliminate
the inefficiencies, as long as the holdup problem is not too severe to fail a
certain individual rationality condition. This suggests that the holdup problem
may not be such a worrisome source of inefficiencies, thus calling into question
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our reliance on the holdup problem as a rationale for organization theory.
Second, they also explain why the parties may not need contractual protec-

tion to achieve efficiency. This may explain why business transactions seldom
rely on explicit contracts (Macaulay (1963)). Since the absence of contracts
is an extreme form of contractual incompleteness, our findings can also pro-
vide a new foundation for incomplete contracts, perhaps better than its extant
counterparts.4

Third, even when inefficiencies arise from the holdup problem, the war-
ranted organizational responses may be different from those prescribed by
the existing literature. In particular, inefficiencies need not be caused by the
sharing of surplus per se but rather by the failure of a certain individual ra-
tionality constraint, thus suggesting its relaxation as an important role of con-
tract/organization design. This has a specific implication, for instance, for the
effectiveness of the institutional tools influencing parties’ relative bargaining
power.5 The existing wisdom due to Holmstrom (1982) is that such tools alone
cannot be useful if both parties make specific investments, since there always
exists a party who appropriates less than full marginal return to his investment.6

In our model, individual rationality always holds for some bargaining shares, so
such tools can be effective at least from the asymptotic efficiency perspective.

Last, our finding warrants a thorough reexamination of the remedies that
have been proposed in the literature. For instance, the nature of inefficiencies
found in this paper may provide new insight into how the parties should al-
locate ownership of critical assets, what type of ex ante trading contracts they
may sign, and how the courts should allocate default rights in contract disputes.

The rest of the paper is organized as follows. The next section illustrates the
main idea using a simple example. Section 3 presents the model. The existence
of an asymptotically efficient equilibrium is shown in Section 4. In Section 5,
we establish the necessity of individual rationality for asymptotic efficiency,
for weakly substitutable investments. In Section 6, we make some interesting
observations about the case of complementary investments. Section 7 discusses
related literature. Section 8 concludes. The Appendixes contain the proofs not
presented in the main body of the paper.

4The existing foundations require either some unjustifiable notion of indescribable contingen-
cies (see the criticism of the latter in Tirole (1999) and Maskin and Tirole (1999)) or a very strong
notion of contract renegotiability (assumed for instance in Che and Hausch (1999), Segal (1999),
and Hart and Moore (1999)). The current result avoids such criticisms since it rests on the result
that efficiency is virtually achievable even without contracts.

5Aghion, Dewatripont, and Rey (1994) discuss ways of shifting bargaining power using cash
bonds, for instance.

6Chung (1991) and Aghion, Dewatripont, and Rey (1994) show that efficiency is achievable
with a contract that shifts bargaining power, but in this case the contract also affects the status
quo payoffs.
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2. A MOTIVATING EXAMPLE

The model and the main intuition behind our results can be illustrated via
a simple example. Suppose only the seller can invest, and she is faced with a
binary choice: either to “not invest” or to “invest.” Investment costs her C > 0.
The gross trade surplus is φI if she invests and φN if she does not. Assume
that φI −C >φN , so that it is efficient to invest. Suppose that the parties have
equal bargaining power, meaning that each party becomes the proposer with
equal probability. In the static model, the seller will not invest if

1
2
φI −C < 1

2
φN�(1)

In our dynamic model, however, there exists an equilibrium in which the seller
invests, provided that the parties’ common discount factor, δ, is sufficiently
large and that the investment is individually rational for the seller given equal
sharing of the pie:7

1
2
φI −C ≥ 0�(2)

Consider the strategy by the seller to “invest whenever no investment has
been made before.” If the seller indeed invests, then, since no further invest-
ment is possible, the ensuing subgame coincides with the standard (random-
proposer) bargaining game with a fixed surplus. Consequently, the parties will
splitφI equally (on average) in its unique equilibrium. Hence, the seller’s equi-
librium payoff will be 1

2φI − C , just as in the static analysis. That is, the seller
would be held up in terms of her absolute payoff even in the dynamic model.

Suppose now that the seller deviates and chooses “not invest.” Invoking the
one-period deviation principle, she will invest next period if no agreement is
reached this period. Given this, the buyer’s continuation payoff following no
agreement is δ( 1

2φI), so he will never agree to trade, following the seller’s de-
viation, unless he receives at least this amount. Thus, the seller’s payoff from
“not invest” is at most max{φN −δ( 1

2φI)�δ(
1
2φI −C)}: the former payoff is re-

ceived if the seller offers δ( 1
2φI), which the buyer will accept; the latter payoff

is received if the seller offers a lower amount (which the buyer will reject) or
if the buyer becomes the proposer (in which case he will offer the seller’s net
continuation value, δ( 1

2φI − C)). Given (2), for δ close to 1, both payoffs are
less than 1

2φI −C—the payoff the seller will receive by investing now. Since the

7The zero reservation payoff on the right-hand side is not given by the seller’s outside option
but rather by her internal option of “not investing and perpetually inducing rejection.” Note also
thatφN > 0 is necessary for both (1) and (2) to hold simultaneously. That is, our result only differs
from the static outcome if φN > 0. This feature is an artifact of the binary investment model
where inefficient investments can only take the form of a zero investment. No such assumption is
needed in our general model.
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(one-period) deviation is not profitable, it is a subgame perfect equilibrium for
the seller to invest, for a sufficiently large δ, given (2) (even when (1) holds).8

This example illustrates how the simple dynamics—the mere possibility of
adding investment later—can create stronger incentives than in the static
model. It also highlights the necessity of the individual rationality constraint
for sustaining efficiency. Clearly, the efficient outcome would not be sustained
if (2) failed. In the sequel, we show the sufficiency and necessity of individual
rationality for sustaining asymptotic efficiency in a more general environment.

3. THE MODEL

Two risk-neutral parties, a buyer and a seller, make sunk investments to in-
crease the gains from their potential trade of a good. Time flows in discrete
periods of equal length, t = 1�2� � � � � and the players discount future utility by
the common per-period discount factor, δ ∈ [0�1). Trade can occur in any pe-
riod and the parties can invest in any period up to (i.e., including) the period of
trade. The parties can add to the existing stock of investments but they cannot
disinvest. Investments are measured by the costs incurred, and the costs are
incurred at the time of investments. Let X := [0� b̄] and Y := [0� s̄] be the fea-
sible sets of cumulative investments for the buyer and the seller, respectively,
for some large b̄ and s̄. (It is also useful to define X (z) := {b ∈ X |b ≥ z} and
Y(z) := {s ∈ Y|s ≥ z}.) If the parties trade in period t, with the cumulative in-
vestments of b≥ 0 by the buyer and of s ≥ 0 by the seller, then they realize the
joint surplus of φ(b� s) in that period (which amounts to δt−1φ(b� s) in period
1 terms). They realize zero gross payoffs if no trade occurs.

We make several assumptions on φ. First, we assume that φ(·� ·) is twice
continuously differentiable, strictly increasing, and strictly concave.9 Further,
we require that φ be either sub- or super-modular: either φbs(b� s) ≤ 0 or
φbs(b� s) > 0 for all (b� s)≥ (0�0). This last assumption means that investments
by the two parties are either (weak) substitutes or (strict) complements, glob-
ally. It simplifies the subsequent analyses and the interpretation of our results.

This basic model applies to a broad range of circumstances. For instance,
the trade negotiation may involve various decisions such as the types of the
goods traded, and their quantity and quality, as long as they are all verifiable.
Let q ∈Q denote such a (possibly multidimensional) decision and let v(q�b� s)
and c(q�b� s) denote the buyer’s gross surplus and the seller’s production costs

8There is another equilibrium in which the seller does not invest, supported by the pessimistic
belief that she will never invest in the future.

9The strict concavity assumption rules out the case of perfectly substitutable investments (i.e.,
φ(b� s)= φ(b+ s)), which is plausible in many public good provision problems (see Marx and
Matthews (2000), for instance). While we assume strict concavity for ease of exposition, all sub-
sequent results hold for the case of perfectly substitutable investments. See Corollary 3 following
Proposition 1.
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from that decision, respectively. Then, φ can be seen as the result of optimiz-
ing on q; i.e., φ(b� s) := maxq∈Q{v(q�b� s) − c(q�b� s)}. Since the subsequent
results will depend only on φ, how the investments affect v and c will not be an
issue. In particular, our result will not depend on whether investment is selfish
or cooperative.10 Our model is also readily extendable beyond bilateral trade
settings, for instance to team production, or optimal reallocation/dissolution
of partnership assets, with an arbitrary number of agents.11

To capture the idea that the parties can invest until they conclude the nego-
tiation, we adopt the following extensive form. Each period is divided into two
stages: investment and bargaining. In the investment stage, the parties simul-
taneously choose (incremental) amounts to invest. Once the investments are
sunk, they become public. In the bargaining stage, a party is chosen randomly
to offer to his partner a share of the surplus that would result from trade at
that point. We assume that the buyer is chosen with probability α ∈ [0�1]� and
the seller is chosen with the remaining probability.12 If the offer is accepted,
then trade takes place, the surplus is split according to the agreed-upon shares
between the two parties, and the game ends. If the offer is rejected, then the
game moves on to the next period without trade, and the same process is re-
peated; i.e., the players can make incremental investments, which is followed
by a new bargaining round with a random proposer. Note that, if the game ends
after the first period (or equivalently if δ= 0), our model will coincide with the
standard static model. For future reference, this one-period truncation of our
game will be referred to as the static holdup game.

We use subgame perfect equilibrium (SPE) as our solution concept. That
is, we require that the players’ strategies—a pair of functions mapping from
observed histories to the investment and bargaining behavior—should form a
Nash equilibrium following any feasible history. Sometimes, we consider SPE
in Markov strategies or simply Markov perfect equilibria (MPE). The strate-
gies in MPE are functions only of payoff-relevant histories, which in our model
are the cumulative investment pairs reached in each period.

10A selfish investment directly benefits the investor while a cooperative investment directly
benefits the trading partner of the investor (see Che and Hausch (1999)). They showed that co-
operative investments limit the ability of contracting to solve the holdup problem.

11Our positive result (Proposition 1) would readily generalize to the environment with more
than two agents. The negative result (Proposition 3) will require some restrictions on the equi-
librium strategies (such as stationarity) since even a pure bargaining game with more than two
agents is known to admit multiple equilibria (see Osborne and Rubinstein (1990, pp. 63–65)).

12This part of the game represents a simple modification of the Rubinstein game, suggested by
Binmore (1987). This model separates the issue of relative bargaining power from the discount
factor and eliminates the (arbitrary) bias associated with who becomes the first proposer. The
subsequent results will remain qualitatively the same, in particular when the parties discount very
little, if one adopts the Rubinstein model.
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It is useful to describe several benchmarks. The following notations will
prove useful for this purpose as well as for the subsequent analysis. For
δ ∈ [0�1], define some (hypothetical) payoff functions,

UB
δ (b� s;α) := αφ(b� s)− [1 − (1 − α)δ]b

and

US
δ (b� s;α) := (1 − α)φ(b� s)− [1 − αδ]s�

respectively for the buyer and the seller, and let

Bδ(s) := arg max
b
UB
δ (b� s;α) and Sδ(b) := arg max

s
US
δ (b� s;α)

be the corresponding best response functions. (They are well defined since
Ui
δ(·� ·) is strictly concave. The dependence on α will be suppressed henceforth

unless necessary.) Notice that these payoff functions exhibit increasing differ-
ences in (b;δ) and in (s;δ), respectively. Since the best responses are unique,
then B0(s) ≤ Bδ(s) ≤ B1(s) for all s ≥ 0 and δ ∈ [0�1], and S0(b) ≤ Sδ(b) ≤
S1(b) for all b≥ 0 and δ ∈ [0�1]. Meanwhile, strict concavity of φ(·� ·) implies
that

φbbφss > φ
2
bs ⇐⇒ B′

δS
′
δ =

(
−φbs
φbb

)(
−φbs
φss

)
< 1�

from which it follows that, for any δ ∈ (0�1), Bδ(·) intersects Sδ(·) only once.
Let (bδ� sδ) denote this intersection (i.e., bδ = Bδ(sδ) and sδ = Sδ(bδ)).

Although the significance of (bδ� sδ) will not be immediate for δ ∈ (0�1), it
can be seen clearly for the extreme values of δ. Consider first δ= 1. Note that

UB
1 (b� s)

α
− s = US

1 (b� s)

1 − α − b=φ(b� s)− b− s�

the joint payoff of the parties. Hence, B1(·) and S1(·) are the socially efficient
responses. The first-best pair is thus the intersection, (b1� s1), of these curves.
Consider the other extreme case, with δ = 0. In this case, the payoffs for the
parties reduce to UB

0 (b� s)= αφ(b� s)− b and US
0 (b� s)= (1 − α)φ(b� s)− s,

which are their payoffs in the static holdup game. Since B0(·) and S0(·) repre-
sent the best response functions of the buyer and the seller, respectively, their
intersection, (b0� s0), will be the subgame perfect equilibrium of that game. To
avoid a trivial uninteresting case, we assume that either (b0� s0) or (b1� s1) is
in the interior of X × Y , which implies that (b0� s0) �= (b1� s1); i.e., the static
outcome is inefficient. Finally, observe that (bδ� sδ) converges to the first-best
pair (b1� s1) as δ→ 1. The next section will show that (bδ� sδ) is sustainable in
equilibrium for a sufficiently high δ if a certain individual rationality condition
holds.
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4. ASYMPTOTIC EFFICIENCY

In this section, we will investigate the circumstances under which the first-
best outcome can be approximated arbitrarily closely in equilibrium, as δ→ 1.
Specifically, we will establish that the pair (bδ� sδ) can be implemented as an
MPE for a sufficiently large δ, given the following condition:

(SIRα) UB
0 (b1� s1;α) > 0 and US

0 (b1� s1;α) > 0�

In words, this condition says that the parties recoup their investment costs at
the efficient pair, if they split the gross surplus precisely the same way as they
would in the static holdup game. Whether (SIRα) holds depends on the relative
bargaining power as well as the investment expenditure required for the first-
best pair: the higher α and lower b1, the easier the condition is to satisfy for the
buyer and the harder for the seller. More importantly, (SIRα) would never be
sufficient for the first-best pair to be sustainable in the static model. Indeed, the
unique static outcome is inefficient in our model even with (SIRα). By contrast,
(SIRα) is sufficient for asymptotic efficiency:

PROPOSITION 1 (Asymptotic Efficiency): Given (SIRα), there exists a δ∗ < 1
such that, for all δ≥ δ∗, there exists an MPE in which the parties choose (bδ� sδ)
and trade in the first period. That is, given (SIRα), there exists an MPE that imple-
ments the first-best arbitrarily closely as δ→ 1.

For the proof see Appendix A.
While the general proof is relegated to the Appendix, its intuition can be

illustrated easily in the case of weakly substitutable investments. Consider the
Markovian investment strategy profile, Is :X ×Y 
→ X ×Y , which maps from
the previous period cumulative investment pair into the current period pair:

Is(b� s)=




(bδ� sδ) if (b� s)≤ (bδ� sδ) [region (i)]�
(b�Sδ(b)) if b > bδ and s ≤ Sδ(b) [region (ii)]�
(Bδ(s)� s) if s > sδ and b≤ Bδ(s) [region (iii)]�
(b� s) if b≥ Bδ(s) and s ≥ Sδ(b) [region (iv)].

The associated bargaining strategies are for each proposer to choose between
offering the discounted continuation payoff of the receiver, given the future in-
vestment path, and offering any rejectable offer, whichever is more profitable,
and for the receiver to accept if and only if the offer is no less than his dis-
counted continuation payoff, given the future investment path.

Figure 1(a) depicts the investment strategies in “phase diagram” form.
These strategies have the same flavor as the one in our motivating example,

in that a party, say the buyer, whenever coming up short of the target, bδ, will
invest up to that target when he gets a chance to invest in the next period.
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FIGURE 1(a).

To see the relevance of (SIRα), suppose both parties follow the equilibrium
strategies and choose (bδ� sδ). According to Is , the parties never subsequently
invest (i.e., Is(bδ� sδ) = (bδ� sδ)). Hence, the ensuing subgame collapses to a
pure bargaining game with a fixed surplus, φ(bδ� sδ). The equilibrium shares
are then uniquely determined as (α�1−α) (see Binmore (1987)), so the parties
will receive UB

0 (bδ� sδ;α) and US
0 (bδ� sδ;α). Since (bδ� sδ)→ (b1� s1) as δ→ 1,

(SIRα) ensures that

UB
0 (bδ� sδ;α)≥ 0 and US

0 (bδ� sδ;α)≥ 0�(3)

for sufficiently large δ. Since each party has an option of making no invest-
ment and ensuring himself at least zero payoff, (3) is necessary for Is to be an
equilibrium. In fact, (3) (and thus (SIRα)) is sufficient for Is to be sustainable.13

To illustrate, suppose that the buyer deviates to b > bδ while the seller
chooses his target s = sδ. Then, they find themselves in region (iv). Since no
further investment is prescribed by the strategy, again the ensuing subgame
becomes a pure bargaining game with a fixed surplus of φ(b� sδ), from which
the buyer receives

αφ(b� sδ)− b=UB
0 (b� sδ)�(4)

13 As can be seen from the proof of Proposition 1, (3) is sufficient for asymptotic efficiency. In
many cases, however, a weak inequality version of (SIRα), (IRα) introduced in the next section, is
sufficient for (3), in which case (IRα) will be necessary and sufficient for asymptotic efficiency, as
will be seen in the next section.
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FIGURE 1(b).

Recall that this payoff coincides with the payoff that the buyer would have
received in the static model. SinceUB

0 (b� sδ) declines in b for b≥ bδ = Bδ(sδ)≥
B0(sδ) (as depicted in Figure 1(b)), the buyer will never deviate to b > bδ.

Suppose next that the buyer deviates to b < bδ. In this case, the strategy of
him investing back to the target next period (if no agreement is reached in the
current period) means that the payoff facing the buyer will no longer coincide
with UB

0 (b� sδ). Instead, his payoff given the above strategy turns out to be

max
{
UB
δ (b� sδ)− δ(1 − α)bδ� δUB

0 (bδ� sδ)− (1 − δ)b}�(5)

where the first term corresponds to the case in which the deviation is followed
by an immediate agreement to trade and the second term corresponds to the
case in which the deviation is followed by a rejection.14 As depicted in Fig-
ure 1(b), the incentives associated with this payoff are steeper than those gen-

14 If there is no agreement in the current period, then the strategy prescribes the buyer to
invest to bδ next period, which as noted above will trigger a pure bargaining game with a pie of
φ(bδ� sδ). Hence, the buyer’s discounted continuation payoff is δ[αφ(bδ� sδ)− (bδ − b)], while
that of the seller is δ(1 −α)φ(bδ� sδ). Thus, the buyer’s deviation payoff from choosing b < bδ is

αmax{φ(b� sδ)− δ(1 − α)φ(bδ� sδ)� δ[αφ(bδ� sδ)− (bδ − b)]}(∗)

+ (1 − α)δ[αφ(bδ� sδ)− (bδ − b)] − b�
This is explained as follows. Upon choosing b < bδ, the buyer is chosen with probability α to
become the proposer. In this case, the buyer can make either a minimal acceptable offer, match-
ing the seller’s continuation payoff, δ(1 − α)φ(bδ� sδ), or a rejectable offer, thus collecting his
own discounted continuation payoff δ[αφ(bδ� sδ)− (bδ − b)], whichever is more profitable. With
probability 1 − α, the buyer becomes a responder, in which case the buyer will be held down to
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erated in the static model. Specifically, the second term can never dominate the
equilibrium payoff ofUB

0 (bδ� sδ) as long as it is nonnegative, which will hold for
a sufficiently large δ given (SIRα). Meanwhile, the first term of (5) is strictly in-
creasing in b and attains its maximum at b= bδ and equals UB

0 (bδ� sδ). Hence,
again the buyer has no incentive to deviate to b < bδ.

If the investments are strictly complementary, the above strategies may not
work. In that case, Bδ(·) and Sδ(·) are strictly increasing, so, for instance, the
buyer may wish to raise her investment in region (ii) to credibly force the seller
to invest even further, which may lower the latter’s continuation payoff and im-
prove the buyer’s current-period bargaining position. In that case, the strate-
gies should be modified to control such incentives. A large part of the proof in
the Appendix addresses this issue.

A few implications of the asymptotic efficiency result can be drawn by inves-
tigating some special cases for which (SIRα) is expected to hold. First, it must
be clear that (SIRα) holds for at least some values of α.

COROLLARY 1 (Fair Bargaining Shares): There exists α ∈ [0�1] for which as-
ymptotic efficiency is achievable.

PROOF: For any α ∈ [0�1], we have

UB
0 (b1� s1)+US

0 (b1� s1)=φ(b1� s1)− b1 − s1 > 0�

The result holds since Ui
0(b1� s1), i = B�S, is continuous in α, takes a nega-

tive value for some α, and takes a positive value for some other values of α.
Q.E.D.

This result contrasts with the standard holdup model in which inefficiencies
must arise regardless of the relative bargaining power if both parties have con-
tinuous investments to make (recall our result with δ = 0). This also implies
that efficiency would be achievable if the parties had the institutional tools to
manipulate the relative bargaining power, α. If the two parties have a sym-
metric technology, then the equal bargaining power turns out to be the right
one.

COROLLARY 2 (Symmetry): Asymptotic efficiency is achievable if X = Y ,
φ(b� s)=φ(s�b) and α= 1

2 .

PROOF: By symmetry, we have b1 = s1. Hence,

1
2
φ(b1� s1)− b1 = 1

2
φ(b1� s1)− s1 = 1

2
[φ(b1� s1)− b1 − s1]> 0�

his discounted continuation payoff, no matter how the seller resolves her trade-off. Payoff (∗)
simplifies to (5).
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implying that (SIR1/2) holds. Q.E.D.

In the public good provision problem, only the total contribution of the
agents matters, so the investments are perfect substitutes. While our strict con-
cavity assumption rules out this case, our result continues to hold.

COROLLARY 3 (Perfect Substitutability): Asymptotic efficiency is achievable
for any α ∈ [0�1], if φ(b� s) = ψ(b+ s) for some strictly concave function ψ(·)
with ψ(0) = 0 and limz↓0ψ

′(z) > 1 (where the limit is taken along the points of
differentiability).

PROOF: Given the assumption, any (b� s) such that b + s = z∗ :=
arg maxz{ψ(z) − z} constitutes the first-best outcome. Since ψ(z∗) − z∗ > 0,
for any α ∈ [0�1], there exists a first-best pair (b� s) with b+ s = z∗ satisfying
(SIRα). Pick any such pair and call it (b1� s1). Next, note that for each δ, both
Bδ(·) and Sδ(·) are negative 45 degrees lines, and Bδ(·) lies outside (inside)
Sδ(·) if α ≥ 1

2(α ≤ 1
2). Assume, without loss of generality, that α ≥ 1

2 . Since
Sδ(·) converges to the line, s = z∗ −b, we can choose (bδ� sδ) on Sδ(·) such that
(bδ� sδ)→ (b1� s1) as δ→ 1. Define next the investment strategies,

Ips(b� s)=




(bδ� sδ) if (b� s)≤ (bδ� sδ)�
(b�Sδ(b)) if b > bδ and s ≤ Sδ(b)�
(min{bδ�Bδ(s)}� s) if s > sδ and b≤ min{bδ�Bδ(s)}�
(b� s) otherwise�

The proof of Proposition 1 holds with Ips , which proves that (bδ� sδ) is imple-
mentable as an MPE. Q.E.D.

Intuitively, if one agent’s investment is just as good as the other’s, they can
allocate the investment responsibilities to reflect their relative bargaining po-
sitions, i.e., by assigning a higher investment responsibility to the agent with
more bargaining power. Consequently, in contribution games individual ratio-
nality is not an issue (see Section 7 for further discussion of this literature).

Several further remarks are worth making.

REMARK 1: For weakly substitutable investments, the proof of Proposition 1
does not rely on the fact that the set of feasible investments is continuous.
Hence, the result holds just as well if the feasible levels of investment are dis-
crete.15 Indeed, as the motivating example illustrates, the first-best outcome
can be implemented precisely (and not just approximated) for a large δ < 1.

15We conjecture that this is also true for complementary investments. The required strategies
may involve randomization in some cases.
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The ability to handle the discrete investments case contrasts with the dynamic
voluntary contribution literature (cf. Section 7).

REMARK 2: One may wonder if Proposition 1 is a result of some folk theo-
rem. A folk theorem does not hold in our model,16 for the same reason that it
does not hold in the Rubinstein bargaining model. In these models, the game
can end once the players agree to trade, at which point no credible punishment
can be mounted against a deviator.17 By contrast, folk theorems hold in games
for which the threat of destroying future payoffs remains available to players at
any point in time. This difference distinguishes our efficiency result from that
obtainable in repeated game models (see Baker, Gibbons, and Murphy (2002),
Halonen (2002), and MacLeod and Malcomson (1989)).

REMARK 3: The equilibrium constructed is not only Markov perfect, but it
also satisfies a certain passivity property of the beliefs: i.e., a deviation trig-
gers a minimal revision of the equilibrium investment plan. Che and Sákovics
(2001) show that, with weakly substitutable investments, any investment pair
(b� s) is implementable by an SPE satisfying the refinement, if and only if
(b� s) ∈ [B0(s)�Bδ(s)] × [S0(b)� Sδ(b)] and satisfies Ui

0(b� s) ≥ 0, for i = B�S.
Note that the latter set includes (bδ� sδ) if Ui

0(bδ� sδ) ≥ 0 (even for a low δ),
and it includes the static outcome, (b0� s0). The sustainability of the static out-
come depends crucially on the substitutability of the investments, though. As
shown in Section 6, if the investments are complementary, the static outcome
may not be implementable even by an SPE (and not just an MPE satisfying the
refinement), for a large δ.

REMARK 4: While investments and trade take place in the first period in our
asymptotically efficient equilibria (just as in static models), the sustainability
of these equilibria rests on the infinite horizon. For instance, our asymptotic
efficiency result depends on the out-of-equilibrium belief that any party who
deviates to invest less than his target level will make up the short-fall in the next

16To see this, note that (SIRα) is stronger than the standard individual rationality invoked in the
folk theorem: (SIRα) requires the first-best pair to yield positive payoffs conditional on dividing
the pie in the (α�1−α) ratio, whereas the standard individual rationality would require the parties
to receive positive payoffs for some feasible sharing rule. Since φ(b1� s1)− b1 − s1 > 0, this latter
condition holds trivially. Hence, if a folk theorem were to hold, (b1� s1) should be implementable
for a large δ < 1, even when (SIRα) fails to hold. As must be clear from the motivating example
(Section 2) and will be shown formally in Section 5, however, the bargaining shares differing
from (α�1 −α) are sometimes unsustainable, in which case (b1� s1) cannot be implemented if our
version of individual rationality fails. Hence, the folk theorem does not hold.

17This feature renders the folk theorem of Dutta (1995) inapplicable in our model. That
folk theorem required the set of feasible long-run average payoffs to remain constant and full-
dimensional (i.e., of the same dimension as that of the number of players) at any point of the
game. Clearly, once players agree to trade, the set collapses to a singleton, that is, the game ends,
so the required condition cannot be satisfied.
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period. In a finite horizon model, such a belief will not be credible in the last
period. Hence, the asymptotic efficiency result cannot be sustained in a finite-
horizon model. The same issue arises in the contribution games literature.18

At the same time, our model’s prediction may still differ from the static result
even if it is truncated after two periods (cf. the example in Section 6).

5. THE NECESSITY OF INDIVIDUAL RATIONALITY FOR ASYMPTOTIC
EFFICIENCY WHEN INVESTMENTS ARE SUBSTITUTES

In this section, we establish a necessary condition for asymptotic efficiency.
Specifically, we will argue that, for (weakly) substitutable investments, any
equilibrium pair of cumulative investments is bounded away from the efficient
pair for all δ ∈ (0�1), unless we have19

(IRα) UB
0 (b1� s1;α)≥ 0 and US

0 (b1� s1;α)≥ 0�

The necessity of (IRα) for asymptotic efficiency would be immediate if every
equilibrium had the feature, like Is , that the parties never invest further once
they arrive at a target pair, say (b′� s′), at which trade occurs. Given this fea-
ture, the bargaining shares at the target pair will coincide with (α�1 − α), so
the equilibrium payoff for party i= B�S will never exceedUi

0(b
′� s′).20 Hence, if

(b′� s′) is sufficiently close to (b1� s1), then the equilibrium would be sustainable
only if (IRα) holds. Not all equilibria may have this feature, however. In prin-
ciple, bargaining shares different from (α�1 −α)may be implementable at the
target pair, if some nontrivial investment were to follow (out-of-equilibrium)
disagreement at that target pair. In fact, with complementary investments, Sec-
tion 6 will show that such an investment path exists, so that an efficient pair
may be implementable even when (IRα) fails. Hence, establishing the necessity
of (IRα) for asymptotic efficiency is not trivial even for (weakly) substitutable
investments. In particular, it requires identifying all possible investment paths
that can be implemented after the target pair is reached.

To proceed formally, we need a few notations. For any (b� s) ∈ X ×Y , con-
sider a subgame that follows immediately after (b� s) is reached (but before
the proposer is chosen). Let wi

δ(b� s) and wi
δ(b� s) then denote respectively the

supremum and the infimum SPE continuation payoffs for party i= B�S at that

18The asymptotic efficiency result of Marx and Matthews (2000) in the “no-payoff-jump” case
(which corresponds to the situation considered in our model) also unravels in the finite-horizon
setting.

19Note that this (IRα) is a weak version of (SIRα). Recall from footnote 13 that the difference
stems from the fact that (IRα) may not be sufficient for (3).

20If the parties arrive at (b′� s′) in the first period, then their payoffs equal UB
0 (b

′� s′) and
US

0 (b
′� s′), precisely. If they reach the pair later, their payoffs fall short of these amounts.
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subgame. We then consider their upper and lower envelopes by defining

σδ(b� s) := lim sup
(b′�s′)→(b�s)

wS
δ(b

′� s′) and σδ(b� s) := lim inf
(b′�s′)→(b�s)

wS
δ(b

′� s′)�

for the seller, and similarly βδ(b� s) and β
δ
(b� s) for the buyer. We shall sup-

press the dependence of these functions on δ, unless it becomes relevant. We
shall simply call σ(b� s) and σ(b� s) the highest and the lowest sustainable con-
tinuation payoffs for the seller at (b� s), and similarly for the buyer.

Next, we let I(b� s) denote the set of all (cumulative) investment pairs that
can be reached from (b� s) in any SPE. As was seen in the construction of the
equilibrium in the previous section (see Remark 3), this set is nonempty. For
our purpose, it is useful to consider its closure, �I(b� s).

Consider the highest possible continuation payoff for the seller when starting
from a stock of (b′� s′):

V S(b′� s′) := max
(b′′�s′′)∈�I(b′�s′)

σ(b′′� s′′)− (s′′ − s′)�(6)

The maximum is well defined since σ is upper-semicontinuous (see Theo-
rem A6.5 of Ash (1972, pp. 389 and 390)) and �I(b′� s′) is compact.21 Consider
now its limit superior as (b′� s′)→ (b� s),

lim sup
(b′�s′)→(b�s)

V S(b′� s′)�(7)

and the sequence of maximizers of (6) that attain this value in the limit, and
let (x̂(b� s)� ŷ(b� s)) be a limit point of that sequence (which is well defined
since the maximizers in the sequence lie in the compact set, X × Y). For
brevity, we will suppress the arguments of (x̂� ŷ) from now on, unless the ar-
guments are different from (b� s). Likewise, we can similarly define V B(b� s)
for the buyer and a limit point, (x̃� ỹ), of a sequence of maximizers attaining
lim sup(b′�s′)→(b�s) V

B(b′� s′).
We now characterize the highest and the lowest sustainable continuation

payoffs through Bellman equation type conditions, which will facilitate our
analysis.

LEMMA 1: For any (b� s) ∈X ×Y , we must have

σ(b� s)≤ (1 − α)max
{
φ(b� s)− δ

[
min
s′∈Y(s)

β(x̂� s′)− (x̂− b)
]
�(8)

δ[σ(x̂� ŷ)− (ŷ − s)]
}

+ αδ[σ(x̂� ŷ)− (ŷ − s)]
21Likewise, the minima are well defined for σ and β, which are used in Lemma 1.
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and

β(b� s)≥ αmax
{
φ(b� s)− δ[σ(x̂� ŷ)− (ŷ − s)]�(9)

δ
[

min
s′∈Y(s)

β(x̂� s′)− (x̂− b)
]}

+ (1 − α)δ
[

min
s′∈Y(s)

β(x̂� s′)− (x̂− b)
]

≥ αφ(b� s)− αδ[σ(x̂� ŷ)− (ŷ − s)]
+ (1 − α)δ

[
min
s′∈Y(s)

β(x̂� s′)− (x̂− b)
]
�

A symmetric characterization holds for β and σ , relative to (x̃� ỹ).

For the proof see Appendix B.
Some intuition can be provided for these conditions, assuming that V S and

V B are attained by (x̂� ŷ) and (x̃� ỹ) precisely. (That this assumption is not
necessarily valid accounts for much of the proof.) Consider (8) for instance.
Once the parties arrive at (b� s), the seller becomes the proposer with proba-
bility 1 − α. In this case, the lowest offer that the buyer would accept cannot
be lower than δ[mins′∈Y(s) β(x̂� s′)− (x̂− b)], since the latter is a lower bound
for the buyer’s minmax value.22 Hence, the highest continuation payoff for the
seller cannot exceed φ(b� s) − δ[mins′∈Y(s) β(x̂� s′)− (x̂− b)] if she wishes to
make an acceptable offer. Alternatively, the seller can make a rejectable of-
fer, in which case her highest continuation payoff cannot exceed V S(b� s), or
δ[σ(x̂� ŷ) − (ŷ − s)], given our assumption. Clearly, the seller’s continuation
payoff cannot exceed the bigger of the two payoffs, which explains the first
term. With probability α, the seller becomes a responder. In this case, the buyer
will never offer more than V S(b� s) (= δ[σ(x̂� ŷ)− (ŷ − s)]), so her continu-
ation payoff can never exceed this amount, which explains the second term.
In sum, the highest payoff sustainable for the seller at (b� s), σ(b� s), cannot
exceed the right-hand side of (8). Similar explanations apply to β�β, and σ .

These conditions can be used to characterize the extreme continuation pay-
offs for the parties. While a party’s highest and lowest continuation payoffs
do not coincide in general, they do so for sufficiently large pairs of cumulative
investments, leading to unique continuation payoffs in those cases.

22 The buyer’s minmax value is

min
s′∈Y(s)

sup
b′∈X(b)

β(b′� s′)− (b′ − b)�

which is no less than mins′∈Y(s) β(x̂� s′)− (x̂− b), since x̂≥ b.
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LEMMA 2: Assume that the investments are weak substitutes (φbs(b� s) ≤ 0).
For any (b� s) ∈Ωδ := {(b� s) ∈X ×Y|s > Sδ(b) and b > Bδ(s)}, we have, for all
δ ∈ [0�1),

σδ(b� s)= σδ(b� s)= (1 − α)φ(b� s) and

βδ(b� s)= β
δ
(b� s)= αφ(b� s)�

For the proof see Appendix B.
Lemma 2 has an immediate implication on the implementability of some

investment pairs. It can be seen that no pair in Ωδ, including the first-best pair,
is reachable in any SPE.

PROPOSITION 2: Given weak substitutable investments (φbs(b� s)≤ 0), no pair
inΩδ, including the first-best pair, is implementable in any SPE, for any δ ∈ [0�1).

PROOF: Suppose to the contrary that a pair (b� s) ∈ Ωδ is implementable
for some δ ∈ [0�1). Then, there must exist (b′� s′) < (b� s) such that (b� s) ∈
I(b′� s′). Without loss of generality, assume b′ < b. That (b� s) ∈ I(b′� s′) re-
quires that, for any b′′ ∈ [b′� b) with (b′′� s) ∈Ωδ, we must have

βδ(b� s)− (b− b′)− [β
δ
(b′′� s)− (b′′ − b′)] ≥ 0�

Yet, by Lemma 2, we have

βδ(b� s)− (b− b′)− [β
δ
(b′′� s)− (b′′ − b′)]

=UB
0 (b� s)−UB

0 (b
′′� s) < 0�

where the inequality follows from b′′ < b, b′′ ≥ Bδ(s) ≥ B0(s), and from the
concavity of UB

0 . Hence, we have obtained a contradiction. Q.E.D.

REMARK 5: Lemma 2 can be proven in the case of discrete investments, by
a similar, and in fact more straightforward, argument. In the discrete case, the
first-best pair is on the boundary ofΩδ, but not in Ωδ, for a large value of δ, so
Proposition 2 does not apply. If (IRα) fails, however, the efficient investment
pair can never be implemented in the discrete investment case.

The proposition implies that the parties’ discounting of the future is a clear
cause of inefficiencies. The proposition does not preclude asymptotic effi-
ciency, however. As was shown in Proposition 1, given (SIRα), one can find an
equilibrium that implements the first-best arbitrarily closely as δ→ 1. To show
that (IRα) is indeed necessary for asymptotic efficiency, the following lemma
proves useful.
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LEMMA 3: Given weakly substitutable investments (φbs(b� s)≤ 0),

lim sup
(b�s)→(b1 �s1)

sup
δ∈[0�1)

σδ(b� s)≤ (1 − α)φ(b1� s1)

and

lim sup
(b�s)→(b1 �s1)

sup
δ∈[0�1)

βδ(b� s)≤ αφ(b1� s1)�

For the proof see Appendix B.
Finally, we are in the position to state and prove the main result of this sec-

tion.

PROPOSITION 3: Assume that the investments are weak substitutes (φbs(b� s)≤
0). If (IRα) fails, then there exists an open set, O, containing (b1� s1), such that any
investment pair in O can never be implemented in any SPE, for any δ ∈ [0�1).

PROOF: Suppose that (IRα) fails. Without loss of generality, suppose
αφ(b1� s1)− b1 < 0. Choose ε > 0 such that αφ(b1� s1)− b1 + 2ε < 0. Then, by
Lemma 3, there exists ν-ball, Bν, with a center at (b1� s1) and a radius ν ∈ (0� ε),
such that, for all (b� s) ∈ Bν , supδ∈[0�1) βδ(b� s)≤ αφ(b1� s1)+ ε, so

sup
δ∈[0�1)

βδ(b� s)− b ≤ αφ(b1� s1)+ ε− b

= αφ(b1� s1)+ ε− b1 + (b1 − b)
< αφ(b1� s1)− b1 + 2ε < 0�

This means that if trade occurs at any (b� s) ∈ Bν, then the buyer will obtain
strictly negative payoff (no matter when the trade occurs). Since the buyer’s
minmax value is zero, this cannot occur in equilibrium. Hence, there exists no
equilibrium in which the parties reach (b� s) ∈ Bν. Q.E.D.

This result suggests that inefficiencies are unavoidable when the individual
rationality constraint fails. This confirms that, in some cases, the holdup prob-
lem provides some rationale for organizational remedies, although the scope
of the circumstances is likely to be much narrower than has been recognized,
and the nature of remedies warranted may be quite different from those pro-
posed in the existing literature. We return to this point in the Conclusion.

6. COMPLEMENTARY INVESTMENTS: AN EXAMPLE

Proposition 1 shows that (SIRα) is sufficient for asymptotic efficiency, for
both substitutable and complementary investments. The necessity of (IRα) for
asymptotic efficiency was however established in Proposition 3 only for weakly
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substitutable investments. In this section, we show via an example that the ne-
cessity of (IRα) does not extend to complementary investments: i.e., the failure
of (IRα) need not imply the unattainability of the first-best outcome if the in-
vestments are complementary. The same example will be used to make another
interesting point: with complementarity, the static equilibrium may not be im-
plementable for a large δ, even when the game must end by period two.

Consider two parties, S and B, with equal bargaining power (α = 1/2).
S (“row” player) has the option of investing nothing or 20.B (“column” player)
can invest 0, 10, or 20. The gross surplus, φ, depends on their investment deci-
sions in the following way:

S \ B 0 10 20
0 2 18 18
20 2 24 46

.

It is useful first to describe the parties’ payoffs in the static game (i.e., with
δ= 0):

S \ B 0 10 20
0 (1�1) (9�−1) (9�−11)
20 (−19�1) (−8�2) (3�3)

.

Observe first that the only equilibrium is (0�0) in the static game. Next, the
first-best pair is (0�10) (at which the joint payoffs are maximized). We then
make the following two observations.

OBSERVATION 1: The static equilibrium pair, (0�0), is not sustainable in any
SPE for δ > 22/23.

To see this, suppose to the contrary that the static equilibrium pair (0�0)
is implementable. In any such equilibrium, S’s payoff is at most 2, since the
outcome must be individually rational for B. Suppose now S deviates to 20
unilaterally in the first period. With δ > 22/23, the parties will then disagree
(regardless of who becomes the proposer) and let B invest 20 in the follow-
ing period, which is indeed his best response.23 Hence, the deviation would
give S a net payoff of δ23 − 20 which exceeds 2 if δ > 22/23. Thus, (0�0) is not
implementable in any SPE with δ > 22/23. It is worth noting that the above ar-
gument does not depend on the assumption that our game has infinite horizon.
It applies even in a two-period truncation of our model.

This observation again reinforces the fact that the folk theorem does not
apply in our model. It also implies that, despite the multiplicity, the predictions

23By choosing 0 and 10, B can net at most 1 and 2, respectively.
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of the static and dynamic models must sometimes differ. That is, in general, we
cannot apply some special refinement in the dynamic game and get back the
static result.

OBSERVATION 2: The failure of (IRα) need not imply that efficiency is
unattainable.

As can be seen in the payoff matrix, (IRα) does not hold in this example with
α = 1/2: At the first-best pair, (0�10), B realizes −1 from splitting the gross
surplus equally. In our dynamic game, however, the first-best pair can be imple-
mented in an MPE if δ≥ 3/5. To see this, consider the investment strategies:

I∗(b� s)=
{
(0�10) if (b� s)= (0�0)�
(20�20) if (b� s) �= (0�0)�

With this strategy profile, the parties initially move to the first-best pair (0�10),
and, if no agreement is reached, they move to (20�20). Since (0�10) is the first
best, they will never disagree after reaching (0�10), so the move to (20�20)
never takes place on the equilibrium path. Yet, this out-of-equilibrium move
serves to manipulate the bargaining share at (0�10) in favor of B. Once the
parties reach (20�20), they will split the gross surplus of 46 equally (on av-
erage). Hence, the continuation payoffs from rejecting at the first-best pair
(0�10) are δ3 = δ(23 − 20) and δ13 = δ(23 − 10) for S and B, respectively.
(That the additional cost to be incurred is smaller for B increases his contin-
uation payoff.) Hence, the optimal bargaining behavior at (0�10) is for B to
offer δ3, when becoming the proposer, and accept S’s offer, when becoming a
responder, if and only if it is no less than δ13, and similarly for S. Given this
bargaining behavior, S an B’s net payoffs from reaching (0�10) are 9 − δ5 and
−1 + δ5, respectively.24 With δ≥ 3/5, the parties’ continuation payoffs at each
pair, given I∗ and the associated optimal bargaining strategies, are described
as follows.

S \ B 0 10 20

0 (δ(9 − δ5)�δ(−1 + δ5)) (9 − δ5�−1 + δ5) ((9 − δ10)∨ δ3� (−11+ δ10)∨ (δ23 − 20))

20 (δ23 − 20�δ3) (δ23 − 20�δ13 − 10) (3�3)

One can easily check that the suggested investment strategies constitute an
MPE if δ ≥ 3/5.25 In particular, it is mutual best response for the parties to

24B receives 18 − δ3 and δ13 with equal probability, so his expected payoff at (0�10) is 1
2 (18 −

δ3)+ 1
2δ13 = 9+δ5. Subtracting from this B’s investment cost of 10 gives his net payoff, −1+δ5.

S receives the remainder of the net social surplus of 8, 9 − δ5.
25The discount factor needs to be greater than 3/5 to sustain the out-of-equilibrium move,

I∗(0�20) = (20�20). The associated bargaining behavior is analogous to that for (0�10). Given
δ≥ 3/5, disagreement/delay arises upon arriving at (0�0), (20�0), or at (20�10). Arrival at (0�10)
is followed by an immediate agreement and trade. Arriving at (0�20) results in delay if and only
if δ≥ 9/13.
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choose the first-best pair (0�10) and trade immediately. Most importantly, the
new equilibrium satisfies individual rationality at (0�10) by shifting S and B’s
bargaining shares from (1/2�1/2) to ((9 − δ5)/18� (9 + δ5)/18). In fact, there
is a transfer of δ5 from S to B. Such a transfer is created by the out-of-
equilibrium investment move from (0�10) to (20�20). This move favors B’s
bargaining position at the expense of S’s, since the move imposes a higher in-
vestment cost to S than to B, thus making rejection more unattractive for S
than for B.

7. RELATED LITERATURE

Our model and results are related to several branches of the literature. First,
our model can be seen as Rubinstein’s bargaining model (1982) (more pre-
cisely, Binmore’s (1987) random proposer variant) in which the pie may grow
endogenously through investments. While some insight from the pure bargain-
ing model carries over to our model, the interaction of investment and bargain-
ing has presented a new problem. For instance, a continuation payoff (upon
reaching some cumulative investment pair, say) is no longer unique, but rather
depends on the subsequent investment path, which must be in turn incentive
compatible relative to the continuation payoffs. It turns out that a range of
different bargaining shares are sustainable by different (self-enforcing) invest-
ment paths. In a similar vein, Busch and Wen (1995) support multiple bargain-
ing shares in a model in which negotiators play a normal-form game repeatedly
whenever they disagree. Their disagreement game does not affect the pie, so
inefficiency arises only through delay. By contrast, the inefficiency and multi-
plicity of equilibria in our model follows from the endogeneity of the bargain-
ing stake.

Our model is related to the literature on “contribution games,” which
studies the incentives for voluntary contribution to public projects (see
Marx and Matthews (2000), Gale (2001), Lockwood and Thomas (2002),
Admati and Perry (1991), Bagnoli and Lipman (1989), Compte and Jehiel
(2003), and Pitchford and Snyder, (2001)).26 Marx and Matthews (2000) and
Lockwood and Thomas (2002) show that, if contributors are allowed to con-
tribute over time, the standard free-riding problem can be almost overcome
by gradual accumulation strategies and the accompanying dynamic threat. The
holdup problem is similar to the free-riding problem arising in contribution
games, but our model differs crucially on several accounts. First, the parties
explicitly bargain to split the surplus in our model, rather than following some

26Gale (2001) studies monotone games with positive spill-over, while Lockwood and Thomas
(2002) consider repeated games with irreversible actions. Both include contribution games as
a special case. Pitchford and Snyder’s (2001) model is particularly relevant since it involves a
transfer payment and interprets the gradual investment as a solution to the holdup problem.
Except for this feature, their model is isomorphic to Marx and Matthews (2000), for instance.
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exogenous sharing rule (implied by the public good technology). This extra
strategic interaction is largely responsible for the efficiency result we obtain.
Second, there is a difference in the way surplus is realized. In our model, sur-
plus can arise only once, when the parties trade, even though the level of surplus
realizable from trade increases continuously with investments. Hence, future
accumulation of investments can be achieved only by foregoing current trade,
i.e., by postponing surplus realization. By contrast, contribution models assume
that the timing of surplus realization as well as the level of surplus depend com-
pletely on the accumulated investments. Hence, a future accumulation does
not require the postponement of surplus realization.27 This difference in en-
vironment implies that the gradual accumulation strategies proposed by the
contribution game literature would be unsustainable in our game.28 In fact, in-
vestments take place all at once in our asymptotically efficient equilibria. As a
consequence of not having to rely on gradual investment strategies, our results
are equally valid for a discrete set of feasible investments, unlike the above
mentioned papers. Finally, the contribution models consider investments that
are perfectly substitutable or symmetric in their effect on the surplus. We
consider a wide range of cases in which parties’ investments are imperfectly
substitutable or even complementary, and more importantly, have asymmet-
ric effects on the surplus, including the extreme case in which only one party
invests. Our results hold regardless of the underlying technologies.

Gul (2001) also establishes asymptotic efficiency in a holdup model without
ex ante contracts. In that model, a seller makes repeated one-sided offers to a
buyer who has made unobservable investment. Unlike in our model, though,
investment dynamics is not allowed since all investment must take place in the
first period. Rather, the unobservablity plays a key role:29 The required self-
selection constraint means that the price facing the buyer is independent of his
investment choice. This feature makes the buyer a residual claimant on his in-
vestment whenever he is induced to purchase. Hence, efficiency would result if

27This remark applies even in the so-called “payoff jump” case considered by Marx and
Matthews (2000), in which contributors realize no flow surplus until reaching a certain accumu-
lation target. Clearly, there is no current surplus to be sacrificed to enable future accumulation,
prior to reaching the target.

28Suppose that the parties split the surplus according to some exogenous sharing rule (rather
than through bargaining), but that the surplus is realized only when they agree to trade (hence
keeping our second feature). Since the realizable surplus increases continuously with investments
in our model, the gradual investment strategies would involve ever-shrinking investment in-
crements toward the accumulation target (see Marx and Matthews (2000) and Lockwood and
Thomas (2002)). This latter feature means that the additional surplus that would be obtained
by delaying trade becomes arbitrarily small as the target is approached, relative to the cost of
postponing surplus realization, so future accumulation (which would require postponing trade)
becomes no longer credible, thus unraveling the gradual accumulation strategies. Gradual accu-
mulation is sustainable in the contribution models since it does not require postponing surplus
realization, regardless of whether payoffs jump at the target or not.

29If the investment were observable, then the seller would extract the entire surplus, leading to
no investment on the part of the buyer in equilibrium.
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the equilibrium trade is efficient, which in Gul (2001) results from the Coasian
effect as the time interval between offers shrinks. By contrast, our result works
with observable investments and rests on the investment dynamics. Further,
the asymptotic efficiency in Gul (2001) works only when the investment is self-
ish (in the sense of benefiting purely the investor), whereas our result requires
no restriction on the nature of investments.

8. CONCLUSION

When parties negotiate ex post to determine the terms of trade, they split
the ex post trading surplus, so a party can be seen as appropriating only a
fraction, say half, of the return to his sunk investment in terms of absolute
payoff. It would then follow, according to the conventional wisdom, that the
investor would appropriate only half of the marginal return to his investment,
from which underinvestment would follow. We have shown that this link be-
tween absolute and marginal appropriability is an artifact of the rigid separa-
tion of the investment and bargaining stages assumed in the static model. Once
we allow for simple, realistic investment dynamics, the parties’ sharing of trade
surplus need not imply poor marginal incentives for their investment decisions.
In particular, in the limit when the parties are extremely patient, the first-best
investment decisions can be supported as an equilibrium as long as the parties
recoup their investment costs from the negotiation.

As mentioned in the Introduction, our positive findings suggest that explicit
contracts are unnecessary in many plausible situations. This finding is consis-
tent with similar results put forth by Che and Hausch (1999), Segal (1999), and
Hart and Moore (1990). These papers have shown that contracts can do little
to overcome the inefficiencies caused by the holdup problem. By contrast, our
result rests on the finding that investment dynamics alone can solve the incen-
tive problem. Remarkably, the features that make contracts ineffective in the
aforementioned papers (e.g., “cooperative investments” and/or environmental
“complexities”) do not disrupt efficiency here even in the absence of ex ante
contracts!

At the same time, our finding of inefficiencies suggests that the holdup prob-
lem may provide a rationale for contractual and organizational remedies, in
some circumstances. Even in these circumstances, the required remedies ap-
pear to be different from those prescribed by the existing literature. In par-
ticular, our finding suggests that individual rationality should be an important
consideration in contract design. This insight will likely influence our views on
how to allocate asset ownership rights and to design production contracts and
how to allocate parties’ default rights in disputes through the design of legal
rules and institutions. Indeed, our preliminary results indicate that some of the
well-known existing prescriptions do not apply in an environment where in-
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vestment dynamics is allowed.30 Such an inquiry appears to offer a promising
new avenue for developing organization theory.
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APPENDIX A: THE PROOF OF PROPOSITION 1

We first prove the proposition for the case of weakly substitutable investments (φbs ≤ 0).

PROPOSITION A.1: Given (SIRα) and φbs ≤ 0, there exists a δ∗ < 1 such that, for all δ≥ δ∗, there
exists an MPE in which the parties choose (bδ� sδ) and trade in the first period.

PROOF: Given (SIRα), there exists δ̂∗ < 1 such that, for all δ≥ δ̂∗, we have

UB
0 (bδ� sδ)≥ 0 and US

0 (bδ� sδ)≥ 0�(10)

Fix any such δ. Consider now the Markovian investment strategies, Is(·� ·), and the associated
bargaining strategies described in the text. We prove that the strategies form a subgame perfect
equilibrium starting with any (b� s) ∈ X ×Y .

The proof generalizes the argument sketched in the text. If no party deviates, then the buyer
and the seller would respectively choose (x(b� s)� y(b� s)) := Is(b� s), which lies in region (iv)
(including its boundary). Since Is(x(b� s)� y(b� s))= (x(b� s)� y(b� s)) (i.e., no further investment
is prescribed following the equilibrium choice), the game becomes a pure bargaining game. The
buyer’s payoff in equilibrium is

UB
0

(
x(b� s)� y(b� s)

) + b(11)

(excluding the sunk portion, b). Suppose now that that buyer deviates to b′ > x(b� s). Since Bδ(·)
is nonincreasing, such a deviation will leave the parties in region (iv). Consequently, no further
investment is prescribed following the deviation. Hence, the buyer’s deviation payoff is

UB
0 (b

′� y(b� s))+ b�
We have x(b� s)≥Bδ(y(b� s)) since (x(b� s)� y(b� s)) is in region (iv). Then,

U0
(
x(b� s)� y(b� s)

) ≥U0(b
′� y(b� s))�

since b′ ≥ x(b� s)≥Bδ(y(b� s))≥ B0(y(b� s)). Hence, the deviation is not profitable.
Suppose next that the buyer deviates to b′′ ∈ [b�x(b� s)). The fact that b < x(b� s) means that

(b� s) can only be in region (i) or region (iii). Hence, it can be easily seen from Figure 1(a) that
y(b� s)= max{s� sδ} and x(b� s) = Bδ(y(b� s)). Since Is(b′′� y(b� s))= (x(b� s)� y(b� s)) and since

30Specifically, Che and Sákovics (2004) find that the separate ownership of complementary
assets can be optimal; exclusivity agreements can promote specific investments even when their
values are not transferable to outside parties; and contracts can promote cooperative investments,
which contrast with some of the standard prescriptions known in the literature (e.g., Hart (2002),
Segal and Whinston (2000), and Che and Hausch (1999)).
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Is(x(b� s)� y(b� s))= (x(b� s)� y(b� s)), the buyer’s deviation payoff is calculated, as explained in
footnote 14, as

max
{
UB
δ (b

′′� y(b� s))− δ(1 − α)x(b� s)+ b�δ[UB
0

(
x(b� s)� y(b� s)

) + b′′] − (b′′ − b)}�(12)

Observe first that

UB
0

(
x(b� s)� y(b� s)

) + b′′ ≥UB
0 (bδ� y(b� s))+ b′′ ≥UB

0 (bδ� sδ)+ b′′ ≥ 0�(13)

where the first inequality holds since x(b� s)= Bδ(y(b� s)) ≤ Bδ(sδ) = bδ, Bδ(y(b� s)) ≥ B0(y(b�

s)) and UB
0 (b̃� y(b� s)) is nonincreasing in b̃ for b̃≥ B0(y(b� s)); the second inequality holds since

y(b� s)≥ sδ and UB
0 (bδ� ·) is nondecreasing; and the last inequality follows from (10). Given (13),

the second term of (12) can never exceed the equilibrium payoff in (11). Also, note that the first
term of (12) attains its maximum at x(b� s)= Bδ(y(b� s)) where it equalsUB

0 (x(b� s)� y(b� s))+b,
so it can never exceed the equilibrium payoff.

The proof of the optimality of the seller’s strategy is completely symmetric. Q.E.D.

Next, we treat the case of complementary investments (φbs ≥ 0). We begin with the construc-
tion of the following investment strategies:

Ic(b� s)=




(bδ� sδ) if (b� s)≤ (bδ� sδ) [region (i)],

(b� Ŝδ(b)) if b > bδ and s ≤ Ŝδ(b) [region (ii)],

(B̂δ(s)� s) if s > sδ and b≤ B̂δ(s) [region (iii)],

(b� s) if b≥ B̂δ(s) and s ≥ Ŝδ(s) [region (iv)],

where B̂δ :Y(sδ) 
→ X satisfies

US
0 (B̂δ(s)� s)= πS(s) := max

s′∈Y(s)
US

0

(
max{bδ�B0(s

′)}� s′)�
for each s ∈ Y(sδ), and Ŝδ :X (bδ) 
→ Y satisfies

UB
0 (b� Ŝδ(b))= πB(b) := max

b′∈X(b)
UB

0

(
b′�max{sδ� S0(b

′)})�
for each b ∈ X (bδ).31 In words, B̂δ(s) is the buyer’s investment response that keeps the seller’s
static payoff US

0 (B̂δ(s)� s) from increasing as s rises. Requiring the buyer to choose B̂δ(s) will be
shown later to control the seller’s incentive to overinvest relative to the target, and similarly for
the buyer. The phase diagram of Ic is depicted in Figure 2.

According to the figure, the functions B̂δ(·) and Ŝδ(·) pass through (bδ� sδ), are nondecreasing,
and lie between B0(·) and Bδ(·), and between S0(·) and Sδ(·), respectively, which we establish
through the next two lemmas.

LEMMA A.1: Assume φbs ≥ 0. There exists δ̂ < 1 such that for any δ ∈ [δ̂�1), UB
0 (bδ� sδ) =

πB(bδ) and US
0 (bδ� sδ) = πS(sδ), and for some ν > 0, UB

0 (b� sδ) = πB(b) for all b ∈ [bδ� bδ + ν]
and UB

0 (bδ� s)= πS(s) for all s ∈ [sδ� sδ + ν].

PROOF: There exists ε > 0 and δ̂0 < 1 such that S0(bδ + ε) < sδ for all δ ∈ (δ̂0�1].32 Fix any
such ε > 0 and δ≥ δ̂0, and let

b̂δ ∈ arg max
b′∈X(bδ+ε)

UB
0

(
b′�max{sδ� S0(b

′)})�

31These functions are well defined. For instance, since UB
0 (b�max{sδ� S0(b̄)}) ≥ πB(b) ≥

UB
0 (b� S0(b)) and since UB

0 (b� ·) is continuous, there exists s′ such that UB
0 (b� s

′)= πB(b).
32Clearly, such ε is well defined since S0(bδ) < Sδ(bδ)= sδ for all δ > 0.
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FIGURE 2.

Since (bδ� sδ)→ (b1� s1) as δ→ 1, there exists δ̂1 < 1 such that, for all δ≥ δ̂1, we have

φ(bδ� sδ)− bδ − sδ ≥φ(
b̂δ�max{sδ� S0(b̂δ)}

) − b̂δ − max{sδ� S0(b̂δ)}�(14)

Meanwhile, since b̂δ > bδ,

US
0 (bδ� sδ) < U

S
0 (b̂δ� sδ)≤US

0

(
b̂δ�max{sδ� S0(b̂δ)}

)
�(15)

It follows that, for any b′ ∈ X (bδ + ε),
UB

0 (bδ� sδ) >U
B
0

(
b̂δ�max{sδ� S0(b̂δ)}

) ≥UB
0

(
b′�max{sδ� S0(b

′)})�(16)

where the first inequality is obtained by subtracting (15) from (14), and the second follows from
the definition of b̂δ.

Consider next any b′ ∈ [bδ� bδ + ε). Since S0(b
′) < sδ for any such b′, UB

0 (b
′�max{sδ� S0(b

′)})=
UB

0 (b
′� sδ), which is strictly decreasing in b′. Hence, UB

0 (bδ� sδ) ≥ UB
0 (b

′�max{sδ� S0(b
′)}) for all

b′ ∈ [bδ� bδ+ε). Combining this with (16), we conclude thatUB
0 (bδ� sδ)= πB(bδ) for δ≥ δ̂ for δ̂≡

max{δ̂0� δ̂1}< 1. Furthermore, for such a δ,UB
0 (b� sδ)=πB(b) for b ∈ [bδ� bδ+ν], for some ν > 0,

because of the continuity ofUB
0 (·� sδ) and because of (16). Completely symmetric arguments hold

for the rest of the lemma. Q.E.D.

LEMMA A.2: Assume φbs ≥ 0. There exists δ̃ < 1 such that for all δ ≥ δ̃, Ŝδ(b) ∈ [S0(b)� Sδ(b)]
for any b≥ bδ, B̂δ(s) ∈ [B0(b)�Bδ(b)] for any s ≥ sδ , and Ŝδ(·) and B̂δ(·) are nondecreasing.

PROOF: Without loss of generality, we focus on Ŝδ. First, it easily follows that Ŝδ(b) ≥ S0(b)
for any b ∈ X (bδ), since

UB
0 (b� Ŝδ(b))= πB(b)≥UB

0

(
b�max{sδ� S0(b)}

)
�
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Next, we show that Ŝδ(b)≤ Sδ(b) for any b ∈ X (bδ). First, since (bδ� sδ)→ (b1� s1) as δ→ 1,
for any ε > 0, there exists δ̂(ε) < 1 such that, for all δ≥ δ̂(ε), φ(b�Sδ(b))− b− Sδ(b) is strictly
decreasing in b for b ∈ X (bδ + ε), and likewise, φ(Bδ(s)� s)−Bδ(s)− s is strictly decreasing in s
for s ∈ Y(sδ + ε).

Take δ ≥ δ̃ := max{δ̂(ν)� δ̂}, where δ̂ is defined in Lemma A.1 with ν > 0 chosen so
that UB

0 (b
′� sδ) = πB(b′) for b′ ∈ [bδ� bδ + ν]. Suppose to the contrary that Ŝδ(b) > Sδ(b) ≥

max{sδ� S0(b)}. It must be that b > bδ + ν and that sδ < S0(b). Let b̂ > b be such that πB(b) =
UB

0 (b̂� S0(b̂)). Clearly, Ŝδ(b̂) = S0(b̂) ≤ Sδ(b̂). Since Ŝδ(·) is continuous, there exists b′ ∈ (b� b̂]
such that Ŝδ(b′)= Sδ(b′). Since b′ ∈ (b� b̂], we have

UB
0 (b

′� Sδ(b′))=UB
0 (b

′� Ŝδ(b′))= πB(b)=UB
0 (b̂� S0(b̂))�(17)

Meanwhile,

US
0 (b

′� Sδ(b′))≤US
0 (b̂� Sδ(b

′))≤US
0 (b̂� S0(b̂))�(18)

Summing (17) and (18) yields

φ(b′� Sδ(b′))− b′ − Sδ(b′)≤φ(b̂� S0(b̂))− b̂− S0(b̂)�(19)

We know, however, that

φ(b′� Sδ(b′))− b′ − Sδ(b′) > φ(b̂� Sδ(b̂))− b̂− Sδ(b̂)≥φ(b̂� S0(b̂))− b̂− S0(b̂)�

since δ≥ max{δ̂(ν)� δ̂} and b′ ∈ (bδ + ν� b̂). Hence, we have a contradiction.
Last, we show that Ŝδ(b′) ≥ Ŝδ(b) for any b�b′ ∈ X (bδ) with b′ > b, if δ ≥ δ̃. Let b∗ ∈

arg maxb′′∈X(b) UB
0 (b

′′�max{sδ� S0(b
′′)}). There are two possibilities. Suppose first that b∗ ≥ b′.

Then,

UB
0 (b� Ŝδ(b))=UB

0 (b
′� Ŝδ(b′))=UB

0

(
b∗�max{sδ� S0(b∗)}

)
�

Since Ŝδ(b) ∈ [S0(b)� Sδ(b)] and b ≥ bδ, we have b ≥ B0(Ŝδ(b)). Hence, if Ŝδ(b′) < Ŝδ(b),
UB

0 (b� Ŝδ(b)) > U
B
0 (b

′� Ŝδ(b)) > UB
0 (b

′� Ŝδ(b′)), a contradiction. This proves that Ŝδ(b′)≥ Ŝδ(b).
Suppose next that b∗ ∈ [b�b′). The proof follows since

Ŝδ(b)≤ Ŝδ(b∗)= max{sδ� S0(b∗)} ≤ max{sδ� S0(b
′)} ≤ Ŝδ(b′)�

where the first inequality follows from the argument in the preceding case and the last inequality
follows from the definition of Ŝδ(·). Q.E.D.

Armed with these observations, we are now in a position to prove that Ic forms a subgame-
perfect equilibrium for sufficiently large δ. We do so first with condition:

∃ δ̂IR∗ < 1 such that ∀δ≥ δ̂IR∗� UB
0 (B̂δ(s)� s)≥ 0 ∀s ∈ Y(sδ) and(IR∗)

US
0 (b� Ŝδ(b))≥ 0 ∀b ∈ X (bδ)�

Although (SIRα) does not always imply (IR∗), it is expositionally easier to establish the result
first with the latter condition and modify Ic later to accommodate the possibly weaker condi-
tion (SIRα).

PROPOSITION A.2: Given (IR∗) and φbs ≥ 0, there exists a δ̂∗ < 1 such that, for all δ ≥ δ̂∗, it is
MPE behavior for the parties to follow Ic , in which case the parties choose (bδ� sδ) and trade in the
first period.
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PROOF: Let δ̂∗ := max{δ̂IR∗ � δ̃} (where δ̂IR∗ is defined in (IR∗) and δ̃ is defined in Lemma A.2),
and fix any δ ≥ δ̂∗. Consider Ic and the associated optimal bargaining strategies, and define
(x(b� s)� y(b� s)) := Ic(b� s) for any (b� s) ∈ X × Y . We prove that, starting from any (b� s) ∈
X ×Y , there is no profitable deviation from the equilibrium response, (x(b� s)� y(b� s)).

Observe that (x(b� s)� y(b� s)) must be in region (iv) (which includes its boundary). Since
Ic(x(b� s)� y(b� s))= (x(b� s)� y(b� s)) in that region, the buyer earns net payoff of

UB
0

(
x(b� s)� y(b� s)

) + b�(20)

if he does not deviate.
Suppose first that the buyer deviates to b′′ ∈ [b�x(b� s)). As in the proof of Proposition A.1, b <

x(b� s)means that (b� s) is in either region (i) or region (iii), which in turn implies that y(b� s)≥ sδ
and that x(b� s) = B̂δ(y(b� s)). It also follows that x(b′′� y(b� s)) = x(b� s) and y(b′′� y(b� s)) =
y(b� s). Using the one-period deviation principle, the deviation payoff is then

max
{
UB
δ (b

′′� y(b� s))− δ(1 − α)x(b� s)+ b�δ[UB
0

(
x(b� s)� y(b� s)

) + b′′] − (b′′ − b)}�(21)

Since x(b� s) = B̂δ(y(b� s)), (IR∗) implies that UB
0 (x(b� s)� y(b� s)) + b ≥ 0. Hence, the second

term of (21) cannot exceed the payoff in (20). The first term also cannot exceed the payoff in
(20), since UB

δ (b
′′� y(b� s)) is increasing in b′′ for b′′ ≤ x(b� s)= B̂δ(y(b� s))≤ Bδ(y(b� s)) (where

the last inequality follows from Lemma A.2), and attains the payoff of (20) at b′′ = x(b� s).
Suppose next that the buyer deviates to b′ > x(b� s). There are two possibilities: either

(b′� y(b� s)) lies in region (iv), or it lies in region (ii). Consider the former possibility first. In
this case, b′ > B̂δ(y(b� s)) and Ic(b′� y(b� s))= (b′� y(b� s)), so the deviation payoff is simply

UB
0 (b

′� y(b� s))+ b�(22)

Since b′ > B̂δ(b� s) ≥ B0(b� s) (where the last inequality follows from Lemma A.2), the devia-
tion payoff cannot exceed that of (20). Hence, the deviation is not profitable. Now consider the
possibility that (b′� y(b� s)) lies in region (ii). In this case, x(b′� y(b� s))= b′ and y(b′� y(b� s))=
Ŝδ(b

′) > y(b� s). Again using the one-period deviation principle, the deviation payoff is obtained
as

max{αφ(b′� y(b� s))+ δα[Ŝδ(b′)− y(b� s)] + b�δ[UB
0 (b

′� Ŝδ(b′))+ b′] − (b′ − b)}�(23)

This payoff cannot exceed

UB
0 (b

′� Ŝδ(b′))+ b�(24)

By the definition of B̂δ(·), UB
0 (b

′� Ŝδ(b′))+ b′ ≥ 0, so the second term of (23) cannot exceed (24).
Likewise, the first term of (23) is increasing in y(b� s) for y(b� s)≤ Ŝδ(b′) (since Ŝδ(b′)≤ Sδ(b′)≤
S1(b

′)) and equals (24) at y(b� s) = Ŝδ(b
′). Now notice that (24) cannot exceed (20) since by

definition UB
0 (b

′� Ŝδ(b′)) = πB(b′) is nonincreasing in b′. Hence, the deviation to b′ > x(b� s) is
unprofitable.

The proof of the optimality of the seller’s response is symmetric. Q.E.D.

We are now ready to prove our main result.

PROPOSITION A.3: Given (SIRα) and φbs ≥ 0, there exists a δ∗∗ < 1 such that, for all δ ≥ δ∗∗,
there exists an MPE in which the parties choose (bδ� sδ) and trade in the first period.

PROOF: Given (SIRα), there exists δIR < 1 such that Ui
0(bδ� sδ) ≥ 0, i = B�S, ∀δ ≥ δIR . Set

δ̂∗∗ := max{δIR� δ̃} (where δ̃ is defined in Lemma A.2), and fix δ≥ δ̂∗∗. We modify the strategy, Ic ,
as follows. The new strategy profile, Î , coincides with Ic , except for a subset in region (ii) of (b� s)
with US

0 (b� Ŝδ(b))+ s < 0 and for a subset in region (iii) of (b� s) with UB
0 (B̂δ(s)� s)+ b < 0. The
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new strategies for these cases are described as follows. Fix any (b� s) in (ii) with US
0 (b� Ŝδ(b))+

s < 0. Take b̃(b� s) to be the smallest b′′ > b such that US
0 (b

′′� Ŝδ(b′′))+ s = 0.33 The new strategy
then specifies Î(b� s) := (b̃(b� s)� s). In other words, at (b� s), the buyer invests up to b̃ without the
seller making any further investment. (The arguments of b̃ are suppressed whenever no confusion
is likely.) Once (b̃� s) is reached, then the original profile, Ic , applies, since US

0 (b̃� Ŝδ(b̃))+ s = 0.
That is, Ic(b̃� s) := (b̃� Ŝδ(b̃)). The Î for region (iii) is constructed analogously. Since the changes
occur only in region (ii) or region (iii), the stated outcome will arise if the parties follow Î . The
associated bargaining strategy is specified as above.

We now prove that, for δ large enough, no deviation is profitable. Fix any (b� s) with b > bδ
and US

0 (b� Ŝδ(b)) + s < 0. As stated earlier, Î(b� s) = (b̃(b� s)� s). We first consider the buyer’s
incentive. If there is no deviation, the buyer receives

vB(δ) := max
{
αφ(b̃� s)+ αδ(Ŝδ(b̃)− s)− (b̃− b)� δαφ(b̃� Ŝδ(b̃))− (b̃− b)}(25)

≥ δαφ(b̃� Ŝδ(b̃))− (b̃− b)
= δ[φ(b̃� Ŝδ(b̃))− (Ŝδ(b̃)− s)] − (b̃− b)�(26)

where the last equality follows from the fact that (1 − α)φ(b̃� Ŝδ(b̃)) − (Ŝδ(b̃) − s) = 0. By the
definition of Ŝδ(·), vB(1) > 0, so there exists δ̂(b� s) < 1 such that vB(δ)≥ 0 for any δ≥ δ̂(b� s).

Suppose the buyer deviates to b′ ∈ [b� b̃). Since Î(b′� s)= (b̃� s), the buyer’s deviation payoff is
no greater than

max{φ(b′� s)− (b′ − b)� δ[vB(δ)+ b′ − b] − (b′ − b)}�
For δ≥ δ̂(b� s), vB(δ)≥ δ[vB(δ)+ b′ − b] − (b′ − b), so the deviation will be unprofitable if

φ(b′� s)− (b′ − b)≤ δ[φ(b̃� Ŝδ(b̃))− (Ŝδ(b̃)− s)] − (b̃− b)�(27)

We have

φ(b′� s)− (b′ − b) < φ(b′� Ŝδ(b′))− (b′ − b)− (Ŝδ(b′)− s)
= UB

0 (b
′� Ŝδ(b′))+ b+US

0 (b
′� Ŝδ(b′))+ s

≤ UB
0 (b̃� Ŝδ(b̃))+ b+US

0 (b̃� Ŝδ(b̃))+ s
= φ(b̃� Ŝδ(b̃))− (Ŝδ(b̃)− s)− (b̃− b)�

where the first inequality follows since s < Ŝδ(b′)34 and since Ŝδ(b′)≤ Sδ(b′) (by Lemma A.2) and
the second inequality follows from UB

0 (b
′� Ŝδ(b′))=UB

0 (b̃� Ŝδ(b̃)) (since Ŝδ(b′′) >max{sδ� S0(b
′′)}

33Existence of b̃ can be seen as follows. First note that Ŝδ(b) >max{sδ� S0(b)}, or else

US
0 (b� Ŝδ(b))+ s = US

0 (b�max{sδ� S0(b)})+ s
≥ US

0 (b�max{sδ�0})+ s ≥US
0 (bδ� sδ)≥ 0�

by (bδ� sδ) being individually rational. Hence, there exists b′ > b such that Ŝδ(b′) = max{sδ�
S0(b

′)}, by the definition of Ŝδ(·). Since US
0 (b

′� Ŝδ(b′))+ s = US
0 (b

′�max{sδ� S0(b
′)})+ s > 0 and

since US
0 (·� Ŝδ(·))+ s is continuous, there exists b̃ with US

0 (b̃� Ŝδ(b̃))+ s = 0.
34Since (b� s) is in region (ii), so is (b′� s), which means s ≤ Ŝδ(b′). To see s < Ŝδ(b′), suppose to

the contrary that s = Ŝδ(b′). Then,US
0 (b

′� Ŝδ(b′))+s = (1−α)φ(b′� Ŝδ(b′)) > 0, which contradicts
the fact that b′ ∈ [b� b̃(b� s)).
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for all b′′ ∈ [b′� b̃], meaning that UB
0 (b

′′� Ŝδ(b′′)) is constant for all b′′ ∈ [b′� b̃]) and since
US

0 (b
′� Ŝδ(b′))+ s ≤ 0 =US

0 (b̃� Ŝδ(b̃))+ s. The above inequality is rewritten as

φ(b′� s)− b′ + b̃
φ(b̃� Ŝδ(b̃))− (Ŝδ(b̃)− s)

< 1(28)

for all b′ with US
0 (b

′� s)≤ 0 and for the corresponding b̃(b� s)= b̃(b′� s). Hence, if δ exceeds the
left-hand side of (28), then (27) holds, so the deviation will be unprofitable. Now, let δ̂B be the
value of the following constrained maximization problem:

max
(b�s)∈X(bδ)×Y

max
{

φ(b� s)− b+ b̃(b� s)
φ(b̃(b� s)� Ŝδ(b̃(b� s)))− (Ŝδ(b̃(b� s))− s)

� δ̂(b� s)

}
subject to

US
0 (b� s)≤ 0�

Since the constraint set is compact, the maximum is well defined and must be less than 1. Clearly,
for any δ ≥ δ̂B , the buyer has no incentive to deviate to b′ ∈ [b� b̃(b� s)) from any (b� s) with
US

0 (b� Ŝδ(b))+ s < 0. We can define a similar threshold value, δ̂S < 1 for (b� s) in region (iv) with
UB

0 (B̂δ(s)� s)+ b < 0.
Fix any δ ≥ δ∗∗ := max{δ̂∗∗� δ̂B� δ̂S} (< 1). Suppose next the buyer deviates to b′ > b̃(b� s),

starting from (b� s) with b > bδ and US
0 (b� Ŝδ(b))+ s < 0. The deviation gives the buyer at most

max{αφ(b′′� s)+ αδ(Ŝδ(b′′)− s)− (b′′ − b)� δαφ(b′′� Ŝδ(b′′))− (b′′ − b)}�(29)

for some b′′ ≥ b′ > b̃.35 We now compare (25) and (29), term by term. First, note that

αφ(b̃� s)+ αδ(Ŝδ(b̃)− s)− b̃

= αφ(b̃� Ŝδ(b̃))− b̃−
∫ Ŝδ(b̃)

s

α[φs(b̃� s′)− δ]ds′

≥ αφ(b′′� Ŝδ(b′′))− b′′ −
∫ Ŝδ(b

′′)

s

α[φs(b′′� s′)− δ]ds′

= αφ(b′′� s)+ αδ(Ŝδ(b′′)− s)− b′′�

where the inequality follows since αφ(b� Ŝδ(b)) − b = UB
0 (b� Ŝδ(b)) is nonincreasing in b,

φs(b
′′� s′)−δ≥φs(b̃� s′)−δ,φs(b′′� s′)−δ≥ 0 for s′ ≤ Ŝδ(b′′)≤ Sδ(b′′), and since Ŝδ(b′′)≥ Ŝδ(b̃)

(by Lemma A.2). Next,

δαφ(b′′� Ŝδ(b′′))− b′′ − [δαφ(b̃� Ŝδ(b̃))− b̃]
≤ αφ(b′′� Ŝδ(b′′))− b′′ − [αφ(b̃� Ŝδ(b̃))− b̃]
=UB

0 (b
′′� Ŝδ(b′′))−UB

0 (b̃� Ŝδ(b̃))≤ 0�

Combining the two inequalities, we conclude that the equilibrium payoff in (25) dominates the
deviation payoff in (29).

35 Conceivably, US
0 (b

′� Ŝδ(b′)) + s < 0. But in this case, the argument above shows that, for
δ≥ δ′ , it would be more profitable for the buyer to deviate to b′′ ≡ b̃(b′� s). Hence, it suffices to
show that deviation to b′′ is unprofitable in this case.
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We now examine the seller’s incentive when starting from (b� s) such thatUS
0 (b� Ŝδ(b))+ s < 0.

If no deviation occurs, then the seller receives

max{(1 −α)φ(b̃� s)− αδ(Ŝδ(b̃)− s)� δ[US
0 (b̃� Ŝδ(b̃))+ s]} ≥ 0�

since US
0 (b̃� Ŝδ(b̃))+ s = 0. If the seller deviates to s′ ∈ (s� Ŝδ(b)], she receives

max{(1 −α)φ(b̃� s′)− αδ[Ŝδ(b̃)− s′] − (s′ − s)� δ[US
0 (b̃� Ŝδ(b̃))+ s′] − (s′ − s)}�

Note that the first term is nondecreasing in s′ (given Lemma A.2, since s′ ≤ Ŝδ(b̃)≤ Sδ(b̃)) and
equals US

0 (b̃� Ŝδ(b̃))+ s = 0 when s′ = Ŝδ(b̃). The second term is nonincreasing in s′ and equals
US

0 (b̃� Ŝδ(b̃))+ s = 0 when s′ = s. Hence, the deviation payoff is nonpositive, so the deviation is
unprofitable. Now suppose the seller deviates to s′ > Ŝδ(b̃). Since (b� s′) is now in region (iv),
the deviation payoff will be US

0 (max{b̃� B̂δ(s′′)}� s′′)+ s, for some s′′ ≥ s′ > Ŝδ(b̃).36 This payoff is
no greater than US

0 (b̃� Ŝδ(b̃)) + s = 0� since s′′ ≥ s′ > Ŝδ(b̃) ≥ S0(b̃) and since US
0 (B̂δ(s

′′)� s′′) is
nonincreasing in s′′ for s′′ ≥ sδ . Hence, the deviation is not profitable for the seller.

The proof for the new strategies in region (iii) is completely analogous. Finally, we need to
check the deviation incentive, when starting from (b� s) with Î(b� s)= Ic(b� s). Clearly, the equi-
librium payoff will remain the same for each party. The deviation payoff could change since devi-
ation may bring the parties to the region for which the subsequent strategies are different. But as
noted above (see footnotes 35 and 36), the deviation into a region with Î �= Ic is dominated by a
deviation into a region with Î = Ic , so no new incentive for deviation is introduced when starting
from (b� s) with Î(b� s)= Ic(b� s). Q.E.D.

APPENDIX B: THE PROOFS OF SECTION 5

PROOF OF LEMMA 1: Since (x̂� ŷ) is a limit point of maximizers attaining the value of (7),
there is a (sub)sequence (bn� sn) → (b� s) as n→ ∞ such that its associated maximizer of (6),
(x∗(bn� sn)� y∗(bn� sn)), converges to (x̂� ŷ) and attains the value of (7) as n→ ∞. Hence, it fol-
lows that

lim sup
(b′�s′)→(b�s)

V S(b′� s′) = lim
n→∞

{
σ

(
x∗(bn� sn)� y∗(bn� sn)

) − (y∗(bn� sn)− sn)
}

(30)

≤ σ(x̂� ŷ)− (ŷ − s)�
where the inequality holds since σ is u.s.c.

Consider next the lowest possible continuation payoff for the buyer when the previous period
stock was (b′� s′) and he now invests up to x̂(b� s)∨ b′:

min
s′′∈Y(s′)

β(x̂∨ b′� s′′)− ((x̂∨ b′)− b′)�(31)

Note that

lim inf
(b′�s′)→(b�s)

{
min

s′′∈Y(s′)
β(x̂∨ b′� s′′)− [(x̂∨ b′)− b′]

}
≤ min

s′′∈Y(s)
β(x̂� s′′)− (x̂− b)�(32)

since any limit point of the minimizers belongs to Y(s) (since the set is closed), β is l.s.c., and
x̂≥ b.

36 Again, we invoked the fact that if the seller’s deviation to s′ puts the parties at (b̃(b� s)� s′)
with UB

0 (b̃(b� s)� s
′) < 0, then it is dominated by her deviation to s′′ := s̃(b̃(b� s)� s′).
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Now, take any (b′� s′) in a neighborhood of (b� s). The following Bellman characterization is
obtained from our definitions.

wS(b′� s′) ≤ (1 − α)max
{
φ(b′� s′)

− δ
[

min
s′′∈Y(s′)

β(x̂∨ b′� s′′)− ((x̂∨ b′)− b)
]
� δV S(b′� s′)

}

+αδV S(b′� s′)�

where mins′′∈Y(s′) β(x̂ ∨ b′� s′′) − ((x̂ ∨ b′)− b) is the minimum offer the buyer would accept at
(b′� s′), as explained in the paragraph following Lemma 1 (see also footnote 22). Taking a limit
superior as (b′� s′)→ (b� s) on both sides, we get

σ(b� s) = lim sup
(b′�s′)→(b�s)

wS(b′� s′)

≤ lim sup
(b′�s′)→(b�s)

{
(1 − α)max

{
φ(b′� s′)− δ

[
min

s′′∈Y(s′)
β(x̂∨ b′� s′′)− ((x̂∨ b′)− b)

]
�

δV S(b′� s′)
}

+ αδV S(b′� s′)
}

≤ (1 − α)max
{
φ(b� s)− δ

[
lim inf

(b′�s′)→(b�s)

{
min

s′′∈Y(s′)
β(x̂∨ b′� s′′)− ((x̂∨ b′)− b)

}]
�

δ lim sup
(b′�s′)→(b�s)

V S(b′� s′)
}

+ αδ
[

lim sup
(b′�s′)→(b�s)

V S(b′� s′)
]

≤ (1 − α)max
{
φ(b� s)− δ

[
min
s′′∈Y(s)

{β(x̂� s′′)− (ŷ − s)}
]
� δ[σ(x̂� ŷ)− (x̂− b)]

}

+ αδ[σ(x̂� ŷ)− (ŷ − s)]�
where the first equality follows from the definition, the first inequality follows from the above
inequality, and the third inequality follows from (30) and (32).

The first inequality of (9) follows exactly the same line of arguments using (30) and (32), except
that the string of inequalities is reversed. The second inequality of (9) is obvious.

The characterizations for β and σ are completely symmetric. Q.E.D.

PROOF OF LEMMA 2: We first prove the following preliminary lemmas.

LEMMA B.1: Assume that the investments are weak substitutes (φbs(b� s)≤ 0). For any (b� s) with
s ≥ S0(b) and b≥ B0(s),

σ(b� s)≥ (1 −α)φ(b� s)≥ σ(b� s) and β(b� s)≥ αφ(b� s)≥ β(b� s)�

PROOF: Fix any (b� s) with s ≥ S0(b) and b ≥ B0(s). Then, (Markovian) investment strate-
gies, I0(b

′� s′) = (b′� s′), for all (b′� s′) ≥ (b� s), form an SPE (along with the associated optimal
bargaining strategies). The resulting payoffs at (b� s) are (1 − α)φ(b� s) and αφ(b� s) for the
seller and the buyer, respectively. The inequalities then follow from the definitions of σ , σ , β,
and β. Q.E.D.
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LEMMA B.2: Assume that the investments are weak substitutes (φbs(b� s)≤ 0). Fix any ε > 0 and
n ∈ N. In any SPE, for any (b� s) with s ≥ Sδ(b)+ ε and b≥ Bδ(s)+ ε,

σ(b� s)≤ (1 − α)φ(b� s)+O(1/n)� σ(b� s)≥ (1 −α)φ(b� s)+O(1/n)�
and

β(b� s)≤ αφ(b� s)+O(1/n)� β(b� s)≥ αφ(b� s)+O(1/n)�
where O(1/n) is a term that vanishes as n→ ∞.

PROOF: We first divide X into n equal-sized closed intervals, {B1� � � � �Bn}, and Y into n equal-
sized closed intervals, {S1� � � � � Sn}. For any 1 ≤ k� l ≤ n, let Zkl := Bk × Sl be the klth block,
and let Z+

kl := [⋃(k′�l′)≥(k�l) Bk′ × Sl′ ]\Zkl be the set of higher blocks excluding Zkl . Likewise, let
B+
k := [⋃k′≥k Bk′ ] \Bk and S+

l := [⋃l′≥l Sl′ ]\Sl . Finally, let Ẑ := {(b� s) ∈ X ×Y |s ≥ Sδ(b)+ ε and
b≥ Bδ(s)+ ε}.

The proof proceeds inductively relative to the blocks.
Step 1. The statement holds true for any (b� s) ∈Znn.
Let (b+� s+) ∈ arg max(b′�s′)∈Znn σ(b

′� s′) and (b−� s−) ∈ arg min(b′�s′)∈Znn β(b
′� s′). Let (x̂+�

ŷ+) := (x̂(b+� s+)� ŷ(b+� s+)) and (x̂−� ŷ−) := (x̂(b−� s−)� ŷ(b−� s−)). We have

σ(b+� s+) ≤ (1 − α)max
{
φ(b+� s+)− δ

[
min

s′∈Y(s+)
β(x̂+� s′)− (x̂+ − b+)

]
�

δ[σ(x̂+� ŷ+)− (ŷ+ − s+)]
}

+αδ[σ(x̂+� ŷ+)− (ŷ+ − s+)]
≤ (1 − α)max{φ(b+� s+)− δβ(b−� s−)� δσ(b+� s+)} + αδσ(b+� s+)�

= (1 − α)φ(b+� s+)− (1 − α)δβ(b−� s−)+αδσ(b+� s+)�

where the first inequality follows from (8), the second inequality follows from the definitions of
(b+� s+) and of (b−� s−), and the equality holds, or else φ(b+� s+) − δβ(b−� s−) < δσ(b+� s+),
implying that σ(b+� s+)≤ 0, a contradiction to Lemma B.1.

Now, fix any (b� s) ∈ Znn . Then, since both (b� s) and (b+� s+) are in Znn, it follows from the
above inequality that

σ(b+� s+)≤ (1 − α)φ(b� s)− (1 − α)δβ(b−� s−)+ αδσ(b+� s+)+O(1/n)�(33)

Following the same line of argument (but utilizing (9)), we have

β(b−� s−)≥ αφ(b� s)− αδσ(b+� s+)+ (1 −α)δβ(b−� s−)+O(1/n)�(34)

Combining (33) and (34), we get

σ(b+� s+)≤ (1 − α)φ(b� s)+O(1/n) and β(b−� s−)≥ αφ(b� s)+O(1/n)�
Since σ(b� s)≤ σ(b+� s+) and β(b� s)≥ β(b−� s−), it follows that

σ(b� s)≤ (1 − α)φ(b� s)+O(1/n) and β(b� s)≥ αφ(b� s)+O(1/n)�
as needed. The proof on β and σ is completely symmetric.

Step 2. If the above statement holds for every (b′� s′) ∈Z+
kl , it also holds for any (b� s) ∈Zkl .

With a slight abuse of notation, define (b+� s+) ∈ arg max(b′�s′)∈Zkl∩Ẑ σ(b
′� s′) and (b−� s−) ∈

arg min(b′�s′)∈Zkl∩Ẑ β(b
′� s′). Let (x̂+� ŷ+) := (x̂(b+� s+)� ŷ(b+� s+)) and (x̂−� ŷ−) := (x̂(b−� s−)�

ŷ(b−� s−)). Since φbs ≤ 0, (bj� sj) ∈ Ẑ means (x̂j� ŷj) ∈ Ẑ for j = +�−. Let x∗ := max{x̂+� x̂−}.
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Suppose first x̂+ ∈ B+
k . Then, for any (b� s) ∈ Zkl ∩ Ẑ, we have

σ(b+� s+)(35)

≤ (1 − α)max
{
φ(b+� s+)− δ

(
min

s′∈Y(s+)
β(x̂+� s′)− (x̂+ − b+)

)
�

δ[σ(x̂+� ŷ+)− (ŷ+ − s+)]
}

+αδ[σ(x̂+� ŷ+)− (ŷ+ − s+)]
≤ (1 − α)max

{
φ(b+� s+)− δ

(
min

y ′∈Y(s+)
[αφ(x̂+� y ′)− (x̂+ − b+)]

)
�

δ[(1 − α)φ(x̂+� ŷ+)− (ŷ+ − s+)]
}

+αδ{(1 − α)φ(x̂+� ŷ+)− (ŷ+ − s+)} +O(1/n)
≤ (1 − α)max

{
φ(b+� s+)− δ(αφ(x̂+� s+)− (x̂+ − b+)

)
� δ(1 − α)φ(x̂+� s+)

}
+αδ(1 − α)φ(x̂+� s+)+O(1/n)

= max{(1 − α)φ(b+� s+)+ (1 − α)δ(x̂+ − b+)� δ(1 − α)φ(x̂+� s+)} +O(1/n)
≤ max{(1 − α)φ(b� s)+ (1 −α)δ(x∗ − b)� δ(1 − α)φ(x∗� s)} +O(1/n)�

where the first inequality follows from (8); the second inequality follows from the induction hy-
pothesis since (x̂+� ŷ+) ∈ Z+

kl , the third inequality holds since the minimum is attained at s+ and
the remaining terms are decreasing in ŷ+ (since (x̂� ŷ) ∈ Ẑ); and the last inequality holds since
x̂+ ≤ x∗, and both (b+� s+) and (b� s) are in Zkl .

Suppose next x̂+ ∈ Bk. Then, for any (b� s) ∈Zkl ∩ Ẑ, we have

σ(b+� s+)(36)

≤ (1 − α)max
{
φ(b+� s+)− δ

(
min

s′∈Y(s+)
[β(x̂+� s′)− (x̂+ − b+)]

)
�

δ[σ(x̂+� ŷ+)− (ŷ+ − s+)]
}

+αδ[σ(x̂+� ŷ+)− (ŷ+ − s+)]
≤ (1 − α)max

{
φ(b+� s+)− δ

[
β(b−� s−)∧

(
min

s′∈Y(s+)
[αφ(x̂+� s′)− (x̂+ − b+)]

)]
�

δ
[
σ(b+� s+)∨ [(1 − α)φ(x̂+� ŷ+)− (ŷ+ − s+)]]}

+αδ[σ(b+� s+)∨ [(1 − α)φ(x̂+� ŷ+)− (ŷ+ − s+)]] +O(1/n)
≤ (1 − α)max

{
φ(b+� s+)− δ(β(b−� s−)∧ [αφ(x̂+� s+)− (x̂+ − b+)])�
δ[σ(b+� s+)∨ (1 − α)φ(x̂+� s+)]}

+αδ[σ(b+� s+)∨ (1 − α)φ(x̂+� s+)] +O(1/n)
≤ (1 − α)max{φ(b� s)− δβ(b−� s−)� δσ(b+� s+)} + αδσ(b+� s+)+O(1/n)
= (1 − α)φ(b� s)− (1 − α)δβ(b−� s−)+ αδσ(b+� s+)+O(1/n)�

where the first inequality follows from (8); the second inequality follows since σ(x̂+� ŷ+)− (ŷ+ −
s+) ≤ σ(b+� s+) if (x̂+� ŷ+) ∈ Zkl , or else the induction hypothesis applies; the third inequality
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holds since the minimum is attained at s′ = s+; the fourth inequality holds since (x̂+� s+) ∈ Zkl ,
which, along with Lemma B.1, implies that β(b−� s−) ≤ β(x̂+� s+) ≤ αφ(x̂+� s+), and likewise
σ(b+� s+)≥ σ(x̂+� s+)≥ (1 − α)φ(x̂+� s+), and since (b+� s+) and (b� s) are both in Zkl ; and the
last equality holds sinceφ(b� s)−δβ(b−� s−)≥ δσ(b+� s+), or else σ(b+� s+)= 0, a contradiction
to Lemma B.1.

For any (b� s) ∈Zkl ∩ Ẑ, (35) and (36) are summarized as

σ(b+� s+)(37)

≤



max{(1 − α)φ(b� s)+ (1 − α)δ(x∗ − b)� δ(1 − α)φ(x∗� s)}
+O(1/n) if x̂+ ∈ B+

k �

(1 − α)φ(b� s)− (1 − α)δβ(b−� s−)+ αδσ(b+� s+)+O(1/n) if x̂+ ∈ Bk�
By a symmetric argument (utilizing (9)), for any (b� s) ∈Zkl ∩ Ẑ,

β(b−� s−)≥
{
αφ(b� s)− (1 − α)δ(x∗ − b)+O(1/n) if x̂− ∈ B+

k �

αφ(b� s)−αδσ(b+� s+)+ (1 − α)δβ(b−� s−)+O(1/n) if x̂− ∈ Bk�(38)

Step 2 then follows from a series of observations.

CLAIM 1: Fix any (b� s) ∈ Zkl ∩ Ẑ. If x∗ ∈ Bk, then σ(b� s) ≤ (1 − α)φ(b� s) + O(1/n) and
β(b� s)≥ αφ(b� s)+O(1/n)� If x∗ ∈ B+

k , then σ(b� s)≤ max{(1 − α)φ(b� s)+ (1 − α)δ(x∗ − b)�
δφ(x∗� s)} +O(1/n)� and β(b� s)≥ αφ(b� s)− (1 − α)δ(x∗ − b)+O(1/n)�

PROOF: If x∗ ∈ Bk, then x̂+� x̂− ∈ Bk, so the first statement follows immediately from solv-
ing (37) and (38) and the fact that σ(b� s) ≤ σ(b+� s+) and β(b� s) ≥ β(b−� s−). Suppose now
x∗ ∈ B+

k . There are three possibilities. If x̂+� x̂− ∈ B+
k , then the result is again immediate from

(37) and (38). If x̂+ ∈ B+
k and x̂− ∈ Bk, then the inequality for σ(b� s) follows from (37), and the

characterization for β in (38) simplifies to

β(b−� s−) ≥ αφ(b� s)− αδσ(b+� s+)
1 − (1 − α)δ +O(1/n)

= αφ(b� s)− (1 − α)δmax
{

αδ

1 − (1 − α)δ(x
∗ − b)�

α[δφ(x∗� s)−φ(b� s)]
1 − (1 − α)δ

}
+O(1/n)

≥ αφ(b� s)− (1 − α)δ(x∗ − b)+O(1/n)�
where the equality is obtained by substituting from (37), and the inequality holds since
αδ/(1 − (1 −α)δ) ≤ 1 and since α[φ(x∗� s) − φ(b� s)] ≤ (1 − (1 − α)δ)(x∗ − b) whenever
(b� s) ∈ Ẑ and x∗ > b. Since β(b� s) ≥ β(b−� s−), the claimed inequality for β(b� s) holds. Fi-
nally, if x̂+ ∈ Bk and x̂− ∈ B+

k , the inequality for β(b� s) follows from (38), and (37) simplifies
to

σ(b+� s+) ≤ (1 − α)φ(b� s)− (1 − α)δβ(b−� s−)

1 −αδ +O(1/n)

= (1 − α)φ(b� s)+ (1 − α)δ(x∗ − b) (1 −α)δ
1 −αδ +O(1/n)

≤ αφ(b� s)+ (1 − α)δ(x∗ − b)+O(1/n)�
where the inequality follows since (1 − α)δ ≤ 1 − αδ. Clearly, the stated condition for σ(b� s)
follows.
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CLAIM 2: For any (b� s) ∈ Zkl ∩ Ẑ, x∗ ≤ b+O(1/n).

PROOF: Let

M := min
(b′�s′)∈Ẑ

∣∣∣∣∂U
B
δ (b

′� s′)
∂b

∣∣∣∣�
Since the derivatives are all negative in the constraint set and bounded away from 0, we must
have M > 0.

Consider any (b� s) ∈ Zkl ∩ Ẑ. Without any loss, assume that x∗ = x̂+ . (The case with x∗ = x̂−

is completely analogous.) The claimed result will hold trivially if x̂+ ∈ Bk, so assume x̂+ ∈ B+
k ,

implying that (x̂+� ŷ+) ∈Z+
kl ∩ Ẑ.

Recall that (x̂+� ŷ+) is a limit point of a sequence of (maximizing) pairs, (x′� y ′) ∈ I(b′� s′)
with (b′� s′) → (b+� s+). Take its subsequence, (b′′� s′′), such that (x′′� y ′′) ∈ I(b′′� s′′) and that
(x′′� y ′′)→ (x̂+� ŷ+) as (b′′� s′′)→ (b+� s+).37 For (b′′� s′′) sufficiently close to (b+� s+), (x′′� y ′′) ∈
Z+
kl ∩ Ẑ, since (x′′� y ′′) converges to (x̂+� ŷ+) ∈Z+

kl ∩ Ẑ. Hence, by the induction hypothesis

β(x′′� y ′′)≤ αφ(x′′� y ′′)+O(1/n)�(39)

Meanwhile, (b′′� y ′′) converges to (b+� ŷ+), which is either in Zkl ∩ Ẑ or Z+
kl ∩ Ẑ, depending

on whether ŷ+ ∈ Sl or ŷ+ ∈ S+
l . In the latter case, for (b′′� s′′) sufficiently close to (b+� s+), the

induction hypothesis implies that

β(b′′� y ′)≥ αφ(b′′� y ′′)+O(1/n)≥ αφ(b� y ′′)+O(1/n)�(40)

where the second inequality holds since b and b′′ are both in Bk (for (b′′� s′′) sufficiently close
to (b+� s+)) and φ is continuous. If ŷ+ ∈ Sl, for (b′′� s′′) sufficiently close to (b+� s+), (b′′� y ′′) ∈
Zkl ∩ Ẑ. Hence, by Claim 1,

β(b′′� y ′) ≥ αφ(b′′� y ′′)− (1 − α)δ(x′′ − b′′)+O(1/n)
(41) ≥ αφ(b� y ′′)− (1 −α)δ(x′′ − b)+O(1/n)�
where the second inequality holds, as before, since b and b′′ are both inBk. Clearly, the right-hand
side of (41) provides a lower bound of β(b′′� y ′′), even when y ′′ ∈ S+

l .
Since (x′′� y ′′) ∈ I(b′′� s′′), incentive compatibility requires β(x′′� y ′′)− (x′′ − b′′) ≥ β(b′′� y ′′),

or

αφ(x′′� y ′′)− (x′′ − b)+O(1/n)≥ αφ(b� y ′′)− (1 −α)δ(x′′ − b)+O(1/n)�(42)

again using the fact that b and b′′ are both in Bk.38 In the limit as (b′′� s′′)→ (b+� s+), we have

O(1/n)≥ −α[φ(x̂+� ŷ+)−φ(b� ŷ+)] + (1 − (1 − α)δ)(x̂+ − b)

⇐⇒ O(1/n)≥ −
∫ x̂+

b

∂Uδ(b̃� ŷ
+)

∂b̃
db̃≥M(x̂+ − b)�

Since x̂+ > b, we must have x∗ = x̂+ ≤ b+O(1/n), as needed. Q.E.D.

37Such a subsequence is well defined since (x′� y ′) lies in a compact set X × Y .
38Note that (x′′� y ′′) is in �I(b′′� s′′), but it may not be in I(b′′� s′′). In any event, since (x′′� y ′′)

is in �I(b′′� s′′), there exists a sequence, (xm� ym) converging to (x′′� y ′′) as m → ∞, such that
(xm� ym) ∈ I(b′′� s′′) for each m. Since (xm� ym)→ (x′′� y ′′) as m→ ∞, for sufficiently large m,
β(xm� ym) and β(b′′� ym) have the same characterizations as (39) and (41), respectively (with
(x′′� y ′′) replaced by (xm� ym)). Hence, the incentive compatibility condition for (xm� ym) ∈
I(b′′� s′′) yields (42) in the limit as m→ ∞.
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CLAIM 3: For any (b� s) ∈Zkl ∩ Ẑ,

σ(b� s)≤ (1 − α)φ(b� s)+O(1/n) and β(b� s)≥ αφ(b� s)+O(1/n)�

PROOF: The result is immediate from applying Claim 2 to Claim 1. Q.E.D.

Since Lemma B.2 holds for any ε > 0 and for any n, it must hold in the limit as n→ ∞ and
ε→ 0. Hence, Lemma 2 holds for all (b� s) with b > Bδ(s) and s > Sδ(b), with respect to σ and β.
The characterizations for β and σ are obtained analogously.

PROOF OF LEMMA 3: Fix any ε > 0 and δ ∈ [0�1). We then proceed to establish three state-
ments, (i), (ii), and (iii). The proof of each statement resembles almost exactly that of Lemma 2,
so we only sketch the proof, with a more fleshed out version available upon request.

(i) For any (b� s) ∈ X (b1)× [s1 − ε� s1],
σδ(b� s)≤ (1 − α)φ(b� s1)+O(ε) and β

δ
(b� s)≥ αφ(b� s1)+O(ε)�

and

σδ(b� s)≥ (1 − α)φ(b� s1)+O(ε) and βδ(b� s)≤ αφ(b� s1)+O(ε)�
where O(ε) is a term that vanishes as ε→ 0.

PROOF: As with the proof of Lemma 2, it suffices to show that, for any (b� s) ∈ X (b1)× [s1 −
ε� s1] and for any n ∈ N, σδ(b� s) ≤ (1 − α)φ(b� s1) + O(ε) + O(1/n), β

δ
(b� s) ≥ αφ(b� s1) +

O(ε)+O(1/n), σδ(b� s)≥ (1 − α)φ(b� s1)+O(ε)+O(1/n), and βδ(b� s)≤ αφ(b� s1)+O(ε)+
O(1/n). The proof for this latter claim is almost the same as that of Lemma B.2, so we simply
highlight how that proof applies in the current context. We divide X (b1) into n equal-sized closed
intervals, {B1� � � � �Bn}, and then proceed inductively. Specifically, we begin with (b� s) ∈ Bn ×
(s1 − ε� s1], showing that the inequalities of (i) hold with an error of order O(1/n). The proof
matches precisely that of Step 1 of the proof of Lemma B.2, by noting that, by Proposition 2, any
equilibrium investment path starting from this set remains in this set (since (b� s) ∈ Ωδ for any
s > s1 and b > b1).

Next, we show that if the statement holds for (b� s) ∈ B+
k × [s1 − ε� s1], then it holds for

any (b� s) ∈ Bk × [s1 − ε� s1]. The proof mirrors almost precisely that of Step 2 of Lemma B.2.
Specifically, the payoff characterizations for σ and β in (37) and (38) hold (with error of order
O(ε) + O(1/n) instead of O(1/n), and with the arguments of φ replaced with (b� s1)). Claims
1–3 follow since s1 > Sδ(b) for all b ∈ X (b1). The only slight difference arises regarding charac-
terization of β and β, since the situation is not quite symmetric. But the fact that the investment
path can never reach beyond s1 actually simplifies this case: Only a subcase mirroring that for
x∗ ∈ Bk in (37) and (38) arises, which makes the characterization immediate for that case. Other
than this difference, all the results follow. As before, the claimed statement then follows since n
is arbitrary. Q.E.D.

(ii) For any (b� s) ∈ [b1 − ε� b1] ×Y(s1),

σδ(b� s)≤ (1 − α)φ(b1� s)+O(ε) and β
δ
(b� s)≥ αφ(b1� s)+O(ε)�

and

σδ(b� s)≥ (1 − α)φ(b1� s)+O(ε) and βδ(b� s)≤ αφ(b1� s)+O(ε)�

PROOF: The proof for this statement is completely symmetric to that of claim (i). Q.E.D.
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(iii) For any (b� s) ∈ [b1 − ε� b1] × [s1 − ε� s1],
σδ(b� s)≤ (1 − α)φ(b1� s1)+O(ε) and β

δ
(b� s)≥ αφ(b1� s1)+O(ε)�

and

σδ(b� s)≥ (1 − α)φ(b1� s1)+O(ε) and βδ(b� s)≤ αφ(b1� s1)+O(ε)�
PROOF: The proof again mirrors Step 2 of Lemma B.2. Since no investment path from this

region leads to X (b1) × Y(s1) by Proposition 2, any investment path into the outside of this
region leads to one of the regions treated in (i) and (ii). Using the characterization in these cases,
one can proceed precisely as in Step 2 of Lemma B.2. Q.E.D.

Combining (i), (ii) and (iii) with Lemma 2, we conclude that, for a given ε > 0,

σδ(b� s)≤ (1 − α)φ(b1� s1)+O(ε) and βδ(b� s)≤ αφ(b1� s1)+O(ε)�
for all (b� s) ∈ (b1 − ε� b1 + ε)× (s1 − ε� s1 + ε), for any δ ∈ [0�1). In particular, since the upper
bounds are independent of δ, we have, for any given ε > 0,

sup
δ∈[0�1)

σδ(b� s)≤ (1 − α)φ(b1� s1)+O(ε) and sup
δ∈[0�1)

βδ(b� s)≤ αφ(b1� s1)+O(ε)�

Since O(ε)→ 0 as ε→ 0, we have

lim sup
(b�s)→(b1�s1)

sup
δ∈[0�1)

σδ(b� s)≤ (1 − α)φ(b1� s1) and

lim sup
(b�s)→(b1�s1)

sup
δ∈[0�1)

βδ(b� s)≤ αφ(b1� s1)�

as needed. Q.E.D.
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