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Yuki Takagi, Utku Ünver, Rakesh Vohra and seminar participants at Boston College, Chinese University

of Hong Kong, Edinburgh, Harvard, Keio, Kobe, Maryland, Melbourne, Michigan, NYU, Penn State,

Queensland, Rice, Rochester, Tokyo, Toronto, Yale, Western Ontario, VCASI, Korean Econometric Soci-

ety Meeting, Fall 2008 Midwest Meetings and SITE Workshop on Market Design for helpful discussions.

Detailed comments from the Editor, Stephen Morris, and anonymous referees significantly improved the

paper. Yeon-Koo Che is grateful to the KSEF’s World Class University Grant (#R32-2008-000-10056-0)

for financial support.
1



2 YEON-KOO CHE AND FUHITO KOJIMA

Abstract. The random priority (random serial dictatorship) mechanism is a common

method for assigning objects. The mechanism is easy to implement and strategy-proof.

However this mechanism is inefficient, for all agents may be made better off by another

mechanism that increases their chances of obtaining more preferred objects. This form of

inefficiency is eliminated by a mechanism called probabilistic serial, but this mechanism

is not strategy-proof. Thus, which mechanism to employ in practical applications is an

open question. We show that these mechanisms become equivalent when the market

becomes large. More specifically, given a set of object types, the random assignments

in these mechanisms converge to each other as the number of copies of each object type

approaches infinity. Thus, the inefficiency of the random priority mechanism becomes

small in large markets. Our result gives some rationale for the common use of the random

priority mechanism in practical problems such as student placement in public schools.

JEL Classification Numbers: C70, D61, D63.

Keywords: random assignment, random priority, probabilistic serial, ordinal efficiency,

asymptotic equivalence.

1. Introduction

Consider a mechanism design problem of assigning indivisible objects to agents who

can consume at most one object each. University housing allocation, public housing allo-

cation, office assignment, and student placement in public schools are real-life examples.1

A typical goal of the mechanism designer is to assign the objects efficiently and fairly.

The mechanism often needs to satisfy other constraints as well. For example, monetary

transfers may be impossible or undesirable to use, as in the case of low income housing

or student placement in public schools. In such a case, random assignments are employed

to achieve fairness. Further, the assignment often depends on agents’ reports of ordinal

preferences over objects rather than full cardinal preferences, as in student placement in

public schools in many cities.2 Two mechanisms are regarded as promising solutions: the

1See Abdulkadiroğlu and Sönmez (1999) and Chen and Sönmez (2002) for application to house allo-

cation, and Balinski and Sönmez (1999) and Abdulkadiroğlu and Sönmez (2003b) for student placement.

For the latter application, Abdulkadiroğlu, Pathak, and Roth (2005) and Abdulkadiroğlu, Pathak, Roth,

and Sönmez (2005) discuss practical considerations in designing student placement mechanisms in New

York City and Boston.
2Why only ordinal preferences are used in many assignment rules seems unclear, and explaining it

is outside the scope of this paper. Following the literature, we take it as given instead. Still, one

reason may be that elicitation of cardinal preferences may be difficult (the pseudo-market mechanism

proposed by Hylland and Zeckhauser (1979) is one of the few existing mechanisms incorporating cardinal

preferences over objects.) Another reason may be that efficiency based on ordinal preferences is well

justified regardless of agents’ preferences; many theories of preferences over random outcomes (not just
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random priority (RP) mechanism and the probabilistic serial (PS) mechanism (Bogomol-

naia and Moulin 2001).3

In random priority, agents are ordered with equal probability and, for each realization

of the ordering, the first agent in the ordering receives her favorite (the most preferred)

object, the next agent receives his favorite object among the remaining ones, and so on.

Random priority is strategy-proof, that is, reporting ordinal preferences truthfully is a

weakly dominant strategy for every agent. Moreover, random priority is ex-post efficient,

that is, the lottery over deterministic assignments produced by it puts positive probabil-

ity only on Pareto efficient deterministic assignments.4 The random priority mechanism

can also be easily tailored to accommodate other features, such as students applying as

roommates in college housing,5 or respecting priorities of existing tenants in house allo-

cation (Abdulkadiroğlu and Sönmez 1999) and non-strict priorities by schools in student

placement (Abdulkadiroğlu, Pathak, and Roth 2005, Abdulkadiroğlu, Pathak, Roth, and

Sönmez 2005).

Perhaps more importantly for practical purposes, the random priority mechanism is

straightforward and transparent, with the lottery used for assignment specified explic-

itly. Transparency of a mechanism can be crucial for ensuring fairness in the eyes of

participants, who may otherwise be concerned about possible “covert selection.”6 These

expected utility theory) agree that people prefer one assignment over another if the former first-order

stochastically dominates the latter.
3Priority mechanisms are studied for divisible object allocation by Satterthwaite and Sonnenschein

(1981) and then indivisible object allocation by Svensson (1994). Abdulkadiroğlu and Sönmez (1998)

study the random priority mechanism as an explicitly random assignment mechanism.
4Abdulkadiroğlu and Sönmez (2003a) point out that random assignment that is induced by an ex post

efficient lottery may also be induced by an ex post inefficient lottery. On the other hand, random priority

as implemented in common practice produces an ex post efficient lottery since, for any realization of

agent ordering, the assignment is Pareto efficient.
5Applications by would-be roommates can be easily incorporated into the random priority mechanism

by requiring each group to receive the same random priority order. For instance, non-freshman under-

graduate students at Columbia University can apply as a group, in which case they draw the same lottery

number. The lottery number, along with their seniority points, determines their priority. If no suite is

available to accommodate the group or they do not like the available suite options, they can split up

and make choices as individuals. This sort of flexibility between group and individual assignments seems

difficult to achieve in other mechanisms such as the probabilistic serial mechanism.
6The concern of covert selection was pronounced in UK schools, which led to adoption of a new

Mandatory Admission Code in 2007. The code, among other things, “makes the admissions system

more straightforward, transparent and easier to understand for parents” (“Schools admissions code to

end covert selection,” Education Guardian, January 9, 2007). There had been numerous appeals by
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advantages explain the wide use of the random priority mechanism in many settings, such

as house allocation in universities and student placement in public schools.

Despite its many advantages, the random priority mechanism may entail unambiguous

efficiency loss ex ante. Adapting an example by Bogomolnaia and Moulin (2001), suppose

that there are two types of objects a and b with one copy each and the “null object” ø

representing the outside option. There are four agents 1, 2, 3 and 4, where agents 1 and 2

prefer a to b to ø while agents 3 and 4 prefer b to a to ø. One can compute the assignment

for each of 4! = 24 possible agent orderings, and the resulting random assignments are

given by Table 1.7 From the table it can be seen that each agent ends up with her less

preferred object with positive probability in this economy. This is because two agents

of the same preference type may get the first two positions in the ordering, in which

case the second agent will take her non-favorite object.8 Obviously, any two agents of

different preferences can benefit from trading off the probability share of the non-favorite

object with that of the favorite. In other words, the random priority assignment has

unambiguous efficiency loss. For instance, every agent prefers an alternative random

assignment in Table 2.

Object a Object b Object ø

Agents 1 and 2 5/12 1/12 1/2

Agents 3 and 4 1/12 5/12 1/2

Table 1. Random assignments under RP.

Object a Object b Object ø

Agents 1 and 2 1/2 0 1/2

Agents 3 and 4 0 1/2 1/2

Table 2. Random assignments preferred to RP by all agents.

A random assignment is said to be ordinally efficient if it is not first-order stochas-

tically dominated for all agents by any other random assignment. Ordinal efficiency is

parents on schools assignments in the UK; there were 78,670 appeals in 2005-2006, and 56,610 appeals

in 2006-2007.
7Each entry of the table specifies the allocation probability for an agent-object pair. For example, the

number 5
12 in the upper left entry means that each of agents 1 and 2 receives object a with probability

5
12 .

8For instance, if agents are ordered by 1, 2, 3 and 4, then 1 gets a, 2 gets b, and 3 and 4 get ø.
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perhaps the most relevant efficiency concept in the context of assignment mechanisms

based solely on ordinal preferences. The example implies that random priority may result

in an ordinally inefficient random assignment.

The probabilistic serial mechanism introduced by Bogomolnaia and Moulin (2001) elim-

inates the inefficiency present in RP. Imagine that each indivisible object is a divisible

object of probability shares: If an agent receives fraction p of an object, we interpret that

she receives the object with probability p. Given reported preferences, consider the fol-

lowing “eating algorithm.” Time runs continuously from 0 to 1. At every point in time,

each agent “eats” her favorite object with speed one among those that have not been

completely eaten away. At time t = 1, each agent is endowed with probability shares of

objects. The PS assignment is defined as the resulting probability shares. In the current

example, agents 1 and 2 start eating a and agents 3 and 4 start eating b at t = 0 in the

eating algorithm. Since two agents are consuming one unit of each object, both a and b

are eaten away at time t = 1
2
. As no (proper) object remains, agents consume the null

object between t = 1
2

and t = 1. Thus the resulting PS assignment is given by Table 2. In

particular, the probabilistic serial mechanism eliminates the inefficiency that was present

under RP. More generally, the probabilistic serial random assignment is ordinally efficient

if all the agents report their ordinal preferences truthfully.

The probabilistic serial mechanism is not strategy-proof, however. In other words, an

agent may receive a more desirable random assignment (with respect to her true expected

utility function) by misreporting her ordinal preferences. The mechanism is also less

straightforward and less transparent for the participants than random priority, since the

lottery used for implementing the random assignment can be complicated and is not

explicitly specified. The tradeoffs between the two mechanisms — random priority and

probabilistic serial — are not easy to evaluate, hence the choice between the two remains

an important outstanding question in practical applications. Indeed, Bogomolnaia and

Moulin (2001) show that no mechanism satisfies ordinal efficiency, strategy-proofness, and

symmetry (equal treatment of equals) in all finite economies with at least four objects

and agents. Thus one cannot hope to resolve the tradeoffs by finding a mechanism with

these three desiderata. Naturally, the previous studies have focused only on the choice

between random priority and probabilistic serial.

The contribution of this paper is to offer a new perspective on the tradeoffs between the

random priority and probabilistic serial mechanisms. We do so by showing that the two

mechanisms become virtually equivalent in large markets. Specifically, we demonstrate
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that, given a set of arbitrary object types, the random assignments in these mechanisms

converge to each other, as the number of copies of each object type approaches infinity.

To see our result in a concrete example, consider replicas of the above economy where,

in the q-fold replica economy, there are q copies of a and b and there are 2q agents who

prefer a to b to ø and 2q who prefer b to a to ø. Clearly, agents receive the same random

assignment in PS for all replica economies. By contrast, the market size makes a difference

in RP. Figure 1 plots the misallocation probability in RP, i.e., the probability that an

agent of each type receives the non-favorite proper object, as a function of the market size

q.9 The misallocation probability accounts for the only difference in random assignment

between RP and PS in this example. As can be seen from the figure, the misallocation

probability is positive for all q but declines and approaches zero as q becomes large.

20 40 60 80 100

0.015

0.020

0.025

0.030

0.035

0.040

Figure 1. Relationship between the market size and the random assign-

ment in RP. The horizontal axis measures market size q while the vertical

axis measures the misallocation probability.

Hence the difference between RP and PS becomes small in this specific example. The

main contribution of this paper is to demonstrate the asymptotic equivalence more gen-

erally (beyond the simple cases of replica economies) and understand its economics.

Our result has several implications. First, it implies that the inefficiency of the random

priority mechanism becomes small and disappears in the limit, as the economy becomes

large. Second, the result implies that the incentive problem of the probabilistic serial

mechanism disappears in large economies. Taken together, these implications mean that

we do not have as strong a theoretical basis for distinguishing the two mechanisms in

large markets as in small markets; indeed, both will be good candidates in large markets

9The misallocation probability is, for example, the probability that agents who prefer a to b receive b.
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since they have good incentive, efficiency, and fairness properties.10 Given its practical

merit, though, our result lends some support for the common use of the random priority

mechanism in practical applications, such as student placement in public schools.

In our model, the large market assumption means that there exist a large number of

copies of each object type. This model includes several interesting cases. For instance, a

special case is the replica economies model wherein the copies of object types and of agent

types are replicated repeatedly. Considering large economies as formalized in this paper

is useful for many practical applications. In student placement in public schools, there

are typically a large number of identical seats at each school. In the context of university

housing allocation, the set of rooms may be partitioned into a number of categories by

building and size, and all rooms of the same type may be treated to be identical.11 Our

model may be applicable to these markets.

Our equivalence result is obtained in the limit of finite economies. As it turns out, this

result is tight in the sense that we cannot generally expect the two mechanisms to be

equivalent in any finite economies (Proposition 3 in Section 6). What it implies is that

their difference becomes aribitrary small as the economy becomes sufficiently large.

We obtain several further results. First, we present a model with a continuum of agents

and continuum of copies of (finite) object types. We show that the random priority and

probabilistic serial assignments in finite economies converge to the corresponding assign-

ments in the continuum economy. In that sense, the limit behavior of these mechanisms in

finite economies is captured by the continuum economy. This result provides a foundation

for modeling approaches that study economies with a continuum of objects and agents

directly.

Second, we consider a situation in which individual participants are uncertain about

the population distribution of preferences, so they do not necessarily know the popularity

of each object even in the large market. It turns out that the random priority and

probabilistic serial mechanisms are asymptotically equivalent even in the presence of such

aggregate uncertainty, but the resulting assignments are not generally ordinally efficient

10As mentioned above, Bogomolnaia and Moulin (2001) present three desirable properties, namely

ordinal efficiency, strategy-proofness, and equal treatment of equals, and show that no mechanism sat-

isfies all these three desiderata in finite economies. Random priority satisfies all but ordinal efficiency

while probabilistic serial satisfies all but strategy-proofness. Our equivalence result implies that both

mechanisms satisfy all these desiderata in the limit economy, thus overcoming impossibility in general

finite economies.
11For example, the assignment of graduate housing at Harvard University is based on the preferences

of each student over eight types of rooms: two possible sizes (large and small) and four buildings.
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even in the large market. This inefficiency is not unique to these mechanisms, however.

We show a general impossibility result that there exists no (symmetric) mechanism that

is strategy-proof and ordinally efficient (even) in the continuum economy.

Finally, we show that both mechanisms can be usefully applied to, and their large-

market equivalence holds in, cases where different groups of agents are treated differently,

where different types of objects have different numbers of copies, and where agents demand

multiple objects.

The rest of the paper proceeds as follows. Section 2 discusses related literature. Sec-

tion 3 introduces the model. Section 4 defines the random priority mechanism and the

probabilistic serial mechanism. Sections 5 and 6 present the main results. Section 7 in-

vestigates further topics. Section 8 concludes. Proofs are found in the Appendix unless

stated otherwise.

2. Related literature

Pathak (2006) compares random priority and probabilistic serial using data on the

assignment of about 8,000 students in the public school system of New York City. He

finds that many students obtain a better random assignment in the probabilistic serial

mechanism but that the difference is small. The current paper complements his study by

explaining why the two mechanisms are not expected to differ much in some school choice

settings.

Kojima and Manea (2008) find that reporting true preferences becomes a dominant

strategy for each agent under probabilistic serial when there are a large number of copies

of each object type. Their paper and ours complement each other both substantively and

methodologically. Substantively, Kojima and Manea (2008) suggest that probabilistic

serial may be more useful than random priority in applications but do not analyze how

random priority behaves in large economies. The current paper addresses that question

and provides a clear large-market comparison of the two mechanisms, showing that the

main deficiency of random priority, inefficiency, is reduced in large economies. Further-

more, our analysis provides intuition for their result.12 To see this point, first recall that

truthtelling is a dominant strategy in random priority. Since our result shows that proba-

bilistic serial is close to random priority in a large economy, this observation suggests that

it is difficult to profitably manipulate the probabilistic serial mechanism. Methodologi-

cally, we note that our asymptotic equivalence is based on the assumption that agents

12However, the result of Kojima and Manea (2008) cannot be derived from the current paper since

they establish a dominant strategy result in a large but finite economies, while our equivalence result

holds only in the limit as the market size approaches infinity.
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report preferences truthfully both in random priority and probabilistic serial. The re-

sult of Kojima and Manea (2008) gives justification to this assumption by showing that

truthtelling is a dominant strategy under probabilistic serial in large finite economies.

Manea (2006) considers environments in which preferences are randomly generated and

shows that the probability that the random priority assignment is ordinally inefficient

approaches one as the market becomes large under a number of assumptions. He obtains

the results in two environments one of which is comparable to ours and one of which differs

from ours in that the number of object types grows to infinity as the economy becomes

large. In either case, his result does not contradict ours because of a number of differences.

Most importantly, Manea (2006) focuses on whether there is any ordinal inefficiency in

the random priority assignment, while the current paper investigates how much difference

there is between the random priority and the probabilistic serial mechanisms, and hence

(indirectly) how much ordinal inefficiency the random priority mechanism entails. As we

show in Proposition 3, this distinction is important particularly for the welfare assessment

of RP.

While the analysis of large markets is relatively new in matching and resource allocation

problems, it has a long tradition in many areas of economics. For example, Roberts

and Postlewaite (1976) show that, under some conditions, the Walrasian mechanism is

difficult to manipulate in large exchange economies.13 Similarly, incentive properties of

a large class of double auction mechanisms are studied by, among others, Gresik and

Satterthwaite (1989), Rustichini, Satterthwaite, and Williams (1994), and Cripps and

Swinkels (2006). Two-sided matching is an area closely related to our model. In that

context, Roth and Peranson (1999), Immorlica and Mahdian (2005), and Kojima and

Pathak (2008) show that the deferred acceptance algorithm proposed by Gale and Shapley

(1962) becomes increasingly hard to manipulate as the number of participants becomes

large. Many of these papers show particular properties of given mechanisms, such as

incentive compatibility and efficiency. One of the notable features of the current paper

is that we show the equivalence of apparently dissimilar mechanisms, beyond specific

properties of each mechanism.

Finally, our paper is part of a growing literature on random assignment mechanisms.14

The probabilistic serial mechanism is generalized to allow for weak preferences, existing

property rights, and multi-unit demand by Katta and Sethuraman (2006), Yilmaz (2006),

13See also Jackson (1992) and Jackson and Manelli (1997).
14Characterizations of ordinal efficiency are given by Abdulkadiroğlu and Sönmez (2003a) and McLen-

nan (2002).
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and Kojima (2008), respectively. Kesten (2008) introduces two mechanisms, one of which

is motivated by the random priority mechanism, and shows that these mechanisms are

equivalent to the probabilistic serial mechanism. In the scheduling problem (a special

case of the current environment), Crès and Moulin (2001) show that the probabilistic

serial mechanism is group strategy-proof and ordinally dominates the random priority

mechanism but these two mechanisms converge to each other as the market size approaches

infinity, and Bogomolnaia and Moulin (2002) give two characterizations of the probabilistic

serial mechanism.

3. Model

For each q ∈ N, consider a q-economy, Γq = (N q, (πi)i∈Nq , O), where N q represents

the set of agents and O represents the set of proper object types (we assume that O is

identical for all q). There are |O| = n ∈ N object types, and each object type a ∈ O has

quota q, that is, q copies of a are available.15 There exist an infinite number of copies of

a null object ø, which is not included in O. Let Õ := O ∪ {ø}. Each agent i ∈ N q has a

strict preference πi ∈ Π over Õ. More specifically, πi(a) ∈ {1, . . . , n+ 1} is the ranking

of a according to agent i’s preference πi ∈ Π, that is, agent i prefers a to b if and only if

πi(a) < πi(b). For any O′ ⊂ Õ,

Chπ(O′) := {a ∈ O′|π(a) ≤ π(b) ∀b ∈ O′},

is the favorite object among O′ for type π-agents (agents whose preference type is π).

The set N q of agents is partitioned into different preference types {N q
π}π∈Π, where N q

π

is the set of the agents with preference π ∈ Π in the q-economy. Let mq
π := |Nq

π |
q

be the

per-unit number of agents of type π in the q-economy. We assume, for each π ∈ Π, there

exists m∞π ∈ R+ such that mq
π → m∞π as q → ∞. For q ∈ N ∪ {∞}, let mq := {mq

π}π∈Π.

Throughout, we do not impose any restriction on the way in which the q-economy, Γq,

grows with q (except for the existence of the limit m∞π = limq→∞m
q
π for each π ∈ Π).

A special case of interest is when the economy grows at a constant rate with q. We

say that the family {Γq}q∈N are replica economies if mq
π = m∞π (or equivalently, |N q

π| =
q|N1

π |) for all q ∈ N and all π ∈ Π, and call Γ1 a base economy and Γq its q-fold replica.

Fix any q ∈ N. Throughout the paper, we focus on random assignments that are

symmetric in the sense that the agents with the same preference type π receive the

same lottery over the objects.16 Formally, a random assignment in the q-economy is

a mapping φq : Π → ∆Õ, where ∆Õ is the set of probability distributions over Õ, that

15Given a set X, we denote the cardinality of X by |X| or #X.
16This property is often called the “equal treatment of equals” axiom.
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satisfies the feasibility constraint
∑

π ∈Π φ
q
a(π) · |N q

π| ≤ q, for each a ∈ O, where φqa(π)

represents the probability that a type π-agent receives the object a.

3.1. Ordinal Efficiency. Consider a q-economy where q ∈ N. A random assignment φq

ordinally dominates another random assignment φ̂q at mq if, for each preference type

π with mq
π > 0, the lottery φq(π) first-order stochastically dominates the lottery φ̂q(π),

(3.1)
∑

π(b)≤π(a)

φqb(π) ≥
∑

π(b)≤π(a)

φ̂qb(π) ∀π,mq
π > 0,∀a ∈ Õ,

with strict inequality for some (π, a). Random assignment φq is ordinally efficient at mq

if it is not ordinally dominated at mq by any other random assignment.17 If φq ordinally

dominates φ̂q at mq, then every agent of every preference type prefers her assignment

under φq to the one under φ̂q according to any expected utility function with utility index

consistent with their ordinal preferences.

We say that φq is individually rational at mq if there exists no preference type

π ∈ Π with mq
π > 0 and object a ∈ O such that φqa(π) > 0 and π(ø) < π(a). That

is, individual rationality requires that no agent be assigned an unacceptable object with

positive probability. A random assignment is ordinally inefficient unless it is individually

rational, since an agent receiving unacceptable objects can be assigned the null object

instead without hurting any other agent.

We say that φq is non-wasteful at mq if there exists no preference type π ∈ Π with

mq
π > 0 and objects a ∈ O, b ∈ Õ such that π(a) < π(b), φqb(π) > 0 and

∑
π′∈Π φ

q
a(π
′)mq

π′ <

1. That is, non-wastefulness requires that there be no object which some agent prefers to

what she consumes but is not fully consumed. If there were such an object, the allocation

would be ordinally inefficient.

Consider the binary relation B(φq,mq) on O defined by

(3.2) aB (φq,mq) b ⇐⇒ ∃π ∈ Π,mq
π > 0, π(a) < π(b) and φqb(π) > 0.

That is, aB (φq,mq) b if there are some agents who prefer a to b but are assigned to b with

positive probability. If a relation B(φq,mq) admits a cycle, then the relevant agents can

17As noted before, this paper focuses on symmetric random assignments. We note that an ordinally

efficient random assignment is not ordinally dominated by any possibly asymmetric random assignment

(this property is defined as ordinal efficiency by Bogomolnaia and Moulin (2001)). To show this claim by

contraposition, assume a symmetric random assignment φ is ordinally dominated by some asymmetric

random assignment φ′. Define another random assignment φ′′ by giving each agent the average of

assignments for agents of the same type as hers in φ′. Assignment φ′′ is symmetric by definition and

ordinally dominates φ since φ′ does, showing the claim.
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trade off shares of non-favorite objects along the cycle and all do better, so the allocation

would be ordinally inefficient.

One can show that ordinal efficiency is equivalent to acyclicity of this binary relation,

individual rationality, and non-wastefulness. This is shown by Bogomolnaia and Moulin

in a setting in which each object has quota 1, there exist an equal number of agents and

objects, and all objects are acceptable to all agents.18 Their characterization extends

straightforwardly to our setting as follows (so the proof is omitted).

Proposition 1. The random assignment φq is ordinally efficient at mq if and only if the

relation B(φq,mq) is acyclic and φq is individually rational and non-wasteful at mq.

4. Two Competing Mechanisms: Random Priority and Probabilistic Serial

4.1. Probabilistic Serial Mechanism. We first describe the probabilistic serial mech-

anism, which is an adaptation of the mechanism proposed by Bogomolnaia and Moulin

to our setting. The idea is to regard each object as a divisible object of “probability

shares.” Each agent “eats” a probability share of the best available object with speed

one at every time t ∈ [0, 1] (object a is available at time t if not all q shares of a have

been eaten by time t).19 The resulting profile of object shares eaten by agents by time 1

obviously induces a random assignment, which we call the probabilistic serial random

assignment.

To formally describe the assignment under the probabilistic serial mechanism, for any

q ∈ N ∪ {∞}, O′ ⊂ Õ and a ∈ O′ \ {ø}, let

mq
a(O

′) :=
∑

π∈Π:a∈Chπ(O′)

mq
π,

be the per-unit number of agents whose favorite (most preferred) object in O′ is a in the

q-economy, and let mq
ø(O′) := 0 for all q ∈ N∪{∞} and O′ ⊂ Õ. Now fix a q-economy Γq.

The PS assignment is then defined by the following sequence of steps. For step v = 0, let

Oq(0) = Õ, tq(0) = 0, and xqa(0) = 0 for every a ∈ Õ. Given Oq(0), tq(0), {xqa(0)}a∈Õ, . . . ,

18This restriction implies that individual rationality and non-wastefulness are trivially satisfied by

every feasible random assignment.
19Bogomolnaia and Moulin (2001) consider a broader class of simultaneous eating algorithms, where

eating speeds may vary across agents and time.
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Oq(v − 1), tq(v − 1), {xqa(v − 1)}a∈Õ, for each a ∈ Õ, define for step v

tqa(v) = sup {t ∈ [0, 1] |xqa(v − 1) +mq
a(O

q(v − 1))(t− tq(v − 1)) < 1} ,(4.1)

tq(v) = min
a∈O(v−1)

tqa(v),(4.2)

Oq(v) = Oq(v − 1) \ {a ∈ Oq(v − 1)|tqa(v) = tq(v)},(4.3)

xqa(v) = xqa(v − 1) +mq
a(O

q(v − 1))(tq(v)− tq(v − 1)),(4.4)

with the terminal step defined as v̄q := min{v′|tq(v′) = 1}.
These recursive equations are explained as follows. Step v = 1, ... begins at time tq(v−1)

with the share xqa(v−1) of object a ∈ O having been eaten already, and a set Oq(v − 1) of

object types remaining to be eaten. Object a ∈ Oq(v − 1) will be the favorite among the

remaining objects to q ·mq
a(O

q(v − 1)) agents, so they will start eating a until its entire

remaining quota q(1− xqa(v − 1)) is gone. The eating of a will go on, unless step v ends,

until time tqa(v) at which point the entire share of object a is consumed away or time runs

out (see (4.1)). Step v ends at tq(v) when the first of the remaining objects disappears or

time runs out (see (4.2)). Step v+ 1 begins at that time, with the remaining set Oq(v) of

objects adjusted for the expiration of some object(s) (see (4.3)) and the remaining share

xqa(v) adjusted to reflect the amount of a consumed during step v (see (4.4)). This process

is complete when time t = 1 is reached, and involves at most |Õ| steps.

For each a ∈ Õ, we define its expiration date T qa := {tq(v)|tq(v) = tqa(v) for some v}
to be the time at which the eating of a is complete.20 Note that the expiration dates are

all deterministic. The expiration dates completely pin down the random assignment for

the agents. Let τ qa (π) := min{T qa ,max{T qb |π(b) < π(a), b ∈ O}} be the expiration date of

the last object that a type π-agent prefers to a (if it is smaller than T qa , and T qa otherwise).

Each type-π agent starts eating a at time τ qa (π) and consumes the object until it expires

at time T qa . Hence, a type π-agent’s probability of getting assigned to a ∈ Õ is simply its

duration of consumption; i.e., PSqa(π) = T qa − τ qa (π).

Following Bogomolnaia and Moulin (2001), we can show that PSq is ordinally efficient.

First, individual rationality follows since no agent ever consumes an object less preferred

than the null object. Next, non-wastefulness follows since, if an object say a is not

completely consumed then T qa = 1, so no agent type will ever consume any object she

prefers less than a. Finally, if an agent type prefers a to b but consumes b with positive

probability, then it must be that T qa < T qb , or else she will never consume b. This means

20Expiration date T q
a for each a ∈ Õ is well defined. If a good a runs out for some step v < v̄q, then

T q
a = tq(v) = tqa(v). If a good a never runs out, then T q

a = tq(v̄q) = tqa(v̄q) = 1.
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that B(PSq,mq) is acyclic since the expiration dates are linearly ordered. That the

expiration dates are deterministic (so their orders are not random) is therefore a key

feature that makes PS ordinally efficient.

Proposition 2. For any q ∈ N, PSq is ordinally efficient.

One main drawback of the probabilistic serial mechanism, as identified by Bogomolnaia

and Moulin (2001), is that it is not strategy-proof. In other words, an agent may be better

off by reporting a false ordinal preference.

4.2. Random Priority Mechanism. In the random priority mechanism (Bogomol-

naia and Moulin 2001) (known also as the random serial dictatorship by Abdulka-

diroğlu and Sönmez (1998)), the agents are randomly ordered, and each agent successively

claims (or more precisely is assigned to) her favorite object among the remaining ones,

following that order. Our key methodological innovation is to develop a “temporal” rein-

terpretation of RP so as to facilitate its comparison with PS. Imagine first each agent

i draws a lottery number fi from [0, 1] independently and uniformly. Imagine next that

time runs from 0 to 1 just as in PS, and agent i “arrives” at time fi and claims her favorite

object among those available at that time. It is straightforward to see that this alternative

definition is equivalent to the original one. (The agents are assigned sequentially almost

always since no two lottery draws coincide with positive probability).

Let RP q denote the random assignment resulting from the random priority mechanism

in Γq. Our temporal reinterpretation of RP allows us to formulate RP q via recursive

equations much like (4.1)-(4.4). To begin, fix any agent i (of any type π) and ask whether

any particular object a is available to her given any possible lottery number she may

draw. This can be answered by studying how long that object would last in our time

frame [0, 1] if agent i were absent. This can be done by characterizing the “expiration

date” of each object in the “hypothetical” economy with |N q|− 1 agents with preferences

π−i ∈ Π(|Nq |−1) and lottery numbers f−i = (fj)j∈N\{i} ∈ [0, 1](|N
q |−1). It will be later

explained how studying this economy allows us to compute i’s random assignment in the

(real) q-economy.

First, define m̂q
π′(t, t

′) :=
#{j∈Nq

π′\{i}|fj∈(t,t′]}
q

to be the per-unit number of agents of type

π′ (except i if π′ = π) whose lottery draws lie in (t, t′]. For any O′ ⊂ Õ and a ∈ O′ \ {ø},
let

m̂q
a(O

′; t, t′) :=
∑

π′∈Π:a∈Chπ′ (O′)

m̂q
π′(t, t

′),

be the per-unit number of agents in N q \ {i} whose favorite object in O′ is a and whose

lottery draws are in (t, t′]. Let mq
ø(O′; t, t′) := 0 for all q ∈ N ∪ {∞} and O′ ⊂ Õ.
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Then, the expiration dates of the objects in this hypothetical economy are described as

follows, given (π−i, f−i). Let Ôq(0) = Õ, t̂q(0) = 0, and x̂qa(0) = 0 for every a ∈ Õ. Given

Ôq(0), t̂q(0), {x̂qa(0)}a∈Õ, . . . , Ôq(v − 1), t̂q(v − 1), {x̂qa(v − 1)}a∈Õ, for each a ∈ Õ, define

t̂qa(v) = sup
{
t ∈ [0, 1]

∣∣∣x̂qa(v − 1) + m̂q
a(Ô

q(v − 1); t̂q(v − 1), t) < 1
}
,(4.5)

t̂q(v) = min
a∈Ô(v−1)

t̂qa(v),(4.6)

Ôq(v) = Ôq(v − 1) \ {a ∈ Ôq(v − 1)|t̂qa(v) = t̂q(v)},(4.7)

x̂qa(v) = x̂qa(v − 1) + m̂q
a(Ô

q(v − 1); t̂q(v − 1), t̂q(v)),(4.8)

with the terminal step defined as ṽq := min{v′|t̂q(v′) = 1}.
These equations are explained in much the same way as (4.1)-(4.4). Step v = 1, ... begins

at time t̂q(v−1) with the share x̂qa(v−1) of object a ∈ O having been claimed already, and

a set Ôq(v − 1) of objects remaining to be claimed. There are q ·m̂q
a(Ô

q(v − 1); t̂q(v − 1), t)

agents whose favorite object is a, and who arrive during the time span [t̂qa(v − 1), t], so

object a lasts until t̂qa(v) defined by (4.5), unless step v ends beforehand. Step v ends

at t̂q(v) when the first of the remaining objects disappears or time runs out, as defined

by (4.6). Step v + 1 begins at that time, with the remaining set Ôq(v) of object types

adjusted for the expiration of an object (see (4.7)) and the remaining share x̂qa(v) adjusted

to reflect the amount of the object consumed during step v (see (4.8)). This process is

complete when time t = 1 is reached, and involves at most |Õ| steps.

Now re-enter agent i with type π, and consider any object a ∈ Õ. The object a is

available to her if and only if she “arrives” before a cutoff time T̂ qa := {t̂q(v)|t̂q(v) =

t̂qa(v), for some v}, at which the last copy of a would be claimed. At the same time, she

will wish to claim a if and only if it becomes her favorite — namely, she arrives after the

last object she prefers to a runs out. In sum, a type π-agent obtains a if and only if her

lottery draw fi lands in an interval [τ̂ qa (π), T̂ qa ], where τ̂ qa (π) := min{T̂ qa ,max{T̂ qb |π(b) <

π(a), b ∈ O}}, an event depicted in Figure 2, in case τ̂ qa (π) = T̂ qb for some b 6= a.

0

fi such that i receives a︷ ︸︸ ︷
· · ·· · · T̂ qb T̂ qa 1

Figure 2: Cutoffs of objects under RP.

Note the cutoff time T̂ qa of each object a is a random variable since the arrival times f−i

of the other agents are random. Therefore, the random priority random assignment
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is defined, for i ∈ N q
π and a ∈ Õ, as RP q

a (π) := E[T̂ qa − τ̂ qa (π)], where the expectation E is

taken with respect to f−i = (fj)j 6=i which are distributed i.i.d uniformly on [0, 1].

The random priority mechanism is widely used in practice, as mentioned in the In-

troduction. Moreover, the mechanism is strategy-proof, that is, reporting true ordinal

preferences is a dominant strategy for each agent. Furthermore, it is ex post efficient,

that is, the assignment after random draws are realized is Pareto efficient. As illustrated

in Introduction, however, the mechanism may entail ordinal inefficiency. Ordinal ineffi-

ciency of RP can be traced to the fact that the cutoff times of the objects are random

and personalized. In the example of Introduction, an agent who prefers a to b may face

T̂ 1
a < T̂ 1

b and the agent who prefers b to a may face T̂ 1
a > T̂ 1

b . In these cases, the agents re-

ceive their non-favorite objects with positive probability. Hence both aB (RP 1,m1)b and

bB (RP 1,m1)a occur, resulting in cyclicity of the relation B(RP 1,m1). As will be seen,

as q →∞, the cutoff times of the random priority mechanism converge in probability to

deterministic limits that are common to all agents, and this feature ensures acyclicity of

the binary relation B in the limit.

5. Equivalence of Two Mechanisms in the Continuum Economy

Our ultimate goal is to show that RP q and PSq converge to each other as q → ∞.

Toward this goal, we first introduce a continuum economy in which there exists a unit

mass of each object in O and mass m∞π of agent type π for each π ∈ Π. One should

think of this continuum economy as a heuristic representation of a large economy which

possesses the same demographic profiles (i.e., the limit measures {m∞π }π∈Π) as the limit of

our finite economies but otherwise bears no direct relationship with them. The relevance

of this model will be seen in the next section where we show it captures the limit behavior

of the finite economies. Specifically, we shall show that the random assignment of the

PS and RP defined in this continuum economy coincides with the random assignments

arising from these mechanisms in the limit of the q-economies as q → ∞. In this sense,

the continuum economy serves as an instrument of our analysis. As will be clear, however,

it also brings out the main intuition behind our equivalence result and its implications.

One issue in analyzing a continuum economy is to describe aggregate consequences of

randomness at the individual level for a continuum of agents. This issue arises with our RP

model given the use of individual lottery drawings, but possibly with other mechanisms

as well. Laws of large numbers — a natural tool for dealing with such an issue — can be

problematic in this environment.21 However, a weak law of large numbers developed by

21See Judd (1985) for a classic reference for the associated conceptual problems.
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Uhlig (1996) turns out to be sufficient for our purpose.22 Alternatively, one can simply

view our constructs as mathematical definitions that conform to plausible large market

heuristics.

A random assignment in the continuum economy is defined as a mapping φ∗ =

(φ∗a)a∈O : Π → ∆Õ such that
∑

π∈Π φ
∗
a(π) ·m∞π ≤ 1 for each a ∈ O. As before, φ∗a(π) is

interpreted as the probability that each (atomless) agent of type π receives object a, and

feasibility requires that the total mass of each object consumed not exceed its total quota

(unit mass). We now consider the two mechanisms in this economy.

5.1. Probabilistic serial mechanism. The PS can be defined in this economy with

little modification. The (masses of) agents “eat” probability shares of the objects simul-

taneously at speed one over time interval [0, 1] in the order of their stated preferences.

The random assignments are then determined by the duration of eating each object by a

given type of agent. As with the finite economy, the random assignment PS∗ of prob-

abilistic serial in the continuum economy is determined by the expiration dates of

the objects, i.e., the times at which the objects are all consumed.

Naturally, these expiration dates are defined recursively much as in the PS of finite

economies. Let O∗(0) = Õ, t∗(0) = 0, and x∗a(0) = 0 for every a ∈ Õ. Given O∗(0), t∗(0),

{x∗a(0)}a∈Õ, . . . , O∗(v − 1), t∗(v − 1), {x∗a(v − 1)}a∈Õ, for each a ∈ Õ, define

t∗a(v) = sup {t ∈ [0, 1] |x∗a(v − 1) +m∞a (O∗(v − 1))(t− t∗(v − 1)) < 1} ,(5.1)

t∗(v) = min
a∈O∗(v−1)

t∗a(v),(5.2)

O∗(v) = O∗(v − 1) \ {a ∈ O∗(v − 1)|t∗a(v) = t∗(v)},(5.3)

x∗a(v) = x∗a(v − 1) +m∞a (O∗(v − 1))(t∗(v)− t∗(v − 1)),(5.4)

with the terminal step defined as v̄∗ := min{v′|t∗(v′) = 1}.
These equations are precisely the same as the corresponding ones (4.1) - (4.4) for the PS

of the finite economies, except for the fact that m∞a (·)’s replace mq
a(·)’s. The explanations

following (4.1) - (4.4) apply here verbatim. The expiration date of each object a defined

by T ∗a = {t∗a(v)|t∗a(v) = t∗(v) for some v} determines the random assignment PS∗ of

probabilistic serial in the continuum economy in the same manner as in finite economies.

22This version of law of large numbers ensures that, for a function X mapping i ∈ [a, b] into an L2

probability space of random variable with a common mean µ and finite variance σ2, Riemann integral∫ b

a
X(i)di = µ with probability one (see Theorem 2 of Uhlig (1996)). For convenience, we shall suppress

the qualifier “with probability one” in our discussion here.
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5.2. Random priority mechanism. Defining the random priority mechanism in the

continuum economy requires some care. One issue is describing the aggregate behavior

of the individual drawings of lotteries, as required in our version of RP. Recall in our RP,

each agent draws a lottery number f from [0, 1] according to the uniform distribution. The

aggregate distribution of the agents in terms of their lottery numbers then matches the

uniform distribution, according to the weak law of large numbers; namely, the measure

of agents with lottery numbers f or less among mass m agents will be precisely mf

with probability one.23 The second issue is to define the procedure itself. The finite RP

procedure of successively executing individual choice according to lottery numbers cannot

work in the continuum economy. We thus define the continuum economy RP as follows:

• Step v = 1: For each object a ∈ O, determine a value t̂∗a(1) ∈ [0, 1] such that the

measure of agents whose favorite object is a and whose lottery numbers are less

than t̂∗a(1) equals one; if no such value exists, let t̂∗a(1) = 1. Assign the agents with

lottery numbers less than t̂∗(1) := mina t̂
∗
a(1) to their favorite objects. If the entire

masses of agents are assigned, stop. Or else, remove the assigned objects along

with the agents who received them, and iterate to Step v = 2.

...
...

...

• Step v = 2, ...: For each object a ∈ O, determine a value t̂∗a(v) ∈ [0, 1] such that

the measure of agents whose favorite object among the remaining ones is a and

whose lottery numbers are less than t̂∗a(v) equals the measure of the remaining

quota of that object; if no such value exists, let t̂∗a(v) = 1. Assign the agents with

lottery numbers less than t̂∗(v) := mina t̂
∗
a(v) their favorite remaining objects. If

the entire masses of agents are assigned, stop. Or else, remove the assigned objects

along with the agents who received them, and iterate to Step v + 1.

Since there are finite object types, this procedure ends in finite steps. As noted in

the previous section, the cutoff time T̂ ∗a of each object a, defined by T̂ ∗a = {t̂∗a(v)|t̂∗a(v) =

t̂∗(v) for some v}, determines the random assignment RP ∗. Clearly, the above procedure

entails recursive equations much like those defined for PS. These equations determine

t̂∗[·](v), t̂∗(v), Ô∗(v), x̂∗(v) — in place of t∗[·](v), t∗(v), O∗(v), x∗(v) in each step just as before.

Most importantly, they are precisely the same as (5.1)-(5.4), if we let Ô∗(0) = Õ,

t̂∗(0) = 0, and x̂∗a(0) = 0 for every a ∈ Õ. This can be shown inductively. Suppose that

23Letting FU (k) = k denote the cdf of the uniform distribution, the weak law of large numbers in

Theorem 2 of (Uhlig (1996)) implies that
∫ 1

0
1{f≤h}df = FU (h) = h with probability one. Rather than

appealing to a law of large numbers, one could instead imbed lottery f as agent’s “hidden” type as in

Abdulkadiroğlu, Che, and Yasuda (2008).
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Ô∗(v− 1) = O∗(v− 1), t̂∗(v− 1) = t∗(v− 1), and x̂∗a(v− 1) = x∗a(v− 1), ∀a ∈ Õ. Consider

step v now. With mass x∗a(v − 1) of each object a already claimed, a will be claimed by

those agents whose favorite object among O∗(v − 1) is a and whose lottery numbers are

less than t̂∗a(v). There is a mass m∞a (O∗(v − 1))[t̂∗a(v)− t∗(v − 1)] of such agents. Hence,

(5.1) determines t̂∗a(v) at step v. This means t̂∗a(v) = t∗a(v) for all a ∈ O, which in turn

implies (5.2), so t̂∗(v) = t∗(v). At the end of step v, then object a such that t∗a(v) = t∗(v) is

completely claimed, so (5.3) holds and a new set Ô∗(v) = O∗(v) of objects remains. Mass

m∞a (O∗(v − 1))(t∗(v)− t∗(v− 1)) of each object a is claimed at step v, so the cumulative

measure of a claimed by that step will be given by (5.4), implying x̂∗a(v) = x∗a(v). The

equivalence of the recursive equations of the two mechanisms implies that T̂ ∗a = T ∗a ;

namely, the cutoff time of each object under RP matches precisely the expiration date

of the same object under PS. As noted above, this means that RP ∗ = PS∗; that is, the

random assignments of the two mechanisms are the same.

The intuition for the equivalence can be obtained by invoking our temporal interpre-

tation of RP wherein time runs continuously from 0 to 1 and each agent must claim an

object at the time equal to her lottery draw f . From the individual agent’s perspective,

the mechanisms are still not comparable; an agent consumes a given object for an interval

of time in PS, whereas the same agent picks his object outright at a given point of time in

RP. Yet, the mechanisms can be compared easily when one looks from the perspective of

each object. Each object is consumed over a period of time up to a certain point in both

cases. That point is called the expiration date under PS and the cutoff time under RP.

Our equivalence argument boils down to the observation that the supply of each object

disappears at precisely the same point of time under the two mechanisms. This happens

because, for any given interval, the rate at which an object is consumed is the same under

both mechanisms. To be concrete, fix an object a ∈ O and consider the span of time from

t to t + δ, for some δ > 0. Suppose the consumption rate of all objects have been the

same up to time t under both mechanisms. Say a is the favorite among the remaining

objects for mass m of agents. Then, under PS, these agents will eat at speed 1 during that

time span, so the total consumption of that object during that time span will be m · δ.
Under RP, the same mass m will favor the object among the remaining objects (given the

assumption of the same past consumption rates). During that time span, only those with

lottery number f ∈ [t, t+ δ) can arrive to consume. By the weak law of large numbers, a

fraction δ of any positive mass arrive during this time span to claim their objects. Hence,

mass m · δ of agents will consume object a during the time span. Our main argument for
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the proof in the next section is much more complex, yet the same insight will be seen to

drive the equivalence result.

Before turning to the main analysis, we point out a few relatively obvious implications

of the equivalence obtained for the continuum economy.

• It is straightforward to show that the strategy-proofness of RP extends to this con-

tinuum economy. The equivalence established above then means that an agent’s

assignment probabilities from RP are the same as those from PS, for any ordinal

preferences he may report, holding fixed all others’ reports. It follows that PS is

strategy-proof in the continuum economy.24

• It is also straightforward to show the ordinal efficiency of PS in this economy. The

equivalence then implies that RP is ordinally efficient.

• The above two observations mean that the impossibility theorem by Bogomolnaia

and Moulin (2001) does not extend to the continuum economy: There exists a

symmetric mechanism (RP or equivalently PS) that is strategy-proof and ordinally

efficient.

6. Asymptotic Equivalence of Two Mechanisms

While the last section demonstrates that RP and PS produce the same random assign-

ment in the continuum economy, it is not clear whether the assignments in large but finite

economies are approximated well by the continuum economy. This section will establish

that RP and PS assignments in finite economies in fact converge to that in the continuum

economy. Not only will this establish asymptotic equivalence of the two mechanisms, but

the result will provide a limit justification for the continuum economy studied above.

We first show that PSq converges to PS∗ as q → ∞. The convergence occurs in all

standard metrics; for concreteness, we define the metric by ||φ−φ̂|| := supπ∈Π,a∈O |φa(π)−
φ̂a(π)| for any pair of random assignments φ and φ̂. The convergence of PSq to PS∗ is

immediate if {Γq}q∈N are replica economies. In this case, mq
a(O

′) = m∞a (O′) for all q and

a, so the recursive definitions, (4.1), (4.2), (4.3), and (4.4), of the PS procedure for each

q-economy all coincide with those of the continuum economy, namely (5.1), (5.2), (5.3),

and (5.4). The other cases are established as well.

Theorem 1. ||PSq−PS∗|| → 0 as q →∞. Further, PSq = PS∗ for all q ∈ N if {Γq}q∈N

are replica economies.

24Here, by strategy-proofness we mean that the random assignment under truthtelling is equal to or

first order stochastically dominates the one under false preferences. This property is even stronger than

the property shown for PS in large finite economies by Kojima and Manea (2008).
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This theorem assumes implicitly that agents report their true preferences under PS in

large but finite economies. This assumption can be justified based on Kojima and Manea

(2008). Their result implies that, given any finite set of possible cardinal utility types of

agents, truthtelling is a dominant strategy under probabilistic serial for any q-economy

with sufficiently large (but finite) q. Although we chose not to specify the cardinal utilities

of agents in our model for simplicity, their result is directly applicable.25

We next show that RP q converges to RP ∗ = PS∗ as q →∞.

Theorem 2. ||RP q −RP ∗|| → 0 as q →∞.

These theorems show that the random assignment of the two mechanisms in the con-

tinuum economy capture their limiting behavior in a large but finite economy. In this

sense, they provides a limit justification for an approach that models the mechanisms di-

rectly in the continuum economy. More importantly, the asymptotic equivalence follows

immediately from these two theorems upon noting that PS∗ = RP ∗.

Corollary 1. ||RP q − PSq|| → 0 as q →∞.

The intuition behind the asymptotic equivalence (Corollary 1) is that the expiration

dates of the objects under PS and the cutoff times of the corresponding objects under

RP converge to each other as the economy grows large. As we argued in the previous

section, this follows from the fact that the rates at which the objects are consumed

under both mechanisms become identical in the limit. To see this again, fix any time

t ∈ [t∗(v), t∗(v + 1)) for some v, and fix any object a ∈ O. Under RP ∗, assuming that

objects O∗(v) are available at time t, the fraction of a consumed during time interval

[t, t+ δ] for small δ is δ ·m∞a (O∗(v)), namely the measure of those whose favoribe object

among O∗(v) is a times the duration of their consumption of a.

In RP q, assuming again that the same set O∗(v) of objects is available at t, the measure

mq
a(O

∗(v); t, t + δ) of agents (whose favorite among O∗(v) is a) arrive during the (same)

time interval [t, t + δ] and will consume a, so the fraction of a consumed during that

interval is mq
a(O

∗(v); t, t+ δ). As q →∞, this fraction converges to δ ·m∞a (O∗(v)), since

by a law of large numbers, the arrival rate of these agents approaches m∞a (O∗(v)).

The main challenge of the proof is to make this intuition precise when there are in-

tertemporal linkages in the consumption of objects — namely, a change in consumption at

25If cardinal utilities of agents are drawn from an infinite types, then for any q some agents may have

incentives to misreport preferences. However, even in such a setting the result of Kojima and Manea

(2008) implies that the fraction of agents for whom truthtelling is not a dominant strategy converges to

zero as q →∞. Thus the truthtelling assumption in Theorem 1 is justified in this case as well.
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one point of time alters the set of available objects, and thus the consumption rates of all

objects, at later time. Our proof employs an inductive method to handle these linkages.

Is our asymptotic equivalence tight? In other words, can we generally expect the random

assignments of the two mechanisms to coincide in a finite economy? Figure 1 appears to

suggest otherwise, showing that the RP and PS assignments remain different for all finite

values of q. In fact, this observation can be made quite general in the following sense.

Proposition 3. Consider a family {Γq}q∈N of replica economies. Then, RP q is ordinally

efficient for some q ∈ N if and only if RP q′ is ordinally efficient for every q′ ∈ N. That is,

for any given base economy, the random priority assignment is ordinally efficient for all

replica economies or ordinally inefficient for all of them.

In particular, Proposition 3 implies that the ordinal inefficiency of RP does not dis-

appear completely in any finitely replicated economy if the random priority assignment

is ordinally inefficient in the base economy. More importantly, it may be misleading to

simply examine whether a mechanism suffers ordinal inefficiencies; even if a mechanism

is ordinally inefficient, the magnitude of the inefficiency may be very small, as is the case

with RP in large economies.

7. Extensions

7.1. Group-specific Priorities. In some applications, the social planner may need to

give higher priorities to some agents over others. For example, when allocating graduate

dormitory rooms, the housing office at Harvard University assigns rooms to first year stu-

dents first, and then assigns remaining rooms to existing students. Other schools prioritize

housing assignments based on students’ seniority and/or their academic performances.26

To model such a situation, assume that each student belongs to one of the classes C

and, for each class c ∈ C, consider any density function gc over [0, 1]. The asymmetric

random priority mechanism associated with g = (gc)c∈C lets each agent i in class c to

draw fi according to the density function gc independently from others, and the agent

with the smallest draw among all agents receives her favorite object, the agent with the

second-smallest draw receives his favorite object from the remaining ones, and so forth.

The random priority mechanism is a special case in which gc is a uniform distribution on

[0, 1] for each c ∈ C. The asymmetric probabilistic serial mechanism associated with g

26For instance, Columbia University gives advantage in lottery draw based on seniority in its undergrad-

uate housing assignment. The Technion gives assignment priorities to students based on both seniority

and academic performance (Perach, Polak, and Rothblum (2007)). Claremont McKenna College and

Pitzer College give students assignment priority based on the number of credits they have earned.
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is defined by simply letting agents in class c eat with speed gc(t) at each time t ∈ [0, 1].

The probabilistic serial mechanism is a special case in which gc is a uniform distribution

on [0, 1] for each c ∈ C.

For each q ∈ N, π ∈ Π and c ∈ C, let mq
π,c be per-unit number of agents in class

c of preference type π in the q-economy. If m∞π,c := limq→∞m
q
π,c exists for all π and c,

then the asymptotic equivalence generalizes to a general profile of distributions g. In

particular, given any g, the asymmetric random priority mechanism associated with g

and the asymmetric probabilistic serial mechanism associated with g converge to the

same limit as q →∞. In Appendix D, we provide formal definitions for asymmetric RP

and PS in the continuum economy and show their equivalence.

7.2. Aggregate Uncertainty. The environment of our model is deterministic in the

sense that the supply of objects and preferences of agents are fixed. By contrast, un-

certainty in preferences is a prevalent feature in real-life applications. In the context of

student placement, for instance, popularity of schools may vary, and students and their

parents may know their own preferences but not those of others. Aggregate uncertainty

can be incorporated into our model.27 It turns out that the asymptotic equivalence of RP

and PS continues to hold even with aggregate uncertainty. We also point out that a new

issue of efficiency arises in this model.

Define Ω to be a finite state space. For any q ∈ N and ω ∈ Ω, let ρq(ω) be the probability

of state ω and mq
π(ω) be the per-unit number of the agents of preference type π in state

ω. Assume (in the same spirit as in the basic model) that there exist well-defined limits

ρ∞(ω) := limq→∞ ρ
q(ω) for all ω ∈ Ω and m∞π (ω) := limq→∞m

q
π(ω) for all π ∈ Π and

for all ω ∈ Ω. Then, the asymptotic equivalence of RP and PS holds state by state by

Corollary 1. Therefore the ex ante random assignments in RP and PS converge to each

other as well. Note that this last conclusion follows because Ω is finite, and the ex ante

random assignment is simply a weighted average of random assignments across different

states. We also note that an exact equivalence holds in the continuum economy for a

more general (possibly infinite) state space since the equivalence holds at each state (see

Section 5).

Aggregate uncertainty introduces a new issue of efficiency, however, as seen below.

Example 1. Let φqa(π, ω) be the probability that an agent with preference type π obtains

a under state ω in random assignment φq in the q-economy. Let O = {a, b}, Ω = {ωa, ωb},
ρq(ωa) = ρq(ωb) = 1

2
, agents with preference πab prefer a to b to ø and those with πba

27We are grateful to an anonymous referee for inspiring us to study the issues presented in this section.
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prefer b to a to ø. There is measure 4 of agents; 60% of them are of type πab at state ωa

and 60% of them are of type πba at state ωb. More formally, mq
πab

(ωa) = 12
5
,mq

πba
(ωa) =

8
5
,mq

πab
(ωb) = 8

5
,mq

πba
(ωb) = 12

5
.28 For each state ω and each agent, the probability that

she is of type π is P (π|ω) := mqπ(ω)
mq
πab

(ω)+mq
πba

(ω)
. Random assignments under probabilistic

serial PSq can be computed to be

PSq(πab, ωa) =

(
5

12
,

1

12
,
1

2

)
, PSq(πba, ωa) =

(
0,

1

2
,
1

2

)
,

PSq(πab, ωb) =

(
1

2
, 0,

1

2

)
, PSq(πba, ωb) =

(
1

12
,

5

12
,
1

2

)
.

Now consider an agent who knows her preference is πab (but not the state). From this

interim perspective, she forms her posterior belief about the state according to Bayes’

law. Specifically, a type πab agent believes that the state is ω = ωa, ωb with probability

P̄ (ω|πab) :=
ρq(ω)P (πab|ω)

ρq(ωa)P (πab|ωa) + ρq(ωb)P (πab|ωb)
.

Hence, she expects to receive object a with probability

P̄ (ωa|πab)PSqa(πab, ωa) + P̄ (ωb|πab) · PSqa(πab, ωb) =
9

20
.

Similarly, she obtains b with probability 1
20

. By symmetry, a type-πba agent obtains b and

a with probabilities 9
20

and 1
20

respectively in PSq.

Consider now a random assignment φq,

φq(πab, ωa) =

(
5

12
, 0,

7

12

)
, φq(πba, ωa) =

(
0,

5

8
,
3

8

)
,

φq(πab, ωb) =

(
5

8
, 0,

3

8

)
, φq(πba, ωb) =

(
0,

5

12
,

7

12

)
,

whose feasibility can be shown by calculation. Under φq, each type of agent receives her

favorite object with probability 1
2

and the null object with probability 1
2

(i.e., a type-πab

agent obtains a with probability 1
2
, and a type-πba agent obtains b with probability 1

2
).

Therefore, for every agent, her lottery at φq first-order stochastically dominates the one

at PSq, i.e., φq ordinally dominates PSq. Notice the inefficiency does not vanish even as

the market size approaches infinity (q →∞); PSq does not depend on q in this example.

Since RP and PS are asymptotically equivalent, RP remains ordinally inefficient even as

q →∞ as well.

28The current example can be seen as generalizing the one discussed in the Introduction. In that

example, there is a unique state of the world in which 50 percent of agents are of type πab and the

remaining 50 percent of agents are of type πba.
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One may conclude from this example that, when there is aggregate uncertainty, RP and

PS are deficient and an alternative mechanism should replace them. However, there is a

sense in which some inefficiencies are not limited to these specific mechanisms but rather

inherent in the environment. More specifically, no mechanism is both ordinally efficient

and strategy-proof, even in the continuum economy.

To analyze this issue, we formally introduce some concepts. A mechanism is a mapping

from an environment to a random assignment. To avoid notational clutter, we simply

associate a mechanism with the random assignment φ∗ it induces for a given environment

(although the dependence on the environment will be suppressed). Let φ∗a(π, ω) be the

probability that a type-π agent receives object a at state ω in the continuum economy.

Given φ∗, a ∈ Õ, π, π′ ∈ Π, let

Φ∗a(π
′|π) :=

∑
ω∈Ω ρ

∞(ω)P (π|ω)φ∗a(π
′, ω)∑

ω∈Ω ρ
∞(ω)P (π|ω)

be the conditional probability that a type-π agent receives a from mechanism φ∗ when

she reports type π′ instead. Let Φ∗a(π) := Φ∗a(π|π) be the conditional probability that a

type-π agent receives a when telling the truth. A mechanism φ∗ is ordinally efficient if,

for any m∞, there is no random assignment φ̂∗ such that, for each preference type π with

m∞π (ω) > 0 for some ω ∈ Ω, the lottery (Φ̂∗a(π))a∈Õ first-order stochastically dominates

(Φ∗a(π))a∈Õ at m∞ with respect to π. Mechanism φ∗ is strategy-proof if, for any m∞

and any π, π′ ∈ Π, (Φ∗a(π))a∈Õ at m∞ is equal to or first-order stochastically dominates

(Φ∗a(π
′|π))a∈Õ at m∞ with respect to preference π.29

Proposition 4. In the continuum economy with aggregate uncertainty, there exists no

mechanism that is strategy-proof and ordinally efficient.30

Note that the statement focuses on the continuum economy. This is without loss of

generality since, in finite economies, the impossibility result holds even without aggregate

uncertainty (Bogomolnaia and Moulin 2001). Note also that aggregate uncertainty is

essential for Proposition 4, since RP (or equivalently PS) satisfies strategy-proofness and

ordinal efficiency in the continuum economy if there is no aggregate uncertainty (see

Section 5).

29The notion of strategy-proofness here is ordinal, just as in Bogomolnaia and Moulin (2001). Note,

however, that if a mechanism fails to be strategy-proof in the ordinal sense, it fails to be strategy-proof

for some profile of cardinal values.
30Note that we presuppose symmetry throughout the paper in the sense that agents with the same

preferences receive the same lottery. Without symmetry, a deterministic priority mechanism with a fixed

agent ordering across states is both strategy-proof and ordinally efficient.
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7.3. Unequal Number of Copies. We focused on a setting in which there are q copies

of each object type in the q-economy. It is straightforward to extend our results to

settings in which there are an unequal number of copies, as long as quotas of object types

grow proportionately. More specifically, if there exist positive integers (qa)a∈O such that

the quota of object type a is qaq in the q-economy, then our results extend with little

modification of the proof.

On the other hand, we need some assumption about the growth rate of quotas, as the

following example shows.

Example 2. Consider an economy Γq with 4 types of proper objects, a, b, c, and d, where

quotas of a and b stay at one while those of c and d are q. Let N q = N q
πab
∪N q

πba
∪N q

πcd
∪N q

πdc

be the set of agents, with |N q
πab
| = |N q

πba
| = 2, |N q

πcd
| = |N q

πdc
| = 2q. Assume that agents

with preference type πab prefer a to b to ø to c to d, those with preference type πba prefer

b to a to ø to c to d, those with preference type πcd prefer c to d to ø to a to b, and those

with preference type πdc prefer d to c to ø to a to b.

For any q, the random assignments under RP q for types πab and πba are

RP q(πab) = (RP q
a (πab), RP q

b (πab), RP q
c (πab), RP q

d (πab), RP q
ø (πab)) =

(
5

12
,

1

12
, 0, 0,

1

2

)
,

RP q(πba) = (RP q
a (πba), RP q

b (πba), RP q
c (πba), RP q

d (πba), RP q
ø (πba)) =

(
1

12
,

5

12
, 0, 0,

1

2

)
,

while the random assignments under PSq are

PSq(πab) = (PSqa(π
ab), PSqb (π

ab), PSqc (π
ab), PSqd(π

ab), PSqø(πab)) =

(
1

2
, 0, 0, 0,

1

2

)
,

PSq(πba) = (PSqa(π
ba), PSqb (π

ba), PSqc (π
ba), PSqd(π

ba), PSqø(πba)) =

(
0,

1

2
, 0, 0,

1

2

)
.

Therefore random priority and probabilistic serial do not converge to each other.

The above example shows that the two mechanisms do not necessarily converge to

each other when the growth rates of different types of objects differ. However, the non-

convergence seems to pose only a minor problem and have only limited influences on

overall welfare. In Example 2, for instance, allocations for preference types πcd and πdc

under RP and PS converge to each other as q →∞. Given that the proportions of agents

of preference types πab and πba go to zero in this example, the inefficiency of RP still

seems small in large economies.

7.4. Multi-Unit Demands. Consider a generalization of our basic setting in which each

agent can obtain multiple units of objects. More specifically, we assume that there is a
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fixed integer k such that each agent can receive k objects. When k = 1, the model

reduces to the model of the current paper. Assignment of popular courses in schools is

one example of such a multiple unit assignment problem. See, for example, Kojima (2008)

for formal definition of the model.

We consider two generalizations of the random priority mechanism to the current set-

ting. In the once-and-for-all random priority mechanism, each agent i randomly

draws a number fi independently from a uniform distribution on [0, 1] and, given the or-

dering, the agent with the lowest draw receives her favorite k objects, the agent with the

second-lowest draw receives his favorite k objects from the remaining ones, and so forth.

In the draft random priority mechanism, each agent i randomly draws a number fi

independently from a uniform distribution on [0, 1]. Second, the agent with the smallest

draw receives her favorite object, the agent with the second-smallest draw receives his

favorite object from the remaining ones, and so forth. Then agents obtain a random draw

again and repeat the procedure k times.

We introduce two generalizations of the probabilistic serial mechanism. In the multiunit-

eating probabilistic serial mechanism, each agent “eats” her k favorite available objects

with speed one at every time t ∈ [0, 1]. In the one-at-a-time probabilistic serial mech-

anism, each agent “eats” the best available object with speed one at every time t ∈ [0, k].

Our analysis can be adapted to this situation to show that the once-and-for-all random

priority mechanism is asymptotically equivalent to the multiunit-eating probabilistic serial

mechanism, whereas the draft random priority mechanism is asymptotically equivalent to

the one-at-a-time probabilistic serial mechanism.

It is easy to see that the multiunit-eating probabilistic serial mechanism may not be

ordinally efficient, while the one-at-a-time probabilistic serial mechanism is ordinally effi-

cient. This may shed light on some issues in multiple unit assignment. It is well known

that the once-and-for-all random priority mechanism is ex post efficient, but the mecha-

nism is rarely used in practice. Rather, the draft mechanism is often used in application,

for instance in sports drafting and allocations of courses in business schools. One of the

reasons may be that the once-and-for-all random priority mechanism is ordinally inefficient

even in the limit economy, whereas the draft random priority mechanism converges to an

ordinally efficient mechanism as the economy becomes large — a reasonable assumption

with course allocation in schools.
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8. Concluding Remarks

Although the random priority (random serial dictatorship) mechanism is widely used

for assigning objects to individuals, there has been increasing interest in the probabilistic

serial mechanism as a potentially superior alternative. The tradeoffs associated with these

mechanisms are multifaceted and difficult to evaluate in a finite economy. Yet, we have

shown that the tradeoffs disappear, as the two mechanisms become effectively identical, in

the large economy. More specifically, given a set of object types, the random assignments

in these mechanisms converge to each other as the number of copies of each object type

approaches infinity. This equivalence implies that the well-known concerns about the two

mechanisms — the inefficiency of random priority and the incentive issue of probabilistic

serial — abate in large markets.

Our result shares the recurring theme in economics that large economies can make

things “right” in many settings. The benefits of large markets have been proven in many

different circumstances, but no single insight appears to explain all of them, and one

should not expect them to arise for all circumstances and for all mechanisms.

First, it is often the case that the large economy limits individuals’ abilities and incen-

tives to manipulate the mechanism. This is clearly the case for the Walrasian mechanism

in exchange economy, as has been shown by Roberts and Postlewaite (1976). It is also the

case for the deferred acceptance algorithm in two-sided matching (Kojima and Pathak

(2008)) and for the probabilistic serial mechanism in one-sided matching (Kojima and

Manea (2008)). Even this property is not to be taken for granted, however. The so-called

Boston mechanism (Abdulkadiroğlu and Sönmez 2003b), which has been used to place

students in public schools, provides an example. In that mechanism, a school first admits

the students who rank it first, and if, and only if, there are seats left, admits those who

rank it second, and so forth. It is well known that the students have incentives to misre-

port preferences in such a mechanism, and such manipulation incentives do not disappear

as the economy becomes large.31

Second, one may expect that, with the diminished manipulation incentives, efficiency

would be easier to obtain in a large economy. The asymptotic ordinal efficiency we find

for the RP supports this impression. However, even some reasonable mechanisms fail

to achieve asymptotic ordinal efficiency. Take the case of the deferred acceptance

algorithm with multiple tie-breaking (DA-MTB), an adaptation of the celebrated

algorithm proposed by Gale and Shapley (1962) to the problem of assigning objects to

agents, such as student assignment in public schools (see Abdulkadiroğlu, Pathak, and

31See Kojima and Pathak (2008) for a concrete example on this point.
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Roth (2005)). In DA-MTB, each object type randomly and independently orders agents

and, given the ordering, the assignment is decided by conducting the agent-proposing

deferred acceptance algorithm with respect to the submitted preferences and the randomly

decided priority profile. It turns out DA-MTB fails even ex post efficiency, let alone ordinal

efficiency. Moreover, these inefficiencies do not disappear even in the continuum economy,

as shown by Abdulkadiroğlu, Che, and Yasuda (2008).

Third, one plausible conjecture may be that the asymptotic ordinal efficiency is a

necessary consequence of a mechanism that produces an ex post efficient assignment in

every finite economy. This conjecture turns out to be false. Consider a family {Γq}q∈N of

replica economies and the following replication-invariant random priority mechanism

RIRP q. First, in the given q-economy, define a correspondence γ : N1 � N q such that

|γ(i)| = q for each i ∈ N1, γ(i) ∩ γ(j) = ∅ if i 6= j, and all agents in γ(i) have the same

preference as i. Call γ(i) i’s clones in the q-fold replica. Let each set γ(i) of clones of

agent i randomly draw a number fi independently from a uniform distribution on [0, 1].

Second, all the clones with the smallest draw receive their favorite object, the clones with

the second-smallest draw receive their most preferred object from the remaining ones, and

so forth. This procedure induces a random assignment. It is clear that RIRP q = RP 1

for any q-fold replica Γq. Therefore ||RIRP q − RP 1|| → 0 as q →∞. Since RP 1 can be

ordinally inefficient, the limit random assignment of RIRP q as q → ∞ is not ordinally

efficient in general.

Most importantly, our analysis shows the equivalence of two different mechanisms be-

yond showing certain asymptotic properties of given mechanisms. Such an equivalence is

not expected even for a large economy, and has few analogues in the literature.

We conclude with possible directions of future research. First, little is known about

matching and resource allocation in the face of aggregate uncertainty. This paper has

made a first step in this direction, but a further study in designing mechanisms in such

environments seems interesting. Second, we have studied a continuum economy model

and provided its limit foundation. Continuum economies models are not yet common in

the matching literature, so this methodology may prove useful more generally beyond the

context of this paper. Finally, the random priority and the probabilistic serial mechanisms

are equivalent only in the limit and do not exactly coincide in large but finite economies.

How these competing mechanisms perform in finite economies remains an interesting open

question.
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Appendix

A. Proof of Theorem 1

It suffices to show that supa∈O |T qa − T ∗a | → 0 as q →∞. To this end, let

L > 2 max

{
max{ 1

m∗a(O′)
,m∗a(O

′)}
∣∣∣∣O′ ⊂ O, a ∈ O′,m∗a(O′) > 0

}
,(A1)

and let K := min{1 − x∗a(v) | a ∈ O∗(v), v < v̄∗} > 0, where v̄∗ := min{v′|t∗(v′) = 1} is

the last step of the recursive equations. Note (A1) implies L > 2.

Fix any ε > 0 such that

2L4v̄∗ε < min

{
K, min

v∈{1,...,v̄∗}
|t∗(v)− t∗(v − 1)|

}
.(A2)

By assumption there exists Q such that, for each q > Q,

|mq
a(O

′)−m∞a (O′)| < ε,∀O′ ⊂ Õ, ∀a ∈ O′.(A3)

Fix any such q. For each v ∈ {1, ..., v̄∗}, consider the set A∗(v) := {a ∈ O|T ∗a = t∗(v)}
of objects that expire at step v of PS∗. We show that T qa ∈ (t∗(v)− L4vε, t∗(v) + L4vε) if

and only if a ∈ A∗(v). Let

Jv := {i|tq(i) = tqa(i) for some a ∈ A∗(v)}

be the steps at which the objects in A∗(v) expire in PSq. Clearly, it suffices to show that

tq(i) ∈ (t∗(v)− L4vε, t∗(v) + L4vε) if and only if i ∈ Jv We prove this recursively.

Suppose for each v′ ≤ v−1, tq(i′) ∈ (t∗(v′)−L4v′ε, t∗(v′)+L4v′ε) if and only if i′ ∈ Jv′ , and

further that, for each a ∈ O∗(v−1), xqa(k) ∈ (x∗a(v−1)−L4(v−1)ε, x∗a(v−1)+L4(v−1)ε), where

k is the largest element of Jv−1. We shall then prove that tq(i) ∈ (t∗(v)−L4vε, t∗(v)+L4vε)

if and only if i ∈ Jv, and that, for each a ∈ O∗(v), xqa(l) ∈ (x∗a(v) − L4vε, x∗a(v) + L4vε),

where l is the largest element of Jv.

Observe first Oq(k) = O∗(v − 1), since k is the largest element of Jv−1.

Claim 1. For any i > k, tq(i) > t∗(v)− L4v−2ε.

Proof. Suppose object a ∈ O∗(v − 1) = Oq(k) expires at step k + 1 of PSq. It suffices to

show tqa(k + 1) > t∗(v)− L4v−2ε. Suppose to the contrary that

tqa(k + 1) ≤ t∗(v)− L4v−2ε.(A4)

Recall, by the inductive assumption, that

xqa(k) < x∗a(v − 1) + L4(v−1)ε.(A5)
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Thus,

xqa(k + 1) = xqa(k) +mq
a(O

q(k))(tqa(k + 1)− tq(k))

≤ xqa(k) +mq
a(O

q(k))(t∗(v)− L4v−2ε− t∗(v − 1) + L4(v−1)ε)

≤ xqa(k) +mq
a(O

q(k))[t∗(v)− t∗(v − 1)− L4v−3ε]

< x∗a(v − 1) + L4(v−1)ε+m∞a (O∗(v − 1))[t∗(v)− t∗(v − 1)− L4v−3ε] + ε,(A6)

where the first equality follows from definition of PSq (4.4) and the fact that tqa(k + 1) =

tq(k+ 1), the first inequality follows from the inductive assumption and (A4), the second

inequality holds since L4v−2ε − L4(v−1)ε = L4v−3(L − 1
L

)ε > L4v−3ε since L > 2, which

follows from (A1), and the third inequality follows from (A2), (A3) and (A5).32

There are two cases. Suppose first m∞a (O∗(v − 1)) = 0. Then, the last line of (A6)

becomes

x∗a(v − 1) + L4(v−1)ε+ ε,

which is strictly less than 1, by a ∈ O∗(v−1) and (A2). Suppose next m∞a (O∗(v−1)) > 0.

Then, the last line of (A6) equals

x∗a(v − 1) + L4(v−1)ε+m∞a (O∗(v − 1))[t∗(v)− t∗(v − 1)− L4v−3ε] + ε

< x∗a(v − 1) +m∞a (O∗(v − 1))[t∗(v)− t∗(v − 1)]

≤ 1,

where the first inequality holds since, by (A1), m∞a (O∗(v − 1))L4v−3ε > 2L4(v−1)ε ≥
L4(v−1)ε + ε, and the second follows since a ∈ O∗(v − 1). In either case, we have a

contradiction to the fact that a expires at step k + 1. ‖

Claim 2. For any i ∈ Jv, then tq(i) ≤ t∗(v) + L4v−2ε.

Proof. Suppose a expires at step l ≡ max Jv of PSq. It suffices to show tq(l) = tqa(l) ≤
t∗(v)+L4v−2ε. If t∗(v) = 1, then this is trivially true. Thus, let us assume t∗a(v) < 1. This

implies m∞a (O∗(v − 1)) > 0. For that case, suppose for contradiction that

tqa(l) > t∗(v) + L4v−2ε.(A7)

32By (A2), t∗(v)− t∗(v − 1)− L4v−3ε ∈ (0, 1), so

m∞a (O∗(v − 1))[t∗(v)− t∗(v − 1)− L4v−3ε]−mq
a(Oq(k))[t∗(v)− t∗(v − 1)− L4v−3ε]

= (m∞a (O∗(v − 1))−mq
a(Oq(k)))[t∗(v)− t∗(v − 1)− L4v−3ε] < m∞a (O∗(v − 1))−mq

a(Oq(k)) < ε,

where the last inequality follows from (A3).
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Then,

xqa(l) = xqa(k) +
l∑

j=k+1

mq
a(O

q(j − 1))[tq(j)− tq(j − 1)]

≥ xqa(k) +
l∑

j=k+1

mq
a(O

q(k))[tq(j)− tq(j − 1)]

= xqa(k) +mq
a(O

∗(v − 1))[tq(l)− tq(k)]

> x∗a(v − 1)− L4(v−1)ε+mq
a(O

∗(v − 1))[t∗(v) + L4v−2ε− t∗(v − 1)− L4(v−1)ε]

≥ x∗a(v − 1)− L4(v−1)ε+m∞a (O∗(v − 1))[t∗(v)− t∗(v − 1) + L4v−3ε]

> x∗a(v − 1) +m∞a (O∗(v − 1))[t∗(v)− t∗(v − 1)]

= x∗a(v) = 1,

where the first equality follows from (4.4), the first inequality follows since mq
a(O

q(j −
1)) ≥ mq

a(O
q(k)) for each j ≥ k + 1 by Oq(j − 1) ⊆ Oq(k), the second equality from

Oq(k) = O∗(v−1), the second inequality follows from the inductive assumption and (A7),

the third inequality follows from the assumption (A1), and the fourth inequality follows

from (A1) and m∞a (O∗(v − 1)) > 0. Thus xqa(l) > 1, which contradicts the definition of

xqa(l). ‖

Claim 3. If i ∈ Jv′ for some v′ > v, then tq(i) > t∗(v) + L4vε.

Proof. Suppose otherwise. Let c be the object that expires the first among O∗(v) in PSq.

Let j be the step at which it expires. We must have

tq(j) ≤ t∗(v) + L4vε.(A8)

In particular, tqc(j) < 1 and xqc(j) = 1. Since c is the first object to expire in O∗(v), at

each of steps k + 1, . . . , j − 1, some object in A∗(v) expires. (If j = k + 1, then no other

object expires in between step k and step j.) Also, by Claim 1,

tq(k + 1) > t∗(v)− L4v−2ε.(A9)
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Therefore,

xqc(j) = xqc(k) +

j∑
i=k+1

mq
c(O

q(i− 1))(tq(i)− tq(i− 1))

≤ xqc(k) +mq
c(O

q(k))(tq(k + 1)− tq(k)) +mq
c(O

q(j − 1))(tq(j)− tq(k + 1))

≤ x∗c(v − 1) + L4(v−1)ε+ (m∗c(O
q(k)) + ε) ((t∗(v) + L4v−2ε)− (t∗(v − 1)− L4(v−1)ε))

+ (m∗a(O
q(j)) + ε) (L4vε− L4v−2ε)

≤ x∗c(v) + L4v+1ε

≤ 1−K + L4v̄∗ε

< 1,

where the first equality follows from (4.4), the first inequality follows since mq
c(O

q(i−1)) ≤
mq
c(O

q(j − 1)) for any i ≤ j by Oq(i− 1) ⊂ Oq(j − 1), the second inequality follows from

the inductive assumption, (A3), (A9), and (A8), the third inequality follows from (A1),

and the last inequality follows from (A2) and the definition of K. This contradicts the

assumption that c expires at step j. ‖

Claims 1-3 prove that tq(i) ∈ (t∗(v)−L4v−2ε, t∗(v)+L4v−2ε) ⊂ (t∗(v)−L4vε, t∗(v)+L4vε)

if and only if i ∈ Jv, which in turn implies that T qa ∈ (t∗(v) − L4vε, t∗(v) + L4vε) if and

only if a ∈ A∗(v). It now remains to prove the following:

Claim 4. For each a ∈ O∗(v), xqa(l) ∈ (x∗a(v)− L4vε, x∗a(v) + L4vε), where l is the largest

element of Jv.

Proof. Fix any a ∈ O∗(v). Then,

xqa(l) = xqa(k) +
l∑

j=k+1

mq
a(O

q(j − 1))(tq(j)− tq(j − 1))

≤ xqa(k) +mq
a(O

q(k))(tq(k + 1)− tq(k)) +mq
a(O

q(l − 1))(tq(l)− tq(k + 1))

≤ x∗a(v − 1) + L4(v−1)ε+ (m∗a(O
q(k)) + ε) (t∗(v)− t∗(v − 1) + 2L4v−2ε)

+ (m∗a(O
q(l − 1)) + ε) (2L4v−2ε)

< x∗a(v − 1) +m∗a(O
∗(v − 1))(t∗(v)− t∗(v − 1)) + L4vε

= x∗a(v) + L4vε,

where the first equality follows from (4.4), the first inequality follows since mq
c(O

q(i−1)) ≤
mq
c(O

q(l − 1)) for any i ≤ l by Oq(i− 1) ⊂ Oq(l − 1), the second inequality follows from
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the inductive assumption, (A3), Claims 1 and 2, the third inequality follows from (A1),

and the last equality follows from (5.4).

A symmetric argument yields xqa(l) ≥ x∗a(v)− L4vε. ‖

We have thus completed the recursive argument, which taken together proves that

T qa ∈ (t∗(v)−L4vε, t∗(v)+L4vε) if and only if t∗a(v) = t∗(v), for any q > Q for some Q ∈ N.

Since ε > 0 can be arbitrarily small, T qa → T ∗a as q → ∞. Since there are only a finite

number of objects and a finite number of preference types, ||PSq −PS∗|| → 0 as q →∞.

B. Proof of Theorem 2

As with the proof of Theorem 1, let L be a real number satisfying condition (A1) and

let K := min{1 − x∗a(v) | a ∈ O∗(v), v < v̄∗} > 0, where v̄∗ := min{v′|t∗(v′) = 1} is the

last step of the recursive equations.

Fix an agent i0 of preference type π0 ∈ Π and consider the random assignment for

agents of type π0. Consider the following events:

Eq
1(π) : m̂q

π(t∗(v − 1)− L4(v−1)ε, t∗(v)− L4v−2ε) < m∞π [t∗(v)− t∗(v − 1)− L4v−3ε], for all v,

Eq
2(π) : m̂q

π(t∗(v − 1) + L4(v−1)ε, t∗(v) + L4v−2ε) ≥ m∞π [t∗(v)− t∗(v − 1) + L4v−3ε], for all v 6= v̄∗,

Eq
3(π) : m̂q

π(t∗(v − 1)− L4(v−1)ε, t∗(v) + L4v−2ε) < m∞π [t∗(v)− t∗(v − 1) + 2L4v−2ε], for all v,

Eq
4(π) : m̂q

π(t∗(v)− L4v−2ε, t∗(v) + L4vε) < m∞π × 2L4vε, for all v,

Eq
5(π) : m̂q

π(t∗(v)− L4v−2ε, t∗(v) + L4v−2ε) < m∞π × 3L4v−2ε, for all v,

Eq
6(π) : m̂q

π(t∗(v − 1) + L4(v−1)ε, t∗(v)− L4v−2ε) ≥ m∞π [t∗(v)− t∗(v − 1)− 2L4v−2ε] for all v.

Before presenting a formal proof of Theorem 2, we describe its outline. First, Lemma 1

below shows that all the cutoff times of RP q become arbitrarily close to the corresponding

expiration dates of PS∗ as q →∞ when event Eq
i (π) holds for every π and i ∈ {1, . . . , 6}.

Then, in the proof of Theorem 2, (1) we use Lemma 1 to show that the conditional

probability of obtaining an object under RP q is close to the probability of receiving that

object under PS∗, given all the events of the form Eq
i (π); and (2) we show that the

probability that all the events of the form Eq
i (π) hold approaches one as q goes to infinity,

so the overall, unconditional probability of obtaining each object in RP q is close to the

conditional probability of receiving that object, given all the events of the form Eq
i (π).

We finally complete the proof of the Theorem by combining items (1) and (2) above.

Lemma 1. For any ε > 0 such that

2L4v̄∗ε < min

{
min

v∈{1,...,v̄∗}
{t∗(v)− t∗(v − 1)}, K

}
,(B1)
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there exists Q such that the following is true for any q > Q: if the realization of f−i0 ∈
[0, 1]|N

q |−1 is such that events Eq
1(π), Eq

2(π), Eq
3(π), Eq

4(π), Eq
5(π), and Eq

6(π) hold for all

π ∈ Π with m∞π > 0, then T̂ qa ∈ (t∗(v)− L4vε, t∗(v) + L4vε) if and only if t∗a(v) = t∗(v).

Before presenting a complete proof of Lemma 1, we note that the proof closely follows

the proof of Theorem 1. More specifically, the proof of Theorem 1 shows inductively that

the expiration date of each object type in PSq is close to that of PS∗ when q is large

enough, while the proof of Lemma 1 shows inductively that the cutoff time of each object

type in RP q is close to that of PS∗ when all the events of the form Eq
i (π) hold. Indeed,

Claims 1, 2, 3, and 4 in the proof of Theorem 1 correspond to Claims 5, 6, 7, and 8

in the proof of Lemma 1, respectively. Both arguments utilize the fact that the average

rates of consumption of each object type in PSq and RP q are close to those under PS∗

during relevant time intervals. The main difference between the proofs of Theorem 1 and

Lemma 1 is the following: consumption rates of PSq are close to PS∗ because mq
π is close

to m∞π for all a and π when q is large, whereas consumption rates of RP q are assumed

to be close by all the events of the form Eq
i (π), and Lemma 1 shows that these events

in fact make the cutoff times in RP q close to expiration dates in PS∗. As mentioned

above, the proof of Theorem 2 then shows that assuming all the events of the form Eq
i (π)

is not problematic, since the probability of these events converges to one as q approaches

infinity.

Proof of Lemma 1. There exists Q such that∑
π∈Π:m∞π =0

mq
π < ε,(B2)

for any q > Q. Fix any such q and suppose that the realization of f−i0 is such that Eq
1(π),

Eq
2(π), Eq

3(π), Eq
4(π), Eq

5(π), and Eq
6(π) hold for all π with m∞π > 0 as described in the

statement of the Lemma. We first define the steps

Ĵv := {i|t̂qa(i) = t̂q(i) for some a ∈ A∗(v)}

at which the objects in A∗(v) expire in RP q. The lemma shall be proven by showing that

t̂q(i) ∈ (t∗(v)− L4vε, t∗(v) + L4vε) if and only if i ∈ Ĵv. We show this inductively.

Suppose for any v′ ≤ v−1, t̂q(i′) ∈ (t∗(v′)−L4v′ε, t∗(v′)+L4v′ε) if and only if i′ ∈ Ĵv′ , and

further that, for each a ∈ O∗(v−1), x̂qa(k) ∈ (x∗a(v−1)−L4(v−1)ε, x∗a(v−1)+L4(v−1)ε), where

k is the largest element of Ĵv−1. We shall then prove that t̂q(i) ∈ (t∗(v)−L4vε, t∗(v)+L4vε)

if and only if i ∈ Ĵv, and that, for each a ∈ O∗(v), x̂qa(l) ∈ (x∗a(v) − L4vε, x∗a(v) + L4vε),

where l is the largest element of Ĵv.

Let k be the largest element of Ĵv−1. It then follows that Ôq(k) = O∗(v − 1).
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Claim 5. For any i > k, t̂q(i) > t∗(v)− L4v−2ε.

Proof. Suppose object a ∈ O∗(v − 1) = Oq(k) expires at step k + 1 of RP q. It suffices to

show t̂qa(k + 1) > t∗(v)− L4v−2ε. Suppose to the contrary that

t̂qa(k + 1) ≤ t∗(v)− L4v−2ε.(B3)

Recall, by inductive assumption, that

x̂qa(k) < x∗a(v − 1) + L4(v−1)ε.(B4)

Thus,

x̂qa(k + 1) = x̂qa(k) + m̂q
a(Ô

q(k); t̂q(k), t̂qa(k + 1))

≤ x̂qa(k) + m̂q
a(Ô

q(k); t∗(v − 1)− L4(v−1)ε, t∗(v)− L4v−2ε)

< x∗a(v − 1) + L4(v−1)ε+m∞a (O∗(v − 1))[t∗(v)− t∗(v − 1)− L4v−3ε] + ε,(B5)

where the first equality follows from (4.8) in the definition of RP q, the first inequality

follows from the inductive assumption and (B3), and the second inequality follows from

the assumption that Eq
1(π) holds for all π ∈ Π and conditions (B2) and (B4).

There are two cases. Suppose first m∞a (O∗(v − 1)) = 0. Then, the last line of (B5)

becomes

x∗a(v − 1) + L4(v−1)ε+ ε,

which is strictly less than 1, since a ∈ O∗(v − 1) and since (B1) holds. Suppose next

m∞a (O∗(v − 1)) > 0. Then, the last line of (B5) equals

x∗a(v − 1) + L4(v−1)ε+m∞a (O∗(v − 1))[t∗(v)− t∗(v − 1)− L4v−3ε] + ε

< x∗a(v − 1) +m∞a (O∗(v − 1))[t∗(v)− t∗(v − 1)]

≤ 1,

where the first inequality follows from (A1), and the second follows since a ∈ O∗(v − 1).

In either case, we have a contradiction to the fact that a expires at step k + 1. ‖

Claim 6. For any i ∈ Ĵv, then t̂q(i) ≤ t∗(v) + L4v−2ε.

Proof. Suppose a expires at step l ≡ max Ĵv of RP q. It suffices to show t̂q(l) = t̂qa(l) ≤
t∗(v)+L4v−2ε. If t∗(v) = 1, then the claim is trivially true. Thus, let us assume t∗(v) < 1.

This implies m∞a (O∗(v − 1)) > 0. For that case suppose, for contradiction, that

t̂q(l) > t∗(v) + L4v−2ε.(B6)
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Then,

x̂qa(l) = x̂qa(k) +
l∑

j=k+1

m̂q
a(Ô

q(j − 1); t̂q(j − 1), t̂q(j))

≥ x̂qa(k) +
l∑

j=k+1

m̂q
a(Ô

q(k); t̂q(j − 1), t̂q(j))

= x̂qa(k) + m̂q
a(O

∗(v − 1); t̂q(k), t̂q(l))

> x∗a(v − 1)− L4(v−1)ε+ m̂q
a(O

∗(v − 1); t∗(v − 1) + L4(v−1)ε, t∗(v) + L4v−2ε)

≥ x∗a(v − 1)− L4(v−1)ε+m∞a (O∗(v − 1))[t∗(v)− t∗(v − 1) + L4v−3ε]

> x∗a(v − 1) +m∞a (O∗(v − 1))[t∗(v)− t∗(v − 1)]

= x∗a(v) = 1,

where the first equality follows from (4.8), the first inequality follows since m̂q
a(Ô

q(j −
1); t, t′) ≥ mq

a(Ô
q(k); t, t′) for any j ≥ k + 1 and t ≤ t′ by Ôq(j − 1) ⊆ Ôq(k), the second

equality from Ôq(k) = O∗(v − 1) and the definition of m̂q
a, the second inequality follows

from the inductive assumption and (B6), the third inequality follows from the assump-

tion that Eq
2(π) holds, and the fourth inequality follows from (A1) and the assumption

m∞a (O∗(v − 1)) > 0. Thus x̂qa(l) > 1, which contradicts the definition of xqa(l). ‖

Claim 7. If i ∈ Ĵv′ for some v′ > v, then t̂q(i) > t∗(v) + L4vε.

Proof. Suppose otherwise. Let c be the object that expires the first among O∗(v) in RP q.

Let j be the step at which it expires. Then, we must have

t̂qc(j) ≤ t∗(v) + L4vε,(B7)

and x̂qc(j) = 1. Since c is the first object to expire in O∗(v), at each of steps k+1, . . . , j−1,

some object in A∗(v) expires. (If j = k + 1, then no other object expires in between step
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k and step j.) By Claim 5, this implies t̂q(k + 1) > t∗(v)− L4v−2ε. Therefore,

x̂qc(j) = x̂qc(k) +

j∑
i=k+1

m̂q
c(Ô

q(i− 1); t̂q(i− 1), t̂q(i))

≤ x̂qc(k) + m̂q
c(Ô

q(k); t̂q(k), t̂q(k + 1)) + m̂q
c(Ô

q(j − 1); t̂q(k + 1), t̂q(j))

≤ x̂qc(k) + m̂q
c(Ô

q(k); t∗(v − 1)− L4(v−1)ε, t∗(v) + L4v−2ε)

+m̂q
c(Ô

q(j − 1); t∗(v)− L4v−2ε, t∗(v) + L4vε)

≤ x∗c(v − 1) + L4(v−1)ε+m∗c(O
∗(v − 1))[t∗(v)− t∗(v − 1) + 2L4v−2ε]

+m∞c (Ôq(j − 1))× 2L4vε+ ε

≤ x∗c(v) + L4v+1ε

≤ 1−K + L4v̄∗ε

< 1,

where the first equality follows from (4.8), the first inequality follows since m̂q
c(Ô

q(j −
1); t, t′) ≥ mq

c(Ô
q(i−1); t, t′) for any j ≥ i by Ôq(j−1) ⊆ Ôq(i−1), the second inequality

follows from the inductive assumption, and Claims 5 and 6, the third inequality follows

from the inductive assumption, Eq
3(π), Eq

4(π) and (B2), the fourth inequality follows

from (5.4) and (A1), the fifth inequality follows from the definition of K, and the last

inequality follows from the assumption that 2L4v̄∗ε < K. Thus we obtain x̂qc(j) < 1, which

contradicts the assumption that c expires at step j. ‖

Claims 5, 6, and 7 prove that t̂q(i) ∈ (t∗(v) − L4v−2ε, t∗(v) + L4v−2ε) ⊂ (t∗(v) −
L4vε, t∗(v) +L4vε) if and only if i ∈ Ĵv. This implies that T̂ qa ∈ (t∗(v)−L4vε, t∗(v) +L4vε)

if and only if a ∈ A∗(v). It now remains to show the following.

Claim 8. For each a ∈ O∗(v), xqa(l) ∈ (x∗a(v)− L4vε, x∗a(v) + L4vε), where l is the largest

element of Ĵv.
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Proof. Fix any a ∈ O∗(v). Then,

x̂qa(l) = x̂qa(k) +
l∑

j=k+1

m̂q
a(Ô

q(j − 1); t̂q(j − 1), t̂q(j))

≤ x̂qa(k) + m̂q
a(Ô

q(k); t̂q(k), t̂q(k + 1)) + m̂q
a(Ô

q(l); t̂q(k + 1), t̂q(l))

≤ x̂qa(k) + m̂q
a(Ô

q(k); t∗(v − 1)− L4(v−1)ε, t∗(v) + L4v−2ε)

+m̂q
a(Ô

q(l); t∗(v)− L4v−2ε, t∗(v) + L4v−2ε)

< x∗a(v − 1) + L4(v−1)ε+m∗a(Ô
q(k))(t∗(v)− t∗(v − 1) + 2L4v−2ε)

+m∗a(Ô
q(l))× 3L4v−2ε+ 2ε

< x∗a(v − 1) + (m∗a(O
∗(v − 1))) (t∗(v)− t∗(v − 1)) + L4vε

= x∗a(v) + L4vε,

where the first equality follows from (4.8), the first inequality follows frommq
a(Ô

q(l); t, t′) ≥
mq
a(Ô

q(j); t, t′) for all l ≥ j, the second inequality follows from the inductive assumption

and Claims 5 and 6, the third inequality follows from the inductive assumption, (B2) and

Eq
3(π) and Eq

5(π), the fourth inequality follows from Ôq(k) = O∗(v−1) and (A1), and the

last inequality follows from (5.4).

Next we obtain

x̂qa(l) = x̂qa(k) +
l∑

j=k+1

m̂q
a(Ô

q(j − 1); t̂q(j − 1), t̂q(j))

≥ x̂qa(k) + m̂q
a(Ô

q(k); t̂q(k), t̂q(l))

≥ x̂qa(k) + m̂q
a(Ô

q(k); t∗(v − 1) + L4(v−1)ε, t∗(v)− L4v−2ε)

≥ x∗a(v − 1)− L4(v−1)ε+m∗a(O
∗(v − 1))[t∗(v)− t∗(v − 1)− 2L4v−2ε]

> x∗a(v)− L4vε,

where the first inequality follows from Ôq(j − 1) ⊆ Ôq(k) for any j ≥ k + 1, the second

inequality follows from the inductive assumption and Claim 5, the third inequality follows

from the inductive assumption and Eq
6(π), and the last inequality follows from (5.4) and

(A1). These inequalities complete the proof. ‖

We have thus completed the recursive argument, which taken together proves that

T̂ qa ∈ (t∗(v) − L4vε, t∗(v) + L4vε) if and only if a ∈ A∗(v), for any q > Q for some

Q ∈ N. �
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Proof of Theorem 2. We shall show that for any ε > 0 there exists Q such that, for any

q > Q, for any π0 ∈ Π and a ∈ O,

|PS∗a(π0)−RP q
a (π0)| < (2L4(n+1) + 6(n+ 1)!)ε.(B8)

Since n is a finite constant, relation (B8) implies the Theorem.

To show this, first assume without loss of generality that ε satisfies (B1) and Q is so

large that (B2) holds for any q > Q. We have

RP q
a (π0) = E

[
T̂ qa − τ̂ qa (π0)

]
= E

T̂ qa − τ̂ qa (π0)

∣∣∣∣∣
6⋂
i=1

⋂
π∈Π:m∞π >0

Eq
i (π)

× Pr
 6⋂
i=1

⋂
π∈Π:m∞π >0

Eq
i (π)


+ E

T̂ qa − τ̂ qa (π0)

∣∣∣∣∣
6⋂
i=1

⋂
π∈Π:m∞π >0

Eq
i (π)

× Pr
 6⋂
i=1

⋂
π∈Π:m∞π >0

Eq
i (π)


= E

T̂ qa − τ̂ qa (π0)

∣∣∣∣∣
6⋂
i=1

⋂
π∈Π:m∞π >0

Eq
i (π)

×
1− Pr

 6⋃
i=1

⋃
π∈Π:m∞π >0

Eq
i (π)


+ E

T̂ qa − τ̂ qa (π0)

∣∣∣∣∣
6⋂
i=1

⋂
π∈Π:m∞π >0

Eq
i (π)

× Pr
 6⋃
i=1

⋃
π∈Π:m∞π >0

Eq
i (π)


= E

T̂ qa − τ̂ qa (π0)

∣∣∣∣∣
6⋂
i=1

⋂
π∈Π:m∞π >0

Eq
i (π)


+

E

T̂ qa − τ̂ qa (π0)

∣∣∣∣∣
6⋂
i=1

⋂
π∈Π:m∞π >0

Eq
i (π)

− E

T̂ qa − τ̂ qa (π0)

∣∣∣∣∣
6⋂
i=1

⋂
π∈Π:m∞π >0

Eq
i (π)


× Pr

 6⋃
i=1

⋃
π∈Π:m∞π >0

Eq
i (π)

 ,(B9)

where for any event E, E[·|E] denotes the conditional expectation given E, and Ē is the

complement event of E.

First, we bound the first term of expression (B9). Since v̄∗ ≤ n + 1, Lemma 1 implies

that

E

T̂ qa − τ̂ qa (π0)

∣∣∣∣∣
6⋂
i=1

⋂
π∈Π:m∞π >0

Eq
i (π)

 ∈ [T∞a − τ ∗a (π0)− 2L4(n+1)ε, T∞a − τ ∗a (π0) + 2L4(n+1)ε].
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Second, we bound the second term of expression (B9). By the weak law of large num-

bers, for any ε > 0, there exists Q such that Pr
[
Eq
i (π)

]
< ε for any i ∈ {1, 2, 3, 4, 5, 6},

q > Q and π ∈ Π with m∞π > 0. Since there are at most 6(n+1)! such events and, in gen-

eral, the sum of probabilities of a number of events is weakly larger than the probability

of the union of the events (Boole’s inequality), we obtain

Pr

 6⋃
i=1

⋃
π∈Π:m∞π >0

Eq
i (π)

 ≤ 6∑
i=1

∑
π∈Π:m∞π >0

Pr
[
Eq
i (π)

]
≤ 6(n+ 1)!ε.

Since T̂ qa − τ̂ qa (π0) ∈ [0, 1] for any a, q and π0, the second term of equation (B9) is in

[−6(n+ 1)!ε, 6(n+ 1)!ε].

From the above arguments and the definition PS∗a(π0) = T∞a − τ ∗a (π0) for every a and

π0, we have that

|PS∗a(π0)−RP q
a (π0)| < (2L4(n+1) + 6(n+ 1)!)ε,

completing the proof. �

C. Proof of Proposition 3

The proposition uses the following two lemmas. Let {Γq} be a family of replica

economies. Given any q, define a correspondence γ : N1 � N q such that |γ(i)| = q

for each i ∈ N1, γ(i) ∩ γ(j) = ∅ if i 6= j, and all agents in γ(i) have the same preference

as i. Call γ(i) i’s clones in the q-fold replica.

Lemma 2. For all q ∈ N and a, b ∈ Õ, aB (RP 1,m1) b ⇐⇒ aB (RP q,mq) b.

Proof. We proceed in two steps.

(i) aB (RP 1,m1) b =⇒ aB (RP q,mq) b: Suppose first aB (RP 1,m1) b. There exists an

individual i∗ ∈ N1 and an ordering (i1(1), . . . , i
1
(|N1|)) (implied by some draw f 1 ∈ [0, 1]|N

1|)

such that the agents in front of i∗ in that ordering consume all the objects that i∗ prefers

to b but not b, and i∗ consumes b.

Now consider the q-fold replica. With positive probability, we have an ordering (γ̄(i1(1)),

. . . , γ̄(i1(|N1|))), where γ̄(i) is an arbitrary permutation of γ(i). Under this ordering, each

agent in γ(i1(j)) will consume a copy of the object agent i1(j) will consume in the base

economy, and hence all the agents in γ(i∗) will consume b (despite preferring a to b). This

proves that aB (RP q,mq) b.

(ii) aB (RP q,mq) b =⇒ aB (RP 1,m1) b: Suppose aB (RP q,mq) b. Then, with positive

probability, a draw f q ∈ [0, 1]|N
q | entails an ordering in which the agents ahead of i∗ ∈ N q
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consume all of the objects that i∗ prefers to b, but not all of the copies of b have been

consumed by them. List these objects in the order that their last copies are consumed,

and let the set of these objects be Ô := {o1, ...., om} ⊂ O, where ol is completely consumed

before ol+1 for all l = 1, . . . ,m− 1. (Note that a ∈ Ô.) Let i∗∗ be such that i∗ ∈ γ(i∗∗).

We first construct a correspondence ξ : Ô → N1 \ {i∗∗} defined by

ξ(o) :=
{
i ∈ N1 \ {i∗∗} | ∃j ∈ γ(i) who consumes o under f q

}
.

Claim 9. Any agent in N q who consumes ol prefers ol to all objects in Õ \ {o1, ..., ol−1}
under f q. Hence, any agent in ξ(ol) prefers ol to all objects in Õ \ {o1, ..., ol−1}.

Claim 10. For each O′ ⊂ Ô, | ∪o∈O′ ξ(o)| ≥ |O′|.

Proof. Suppose otherwise. Then, there exists O′ ⊂ Ô such that k := |∪o∈O′ ξ(o)| < |O′| =:

l. Reindex the sets so that ∪o∈O′ξ(o) = {a1, ...., ak} and O′ = {o1, ..., ol}. Let xij denote

the number of clones of agent aj ∈ ξ(oi) who consume oi in the q-fold replica under f q.

Since
∑l

i=1 xij ≤ |γ(aj)| = q,
k∑
j=1

l∑
i=1

xij ≤ kq.

At the same time, all q copies of each object in O′ are consumed, and at most q − 1

clones of i∗∗ could be those contributing to that consumption. Therefore,

l∑
i=1

k∑
j=1

xij ≥ lq − (q − 1) = (l − 1)q + 1 > kq,

We thus have a contradiction. ‖

By Hall’s Theorem, Claim 10 implies that there exists a mapping η : Ô → N1 \ {i∗∗}
such that η(o) ∈ ξ(o) for each o ∈ Ô and η(o) 6= η(o′) for o 6= o′.

Now consider the base economy. With positive probability, f 1 has a priority ordering,

(η(o1), ..., η(om), i∗∗) followed by an arbitrary permutation of the remaining agents. Given

such a priority ordering, the objects in Ô will be all consumed before i∗∗ gets her turn

but b will not be consumed before i∗∗ gets her turn, so she will consume b. This proves

that aB (RP 1,m1) b. �

Lemma 3. RP 1 is wasteful if and only if RP q is wasteful for any q ∈ N.

Proof. We proceed in two steps.

(i) The “only if” Part: Suppose that RP 1 is wasteful. Then, there are objects

a, b ∈ Õ and an agent i∗ ∈ N1 who prefers a to b such that she consumes b under some

ordering (̃i1(1), . . . , ĩ
1
(|N1|)) (implied by some f̃ 1) and that a is not consumed by any agent
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under (̂i1(1), . . . , î
1
(|N1|)) (implied by some f̂ 1). (This is the necessary implication of the

“wastefulness” under RP 1.)

Now consider its q-fold replica, RP q. With positive probability, an ordering (γ̄(̃i1(1)), . . . ,

γ̄(̃i1(|N1|))) arises, where γ̄(i) is an arbitrary permutation of γ(i). Clearly, each agent in

γ(i∗) must consume b even though she prefers a over b (since all copies of all objects

the agents in γ(i∗) prefer to b are all consumed by the agents ahead of them). Likewise,

with positive probability, an ordering (γ̄(̂i1(1)), . . . , γ̄(̂i1(|N1|))) arises. Clearly, under this

ordering, no copies of object a are consumed. It follows that RP q is wasteful.

(ii) The “if” Part: Suppose next that RP q is wasteful. Then, there are objects

a, b ∈ Õ and an agent i∗∗ ∈ N q who prefers a over b such that she consumes b under

some ordering (̃iq(1), . . . , ĩ
q
(|Nq |)) (implied by some f̃ q) and that not all copies of object a

are consumed under (̂iq(1), . . . , î
q
(|Nq |)) (implied by some f̂ q).

Now consider the corresponding base economy and associated RP 1. The argument of

Part (ii) of Lemma 2 implies that there exists an ordering (̃i1(1), . . . , ĩ
1
(|N1|)) under which

agent ĩ∗ = γ−1(i∗∗) ∈ N1 consumes b even though she prefers a over b.

Next, we prove that RP 1 admits a positive-probability ordering under which object a

is not consumed. Let N ′′ := {r ∈ N1|∃j ∈ γ(r) who consumes the null object under f̂ q}.
For each r ∈ N ′′, we let ør denote the null object some clone of r ∈ N1 consumes. In other

words, we use different notations for the null object consumed by the clones of different

agents in N ′′. Given this convention, there can be at most q copies of each ør.

Let Ō := O ∪ (∪r∈N ′′ør) \ {a}, and define a correspondence ψ : N1 → Ō by

ψ(r) := {b ∈ Ō|∃j ∈ γ(r) who consumes b under f̂ q}.

Claim 11. For each N ′ ⊂ N1, | ∪r∈N ′ ψ(r)| ≥ |N ′|.

Proof. Suppose not. Then, k := | ∪r∈N ′ ψ(r)| < |N ′| =: l. Reindex the sets so that

∪r∈N ′ψ(r) =: {o1, ...., ok} and N ′ = {r1, ..., rl}. Let xij denote the number of copies of

object oj ∈ ψ(ri) consumed by the clones of ri in the q-fold replica under f̂ q.

Since there are at most q copies of each object, we must have

k∑
j=1

l∑
i=1

xij ≤ kq.

At the same time, all q clones of each agent in N ′, excluding q− 1 agents (who may be

consuming a), are consuming some objects in O′ under f̂ q, so we must have

l∑
i=1

k∑
j=1

xij ≥ lq + q − 1 = (l − 1)q + 1 > kq,
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We thus have a contradiction. ‖
Claim 11 then implies, via Hall’s theorem, that there exists a mapping ι : N1 → Ō

such that ι(r) ∈ ψ(r) for each r ∈ N1 and ι(r) 6= ι(r′) if r 6= r′.

Let O′ ⊂ Ō be the subset of all object types in Ō whose entire q copies are consumed

under f̂ q. Order O′ in the order that the last copy of each object is consumed; i.e., label

O′ = {o1, ..., om} such that the last copy of object oi is consumed prior to the last copy

of oj if i < j. Let N̂ be any permutation of the agents in ι−1(Ō \ O′). Now consider

the ordering in RP 1: (̂i1(1), . . . , î
1
(|N1|)) = (ι−1(o1), . . . , ι−1(om), N̂), where the notational

convention is as follows: for any l ∈ {1, . . . ,m}, if ι−1(ol) is empty, then no agent is

ordered.

Claim 12. Under the ordering (̂i1(1), . . . , î
1
(|N1|)) = (ι−1(o1), . . . , ι−1(om), N̂), a is not con-

sumed.

Proof. For any l = 0, . . . ,m, let Ol be the set of objects that are consumed by agents

ι−1(o1), . . . , ι−1(ol) under the current ordering (note that some of ι−1(o1), . . . , ι−1(ol) may

be nonexistent). We shall show Ol ⊆ {o1, . . . , ol} by an inductive argument. First note

that the claim is obvious for l = 0. Assume that the claim holds for 0, 1, . . . , l − 1. If

ι−1(ol) = ∅, then no agent exists to consume an object at this step and hence the claim

is obvious. Suppose ι−1(ol) 6= ∅. By definition of ι, agent ι−1(ol) weakly prefers ol to any

object in Õ\{o1, . . . , ol−1}. Therefore ι−1(ol) consumes an object in {ol}∪({o1, . . . , ol−1}\
Ol−1) ⊆ {o1, . . . , ol}. This and the inductive assumption imply Ol ⊆ {o1, . . . , ol}.

Next, consider agents that appears in the ordered set N̂ . By an argument similar to the

previous paragraph, each agent i in N̂ consumes an object in ι(i) ∪ ({o1, . . . , om} \ Om).

In particular, no agent in N̂ consumes a. ‖
Since the ordering (̂i1(1), . . . , î

1
(|N1|)) = (ι−1(o1), . . . , ι−1(om), N̂) realizes with positive

probability under RP 1, Claim 12 completes the proof of Lemma 3. �

Proof of Proposition 3. If RP q is ordinally inefficient for some q ∈ N, then either it is

wasteful or there must be a cycle of binary relation B(RP q,mq). Lemmas 2 and 3 then

imply that RP 1 is wasteful or there exists a cycle of B(RP 1,m1), and that RP q′ is wasteful

or there exists a cycle of B(RP q′ ,mq′) for each q′ ∈ N. Hence, for each q′ ∈ N, RP q′ is

ordinally inefficient. �

D. Equivalence of Asymmetric RP and PS in Continuum Economies

For π ∈ Π and c ∈ C, let m∞π,c be the measure of agents in class c of preference type π

in the continuum economy.
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We define asymmetric PS recursively as follows. Let O∗(0) = Õ, t∗(0) = 0, and x∗a(0) =

0 for every a ∈ Õ. Given O∗(0), t∗(0), {x∗a(0)}a∈Õ, . . . , O∗(v − 1), t∗(v − 1), {x∗a(v−1)}a∈Õ,

we let t∗ø := 1 and for each a ∈ O, define

t∗a(v) = sup

t ∈ [0, 1]

∣∣∣∣∣∣x∗a(v − 1) +
∑
c∈C

∑
π:a∈Chπ(O∗(v−1))

∫ t

t∗(v−1)

m∞π,cgc(s)ds < 1

 ,(D1)

t∗(v) = min
a∈O∗(v−1)

t∗a(v),(D2)

O∗(v) = O∗(v − 1) \ {a ∈ O∗(v − 1)|t∗a(v) = t∗(v)},(D3)

x∗a(v) = x∗a(v − 1) +
∑
c∈C

∑
π:a∈Chπ(O∗(v−1))

∫ t∗(v)

t∗(v−1)

m∞π,cgc(t)dt,(D4)

with the terminal step defined as v̄∗ := min{v′|t∗(v′) = 1}.
Consider the associated expiration dates: For each a ∈ Õ, T ∗a := {t∗(v)|t∗(v) =

t∗a(v), for some v} if the set is nonempty, or else T ∗a := 1. Let τ ∗a (π) := min{T ∗a ,max{T ∗b |π(b) <

π(a), b ∈ O}} be the expiration date of last object that a type π-agent prefers to a (if it

is smaller than T ∗a , and T ∗a otherwise). The asymmetric PS random assignment in

the continuum economy is defined, for each object a ∈ Õ, a type-π agent in class c,

by PS∗a(π, c) :=
∫ T ∗a
τ∗a (π)

gc(t)dt.

In the RP, an agent in class c draws a lottery number f ∈ [0, 1] according to the density

function, gc. Again by the weak law of large numbers, the measure of type-π agents in

class c who have drawn lottery numbers less than f is m∞π,c×
∫ f

0
gc(f

′)df ′ (with probability

one).

As in the baseline case, the random assignment of RP is described by the cutoff times

for the lottery numbers, for alternative objects. And they are described precisely by

the same set (D1)-(D4) of equations. In other words, the random priority random

assignment in the continuum economy is defined, for a type π-agent in class c

and a ∈ Õ, as RP ∗a (π) := T ∗a − τ ∗a (π), just as in PS∗. It thus immediately follows that

RP ∗ = PS∗, showing that the equivalence extends to the continuum economy with group-

specific priorities. The asymptotic equivalence can also be established as explained in the

main text, although we omit the proof.

E. Proof of Proposition 4

Let O = {a, b}, Ω = {ωa, ωb}, ρ∞(ωa) = ρ∞(ωb) = 1
2
, agents with πab prefer a to b

to ø and those with πba prefer b to a to ø, m∞
πab

(ωa) = 12
5
,m∞

πba
(ωa) = 8

5
,m∞

πab
(ωb) =

8
5
,m∞

πba
(ωb) = 12

5
. Assume for contradiction that mechanism φ∗ is ordinally efficient and
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strategy-proof. Since φ∗ is ordinally efficient, both types of agents prefer both a and

b to ø, and the measure of all objects (two) is smaller than the measure of all agents

(four), at each state the whole measure of both a and b is assigned to agents, that is,

m∞
πab

(ω)φ∗o(π
ab, ω) +m∞

πba
(ω)φ∗o(π

ba, ω) = 1 for every o ∈ O and ω ∈ Ω.

Ordinal efficiency of φ∗ implies that at most one type of agents receive their non-

favorite proper object with positive probability, since otherwise a profitable exchange of

probability shares exists either at the same state or across different states. Thus suppose,

without loss of generality, that type-πba agents receive their non-favorite object a with

probability zero. Then type-πab agents obtain the entire share of their favorite object a

at both states. Thus,

φ∗a(π
ab, ωa) =

1

m∞
πab

(ωa)
=

5

12
, φ∗a(π

ab, ωb) =
1

m∞
πab

(ωb)
=

5

8
,(E1)

and

φ∗a(π
ba, ωa) = φ∗a(π

ba, ωb) = 0.(E2)

Moreover, since there is mass one of object b,

φ∗b(π
ba, ωa) ≤

1

m∞
πba

(ωa)
=

5

8
, φ∗b(π

ba, ωb) ≤
1

m∞
πba

(ωb)
=

5

12
.(E3)

If a type πba-agent reports true preferences πba, then by (E2) and (E3),

Φ∗a(π
ba) + Φ∗b(π

ba) = 0 + P̄ (ωa|πba)φ∗b(πba, ωa) + P̄ (ωb|πba)φ∗b(πba, ωb) ≤
1

2
,

where P̄ (ω|π) denotes the posterior belief of an agent that the state is ω given that her

preference type is π.

On the other hand, if she lies and reports πab, then by (E1) she expects to obtain object

a with probability

P̄ (ωa|πba)φ∗a(πab, ωa)+P̄ (ωb|πba)φ∗a(πab, ωb) =
4

10
· 5

12
+

6

10
·5
8

=
13

24
>

1

2
≥ Φ∗a(π

ba)+Φ∗b(π
ba),

violating strategy-proofness of φ∗.
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