the conundrum of interaction an epidemiologic perspective

Charles DiMaggio

Departments of Anesthesiology and Epidemiology College of Physicians and Surgeons Columbia University New York, NY 10032

cjd11@columbia.edu

Boston-area SAS users group October 2013

Review Classical Statistical Interaction

2 Interaction: An Epidemiological Perspective

- The Conundrum of Interaction
- Components and Causes
- Biologic Interaction
- Some Conclusions

But first...

"THE BAD ARTISTS IMITATE, THE GREAT ARTISTS STEAL."

Credit where credit is due...

• SAS Institute

- Statistics and Regression
- https:

//support.sas.com/edu/schedules.html?ctry=us&id=1321

- Ezra Susser, Sharon Schwartz, Alfredo Morabia
 - Psychiatric Epidemiology: Searching for the Causes of Mental Disorders
 - http://www.amazon.com/
 Psychiatric-Epidemiology-Searching-Disorders-Psychiatry/
 dp/0195101812
- Melanie Wall
 - Columbia University Departments of Psychiatry and Biostatistics
 - Are you looking for the right interactions?
- Kenneth Rothman
 - Epidemiology: An Introduction
 - http://www.amazon.com/ Epidemiology-Introduction-Kenneth-J-Rothman/dp/ 0199754551

Outline

Review Classical Statistical Interaction

Interaction: An Epidemiological Perspective

- The Conundrum of Interaction
- Components and Causes
- Biologic Interaction
- Some Conclusions

drug dosage, disease and blood pressure

- 4 anti-hypertensive drug dosages in the setting of 3 diseases.
- outcome variable is systolic blood pressure.
- does combination of drug dosage and disease interacts to affect blood pressure in unexpected way?

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$

where

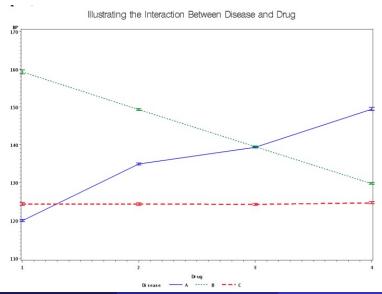
- y_{ijk} is the observed blood pressure for each subject
- μ is the overall population mean blood pressure
- α_i is the effect of disease i
- β_J is the effect of drug dosage j
- $(\alpha\beta)_{ij}$ is the *interaction* between disease *i* and drug dose *j*, and
- ϵ_{ijk} is the residual or error term for each subject

examine assumptions

observations for each predictor combination

- independent
- identically, normally distributed
- approximately equal variances (homoscedasticity)
- simple PROC MEANS of the 12 combinations of 4 drug doses and 3 diseases to begin

```
proc means data=bp_drug mean var std;
    class disease drug;
    var BP;
    title 'Selected Descriptive Statistics';
run;
```


SAS output: ? interaction

		影 塑 刻 * ① 4	*				
s (0) Results	Dutput - (Untitled)	ated Descriptio		tistics for drug-o	licence combinati		6
0 Univariate: The SAS System 0 Gplot: Blustrating the Interaction Betw		ores sever pro-			08:23 Sum	day, February 22, 2	
0 GLM: Analyze the Effects of Drug and 0 Means: Selected Descriptive Statistics			The	MEANS Procedure			
Means: Selected Descriptive statistics			Analys	sis Variable : BP			
	Disease	Drug	N	Mean	Variance	Std Dev	
	A	1	10	119.9000000	0.7666667	0.8755950	
		2	10	134.9000000	0.7666667	0.8755950	
		3	10	139.3000000	0.4555556	0.6749486	
		ч	10	149.4000000	1.6000000	1.2649111	
	в	1	10	159.3000000	2.9000000	1.7029386	
		2	10	149.3000000	0.6777778	0.8232726	
		3	10	139.5000000	0.2777778	0.5270463	
		ч	10	129.7000000	0.4555556	0.6749486	
	c	1	10	124.3000000	1.5666667	1.2516656	
		2	10	124.3000000	5555551.1	1.0593499	
		3	10	124.2000000	0.8444444	0.9189366	
		ч	10	124.6000000	0.7111111	0.8432740	
	100						
	4						
	E Log - (Untitled)	tax.sas " GRAPH	1 WORK.GSE	G Dutput - (Untitled)			

means plot

• BP by dosage by disease

SAS Output: interaction

C. DiMaggio (Columbia University)

examine the interaction term with GLM

```
proc glm data=bp_drug;
    class disease drug;
    model BP=disease drug disease*drug;/*note intx term*/
    title 'Analyze the Effects of Drug and Disease';
    title2 'Including Interaction';
run;
```

quit;

Review Classical Statistical Interaction

SAS output: "good" model, interaction

-		9 29 x 0 4					
enits	E Output - (Untitled)		the Effects of Dr			6	5
Univariate: The SAS System	IP	Analyze	Including Intera	ction 08:2	3 Sunday, Fe	bruary 22, 20	
Gplot: Illustrating the Interaction Betw GLM: Analyze the Effects of Drug and			The GLM Proced	ure			
	Dependent Variable: BP						
	Dependent variable: pr						
	Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
	Model	11	17508.29167	1591.66288	1572.73	<.0001	
					1512.15	1.0001	
	Error	108	109.30000	1.01204			
	Corrected Total	119	17617.59167				
		R-Square	Coeff Var Ro	ot MSE BP	Mean		
		0.993796	0.745784 1.	006001 134.	8917		
		0.333136	0.115101 1.	134.	0311		
	Source	DF	Type I SS	Mean Square	F Value	Pr) F	
	Disease	2	8138.216667	4069.108333	4020.71	<.0001	
	Drug Disease#Drug	3	65.891667 9304,183333	21.963889	21.70	<.0001	
	Disease-Drug	•	3304.103333	1990.091222	1995.20	1.0001	
	Source	DF	Type III SS	Mean Square	F Value	Pr > F	
	Disease	2	8138.216667	4069.108333	4020.71	<.0001	
	Drug Disease#Drug	3	65.891667 9304,183333	21.963889	21.70	<.0001	
	Disease-brig		5501.105555	1990.091222	1552.25		
euts 🔒 Epicer	Log - (Untitled)	. Listerier	WORK.GSEG Output - (Un	Col. 0			

C. DiMaggio (Columbia University)

2013 12 / 34

LSMEANS

SAS output: lots of it

-		正職的の一部	웹 😫 🗶 🛈 🛷					
	C Output - (Untitled)							
Results			(12) N			28		
Gplot: Illustrating the Interaction Bet			1 A 2 A	119.900		2		
GLM: Multiple Comparisons Tests for			A 3	139.300		3		
-				149.400		4		
			A 4 B 1 B 2	159.300		5		
			B 2 B 3	149.300		6		
			B 3 B 4 C 1 C 2 C 3	129.700		8		
			c i	124.300		9		
			C 2	124.300		0		
			C 3	124.200		1		
			C 4	124.600	000	2		
				Means for effe or H0: LSMean(9		
			Dep	endent Variabl	e: BP			
	123	1	2	3	ч	5	6	
	1		<.0001	<.0001	<.0001	<.0001	<.0001	
	2	<.0001		<.0001	<.0001	<.0001	<.0001	
	3 4	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	
	5	<.0001	<.0001	<.0001	<.0001	1.0001	<.0001	
	6	<.0001	<.0001	<.0001	1,0000	<.0001		
	7	<.0001	<.0001	1.0000	<.0001	<.0001	<.0001	
	8	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	
	10	<.0001	<.0001	C.0001	<.0001	<.0001	<.0001 <.0001	
	11	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	
	12	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	
				Means for effe		9		
				or H0: LSMean(endent Variabl				
	1/1	7	8 Dep	endent variabi	e: BP 10	11	12	
		<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	
	2	<.0001	<.0001	C.0001	<.0001	<.0001	<.0001	
	3	1.0000	<.0001	<.0001	<.0001	<.0001	<.0001	
	4	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	
	4.							,
	Log - (Untitled)	Ch 8 Syntax.sas	List ceases work	.65EG Dutput - (Unit	inter ()			
Results Biplorer	El roll - (ruesera)	M Chie Syntax.sas	AL CROWNEL WORK	OSCO IED Onther - (Own	neeu			

C. DiMaggio (Columbia University)

Outline

Review Classical Statistical Interaction

2 Interaction: An Epidemiological Perspective

• The Conundrum of Interaction

- Components and Causes
- Biologic Interaction
- Some Conclusions

heterogeneity of effect

- measure of disease risk (either absolute or relative) behaves differently in the presence or absence of another variable
- but...depends on how we measure an exposure-disease association (!)
- can measure disease risk on either an absolute scale like risk differences, or on a relative scale, like risk ratios
- Interaction may be present on the additive measurement scale scale, but absent on the multiplicative scale (!)

two kinds of interaction

- Additive Interaction
 - $RD_{1,2} \neq RD_1 + RD_2$
 - absolute measure differs from sum of individual absolute risk measures
- Multiplicative interaction
 - $RR_{1,2} \neq RR_1 \cdot RR_2$
 - *relative* measure of joint risk differs from the *product* of the individual ratio measures

example: stress + genetics = depression interaction

		No Stress	Stress	
disease rates:	No Genetics	10	17	
	Genetics	10	33	
additive interaction				

- additive interaction
 - stress alone 17 10 = 7
 - genetics alone 10 10 = 0
 - stress and genetics $7+0=7\ vs\ 33-10=23$
- multiplicative interaction
 - stress alone 17/10 = 1.7
 - genetics alone 10/10 = 1
 - stress and genetics $1 \times 1.7 = 1.7$ vs 33/10 = 3.3

example: life events + intimacy ?= depression interaction

disease rates: No Intimacy Problems Intimacy Problems No Life Event Life Event

1	3
10	32

- additive interaction
 - intimacy alone 3 1 = 2
 - events alone 10 1 = 9
 - intimacy and events 2+9=11 vs 32-1=31
- no multiplicative interaction
 - intimacy alone 3/1 = 3
 - events alone 10/1 = 10
 - intimacy and events 3x10 = 30 vs 32/1 = 32

the conundrum

the *absence* of interaction on one scale, rather than implying the absence of interaction on the other scale, is almost invariably accompanied by the *presence* of interaction on the other scale.

Outline

Review Classical Statistical Interaction

2 Interaction: An Epidemiological Perspective

- The Conundrum of Interaction
- Components and Causes
- Biologic Interaction
- Some Conclusions

causes and risk factors

- cause something that makes a difference (subsequent event would not have occurred)
- risk factors multiple antecedent components necessary for a cause
- *INUS I*nsufficient but *N*ecessary components of *U*necessary but *S*ufficient causes
- causal relationships are inherently context dependent
 - strength of any risk factor is relative to and dependent on the presence or absence of its causal partners
 - neural tube defects, genetics and folate

5 potential causal relationships

- Independent Risk Factor Causes disease through a causal pathway different than that of the exposure of interest (a different causal mechanism)
- 2 Antecedent Precedes the exposure
- Onfounder An alternate risk factor for the disease, but associated with the exposure of interest
- Mediator (Also) A risk factor for the disease but (unlike a confounder) does not provide an alternate explanation for disease.
- Causal Partners Other component members of a causal mechanism that combine with exposure and can result in synergy or *interaction*

Outline

Review Classical Statistical Interaction

2 Interaction: An Epidemiological Perspective

- The Conundrum of Interaction
- Components and Causes
- Biologic Interaction
- Some Conclusions

"parallelism" Darroch (1997), Rothman and Greenland (1998)

- 2 risk factors (plus unknown), 4 paths to disease
 - R_{ABU} the risk of disease from the interaction of A and B
 - R_{AU} the risk of disease from A
 - R_{BU} the risk of disease from B
 - *R_U* the "background" experience where disease occurs in the absence of either A or B

Biological Interaction is Additive

- does observed *R*_{ABU} exceeds what we might expect if the two risks did not interact?
- subtract out R_{AU} and R_{BU}
 - add back R_U which is subtracted out twice
- if two risk factors biologically independent, then $R_{ABU} = R_{AU} + R_{BU} R_U$

• synergy - parallelism = $R_{ABU} - R_{AU} - R_{BU} + R_U$

- Risk Differences: $(RD_{AB} RD_U) = (RD_A RD_U) + (RD_B RD_U)$
- Relative Risks: $(RR_{AB} 1) = (RR_A 1) + (RR_B 1)$
- Any excess risk beyond these equalities is due to interaction

example: smoking, asbestos and cancer risk differences

	No Asbestos	Asbestos
No Smoking	1	5
Smoking	10	50

- set up biological independence equality: 50 1? = (10 1) + (5 1)
- 49 ≠ 13
- conclude that the smoking and asbestos interact to cause more cancer than would be expected if either were present alone
- 49 13 or 36 of every 50 cases (72%) of cancer when both smoking and asbestos are present, are due to the interaction between them.

example: smoking, asbestos and cancer relative risks

	No Asbestos	Asbestos	
No Smoking	1	3.1	
Smoking	6.9	13.6	

- stest the equality 13.6 1? = (6.9 1) + (3.1 1)
- 12.6 ≠ 8
- conclude (again) that there is interaction
- (12.6 8)/13.6 = 4.6/8 = 34% of the cases when both risk factors are present, is due to interaction
- on multiplicative scale, 3.1x6.9 = 21.4 and since 13.6 < 21.4 presence both risk factors results *less* risk than expected ...

what about SAS?

Brown Harris (1978) Vulnerability and the effect of stress on depression

```
proc logistic data = brownharris descending;
model depression (event= LAST) = stress vulnerability
stress*vulnerability;
oddsratio stress / at(vulnerability = 0 1);
run;
```

Parameter	Estimate	 Pr > ChiSq
Intercept	2.1722	 <.0001
stress	2.3869	 0.0026
vulnerability	1.3990	 0.0011
stress*vulnerability	0.2411	 0.8262

Label	Estimate	95% Confidence Limits
stress at vulnerability=0	10.880	2.299 51.486
stress at vulnerability=1	13.846	3.122 61.408

exp(0.2411) = 1.2713.9/10.9 = 1.27no (multiplicative) interaction

C. DiMaggio (Columbia University)

coding interaction contrast in proc logistic from Melanie Wall

```
PROC NLMIXED DATA=brownharris:
odds = exp(b0 +b1*stress + b2*vulnerability
   + b3*stress*vulnerability); pi = odds/(1+odds);
MODEL depressn~BINARY(pi);
estimate 'p00' exp(b0)/(1+exp(b0));
estimate 'p01' exp(b0+b1)/(1+exp(b0+b1));
estimate 'p10' exp(b0+b2)/(1+exp(b0+b2));
estimate 'p11' exp(b0+b1+b2+b3)/(1+exp(b0+b1+b2+b3));
estimate'p11-p10'exp(b0+b1+b2+b3)/(1+exp(b0+b1+b2+b3))
   - \exp(b0+b2)/(1+\exp(b0+b2));
estimate 'p01-p00' exp(b0+b1)/(1+exp(b0+b1))
    - \exp(b0)/(1+\exp(b0));
estimate 'IC= interaction contrast = p11-p10 - p01 + p00'
\exp(b0+b1+b2+b3)/(1+\exp(b0+b1+b2+b3))
    -\exp(b0+b2)/(1+\exp(b0+b2)) - \exp(b0+b1)/(1+\exp(b0+b1))
    + \exp(b0)/(1+\exp(b0));
```

interaction contrast in brown harris data

Label	Estimate	Error
p00	0.1023	0.03230
p01	0.01036	0.007289
p10	0.3158	0.05332
p11	0.03226	0.02244
p11-p10	-0.2835	0.05785
p01-p00	-0.09191	0.03311
IC= interaction contrast	-0.1916	0.06666

conclude additive interaction...

Outline

Review Classical Statistical Interaction

2 Interaction: An Epidemiological Perspective

- The Conundrum of Interaction
- Components and Causes
- Biologic Interaction
- Some Conclusions

conceptual implications

- *biological interaction* occurs at the individual level when the effect of one variable depends on the presence of another
 - *synergy or interaction* the underlying process for how *any* cause results in disease at the individual level
- *interaction and effect modification* are are population-level phenomena, ambiguity in how defined...
 - reserve terms *statistical interaction* or *effect modification* for how we try to *capture* this idea of synergy, which we often do through statistical measures of interaction
 - but caution: if looking for interaction, you may well find artifactual and perhaps even misleading results
- *epidemiological* approach to interaction is a priori , conceptual and informed by subject matter expertise
 - think about it during data collection and consider scientifically plausible interactions

practical implications

- graphical assessment remains an informative initial approach
- when modeling, address biological interaction as an additive phenomenon
- categorize two potential interaction variables into factorial design
 - 11 represents presence of both, 10 and 01 presence of one or the other, and 00 the absence of both
- statistical significance of interaction terms remains useful analytically (though perhaps not biologically)
 - if interaction present, tests for individual factor effects might be misleading due to masking of effects by the interaction