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We present the sampling distributions for the coefficient of skewness, kurtosis, and a joint test of normal-
ity for time series observations. We show that when the data are serially correlated, consistent estimates
of three-dimensional long-run covariance matrices are needed for testing symmetry or kurtosis. These
tests can be used to make inference about any conjectured coefficients of skewness and kurtosis. In the
special case of normality, a joint test for the skewness coefficient of 0 and a kurtosis coefficient of 3 can
be obtained on construction of a four-dimensional long-run covariance matrix. The tests are developed for
demeaned data, but the statistics have the same limiting distributions when applied to regression residuals.
Monte Carlo simulations show that the test statistics for symmetry and normality have good finite-sample
size and power. However, size distortions render testing for kurtosis almost meaningless except for distri-
butions with thin tails, such as the normal distribution. Combining skewness and kurtosis is still a useful
test of normality provided that the limiting variance accounts for the serial correlation in the data. The
tests are applied to 21 macroeconomic time series.

KEY WORDS: Jarque–Bera test; Kurtosis; Normality; Symmetry.

1. INTRODUCTION

Consider a series {Xt}T
t=1 with mean µ and standard devia-

tion σ . Let µr = E[(x − µ)r] be the rth central moment of Xt
with µ2 = σ 2. The coefficients of skewness and kurtosis are
defined as

τ = µ3

σ 3 = E[(x − µ)3]
E[(x − µ)2]3/2 (1)

and

κ = µ4

σ 4 = E[(x − µ)4]
E[(x − µ)2]2 . (2)

If Xt is symmetrically distributed, then µ3 and thus τ will
be 0. Sample estimates of τ and κ can be obtained on re-
placing the population moments µr by the sample moments
µ̂r = T−1 ∑T

t=1(Xt − X̄)r . If Xt is iid and normally distributed,

then
√

T τ̂
d−→ N(0,6) and

√
T(κ̂ − 3)

d−→ N(0,24) (see, e.g.,
Kendall and Stuart 1969). This article presents the limiting dis-
tributions for τ̂ and κ̂ when the data are weakly dependent.
The tests can be applied to the observed data whose popula-
tion mean and variance are unknown, as well as least squares
regression residuals.

Whether time series data exhibit skewed behavior has been
an issue of macroeconomic interest. Some authors (e.g., Neftci
1984; Hamilton 1989) have used parametric models to see
whether economic variables behave similarly during expan-
sions and recessions. Others use simple statistics to test skew-
ness. In a well-known article, Delong and Summers (1985)
studied whether business cycles are symmetrical by applying
the skewness coefficient to GDP, industrial production, and the
unemployment rate. However, because the sampling distribu-
tion of the skewness coefficient for serially correlated data is
not known, these authors obtained critical values by simulating
an AR(3) model with normal errors. These critical values are
correct only if the AR(3) model is the correct data-generating
process and the errors are indeed normal. The results developed

in this article allow us to test for symmetry without making such
assumptions.

The coefficient of kurtosis is informative about the tail behav-
ior of a series, an issue that has drawn substantial interest in the
finance literature. However, we argue that measuring the tails
using the kurtosis statistic is not a sound approach. As we show
later, the true value of κ will likely be substantially underesti-
mated in practice, because a very large number of observations
is required to get a reasonable estimate. This bias translates into
size distortion for testing kurtosis. Exceptions are distributions
with thin tails, such as the normal distribution. But concerns
for heavy tails are quite rare in such cases. As such, testing for
kurtosis is not a very useful exercise per se.

Normality is often a maintained assumption in estimation and
finite-sample inference. The Gaussian distribution has τ = 0
and κ = 3. When κ > 3, the distribution of Xt is said to have fat
tails. A joint test of τ = 0 and κ −3 = 0 is often used as a test of
normality. Jarque and Bera (1980) and Bera and Jarque (1981)
showed that T(τ̂ 2/6 + (κ̂ − 3)2/24)

d−→ χ2
2 . We extend their

results developed for iid data to weakly dependent data. Al-
though the extension is natural, such a result apparently has not
yet been documented. Lomnicki (1961) considered testing for
normality in linear stochastic processes using the skewness and
kurtosis coefficients, but did not consider a joint test of these
two or other moments. Our tests do not require that the process
be linear. We also consider a regression model with dependent
errors and examine finite-sample properties of the tests.

The literature on normality is large, and a commonly used
nonparametric test is the Kolmogorov–Smirnov (KS) statistic.
In the present setting, the KS test will depend on nuisance para-
meters relating to serial correlation in the data, and its limit will
no longer be distribution-free. One can use the block bootstrap
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method to obtain the critical values, or use martingale trans-
formation methods (as in Bai 2003) to obtain distribution-free
tests. Empirical implementation of the KS test in a time series
setting thus can be rather computationally intensive. The tests
that we consider in this article are, in contrast, very simple to
construct.

Several authors have used the generalized methods of mo-
ments (GMM) to test the null hypothesis that the data are
Gaussian. Richardson and Smith (1993) considered testing mul-
tivariate normality, focusing on the case when the data are
cross-sectionally correlated (and also discussed how serial cor-
relation can be accommodated). Their test is based on the overi-
dentifying restrictions from matching the first four moments of
the data with those implied by the normal distribution. More
recently, Bontemps and Meddahi (2002) considered testing the
validity of the so-called “Stein equations,” which are moment
conditions that should hold under normality. Both of these nor-
mality tests are GMM-based tests of overidentifying restric-
tions. As is well known, the optimal weighting matrix used in
GMM is the inverse of the long-run variance of the moments
under consideration, which can be consistently estimated using
kernel methods. We directly test the skewness and kurtosis co-
efficients, properly scaled by their corresponding long-run vari-
ances, in view of the fact that the data are serially correlated.
Because we also estimate long-run variances, it might appear as
though we are also implementing GMM. This is not the case,
however. Testing overidentifying restrictions by GMM is not
equivalent to testing skewness and kurtosis, at least for nonnor-
mal distributions. As we explain later, even for normal distrib-
ution, the theoretical weighing matrix must be used to interpret
testing overidentifying restrictions as testing skewness and kur-
tosis.

We do not assume normal distribution in deriving the skew-
ness and kurtosis tests. The results can be used to test any given
value of skewness and kurtosis coefficients. Testing normality
is no more than a joint test that can be conveniently obtained
within our framework. The tests used to determine whether the
data are Gaussian can be easily amended to determine whether
the data are consistent with, for example, the lognormal (which
has skewness and kurtosis coefficients of 6.18 and 113.9). This
is in contrast with the tests just described, which are designed
for testing normality. The motivation of our tests is closer to that
of Dufour, Khalaf, and Beaulieu (2002), although we allow the
data (or residuals) to be serially correlated. Although our focus
is on asymptotic results, these authors implemented exact tests
via the bootstrap. Simplicity and generality are two noteworthy
aspects of our tests.

2. THE TEST STATISTICS

For any integer r ≥ 1, we first note that

µ̂r

σ̂ r − µr

σ r = (µ̂r − µr)

σ̂ r − µr

σ r

[
(σ̂ 2)r/2 − (σ 2)r/2

σ̂ r

]
,

=
[

T−1 ∑T
t=1(Xt − X̄)r − µr

σ̂ r

]

− µr

σ r

[
((σ̂ 2)r/2) − ((σ 2)r/2)

σ̂ r

]
.

Lemma A.1 in Appendix A provides large-sample approxima-
tions to the central moments. These are used to obtain the sam-
pling distributions of τ̂ and κ̂ .

2.1 Testing for Skewness

We first derive the limiting distribution of the sample skew-
ness coefficient under arbitrary τ (not necessarily 0), and then
specialize the general result to τ = 0. Throughout, we assume
that the central limit theorem holds for the 4 × 1 vector series
W′

t = [Xt −µ, (Xt −µ)2 −σ 2, (Xt −µ)3 −µ3, (Xt −µ)4 −µ4]
(t = 1, . . . ,T). This requires finite (8 + δ)th (δ > 0) moment
and some mixing conditions. When testing symmetry, finite
(6 + δ)th moment and some mixing conditions are sufficient.

Theorem 1. Suppose that Xt is stationary up to sixth order.
Then

√
T(τ̂ − τ ) = α

σ̂ 3

1√
T

T∑

t=1

Zt + op(1),

where

α = [ 1 −3σ 2 − 3στ
2 ] ,

Zt =




(Xt − µ)3 − µ3

(Xt − µ)

(Xt − µ)2 − σ 2



 ,

and 1√
T

∑T
t=1 Zt

d−→ N(0,"), where " = limT→∞ TE(Z̄Z̄′),

with Z̄ being the sample mean of Zt . Moreover,
√

T(τ̂ − τ )
d−→ N

(
0,

α"α′

σ 6

)
.

Serial dependence in Xt is explicitly taken into account
through ", the spectral density matrix at frequency 0 of Zt . The
foregoing result thus permits testing the skewness coefficient at
any arbitrary value of τ , even when the data are serially corre-
lated. Notice that Zt is three-dimensional, not one-dimensional.
This is because the population mean and variance are unknown
and must be estimated, as is typically the case in practice.

In the special case when τ = 0 (or, equivalently, µ3 = 0), the
last element of α is 0. Thus one need only consider the sampling
properties of

1√
T

T∑

t=1

Zt = 1√
T

T∑

t=1

[
(Xt − µ)3

(Xt − µ)

]
. (3)

This leads to the following result.

Corollary 1. Under the null hypothesis that τ = 0,

√
T τ̂

d−→ N
(

0,
α2"22α

′
2

σ 6

)
, (4)

where α2 = [1,−3σ 2] and "22 is the first 2 × 2 block matrix
of ".

Similarly, one can easily show that under τ = µ3 = 0,
√

Tµ̂3
d−→ N(0,α2"22α

′
2).

The only difference between the limiting distributions of µ̂3
and τ̂ is the normalizing constant σ 6. If the asymptotic stan-
dard deviations are estimated by s(µ̂3) = (α̂2"̂22α̂

′
2)

1/2 and
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s(τ̂ ) = (α̂2"̂22α̂
′
2/σ̂

6)1/2, then we have the numerical identity,
µ̂3/s(µ̂3) = τ̂ /s(τ̂ ). We summarize the foregoing results in the
following theorem.

Theorem 2. Suppose that Xt is stationary up to sixth or-
der and let α̂2 = [1,−3σ̂ 2]. Let σ̂ 2 and "̂22 be consistent
estimates of σ 2 and "22. Let s(µ̂3) = (α̂2"̂22α̂

′
2)

1/2 and
s(τ̂ ) = (α̂2"̂22α̂

′
2/σ̂

6)1/2. Then, under the null hypothesis of
τ = µ3 = 0, we have

π̂3 =
√

Tµ̂3

s(µ̂3)
=

√
T τ̂

s(τ̂ )

d−→ N(0,1).

That is, µ̂3 and τ̂ are the same. To construct π̂3, one need only a
consistent estimate of this long-run variance, which can be ob-
tained nonparametrically by kernel estimation. The test is valid
even if the null distribution is not normally distributed, albeit
symmetric. Simple calculations show that if Xt is iid normal,
then the variance of τ̂ is 6.

Depending on the distribution under investigation, a large
number of observations might be required to detect symmetry.
The possibility of low power can be remedied in two ways.
The first is to exploit the fact that most economic time series
are bounded below by 0. Hence one can test symmetry against
positive skewness. Second, the odd moments of symmetric dis-
tributions are 0, if they exist. Therefore, in theory one can con-
struct a joint test of several odd moments to increase power. To
illustrate, consider a joint test of two odd moments, r1 and r2.
Let

YT =
( 1√

T

∑T
t=1(Xt − X̄)r1

1√
T

∑T
t=1(Xt − X̄)r2

)
.

By Lemma A.1 in Appendix A, we can show that

YT = α
1√
T

T∑

t=1

Zt + op(1)

where

α =
[

1 0 −r1µr1−1
0 1 −r2µr2−1

]
and Zt =

(
(Xt − µ)r1

(Xt − µ)r2

(Xt − µ)

)

.

Assuming that a central limit theorem holds for Zt such that
1√
T

∑T
t=1 Zt

d−→ N(0,"), where " = limT→∞ TE(Z̄Z̄′), we

have YT
d−→ N(0,α"α′) under the null hypothesis of sym-

metry. Let α̂"̂α̂′ be a consistent estimate for α"α′ (which is
easy to obtain); we then have

µ̂r1,r2 = Y′
T
(
α̂"̂α̂′)−1YT

d−→ χ2
2 .

In principle, this is a more powerful test than the test based
on the third moment alone. The cost is that this test requires
the finiteness of (2r2)th moment (r1 < r2). Furthermore, even
if the population moments exist, precise estimates may be
difficult to obtain unless we have an enormous number of
observations. In the simulations, we consider only the test
for r1 = 3 and r2 = 5, that is, µ̂35. Interestingly, µ̂35 per-
forms well even for distributions that do not have finite fifth
moment.

2.2 Testing for Kurtosis

Again we derive the limiting distribution of the estimated
kurtosis under arbitrary true κ and then specialize it to κ = 3
under normality. By Lemma A.1 in Appendix A, we have the
following result.

Theorem 3. Suppose that Xt is stationary up to eighth order.
Then

√
T(κ̂ − κ) = β

σ̂ 4

1√
T

T∑

t=1

Wt + op(1),

where

β = [ 1 −4µ3 −2σ 2κ ] ,
(5)

Wt =




(Xt − µ)4 − µ4

(Xt − µ)

(Xt − µ)2 − σ 2



 ,

and 1√
T

∑T
t=1 Wt

d−→ N(0,$) with $ = limT→∞ TE(W̄W̄′).

Let σ̂ 2 and $̂ be consistent estimates of σ 2 and $. Then

π̂4(κ) =
√

T(κ̂ − κ)

s(κ̂)

d−→ N(0,1),

where s(κ̂) = (β̂$̂β̂ ′/σ̂ 8)1/2.

To test kurtosis, estimation of a three-dimensional long-run
covariance matrix is necessary, as the population mean and
variance are both unknown and must be estimated. Note that
the first component of Wt depends on the fourth moment
of (Xt − µ)4, which itself is a highly skewed random variable
even if Xt is not skewed. The convergence to normality could
be extremely slow, and the sample estimate of κ̂ can deviate
substantially from its true value even with a large number of
observations. Thus for moderate sample sizes, the kurtosis test
cannot be expected to be accurate. This is confirmed by simu-
lations in the next section.

2.3 Connection With Generalized Method of Moments

We directly test the coefficients of skewness and kurtosis,
and it is of interest to compare this with an overidentifying
test on moments of the data. Consider testing symmetry by
testing µ3 = 0 using GMM. Let ḡT(θ) = 1

T
∑T

t=1 gt, where
θ = (µ,σ 2) and gt is Zt in Theorem 1 with µ3 = 0; that is,

gt(θ) =



(Xt − µ)3

(Xt − µ)

(Xt − µ)2 − σ 2



 .

With three moments and two parameters, there is one overi-
dentifying restriction. Let "̂ be a consistent estimator of " =
var(

√
T ḡT(θ0)), the long-run variance of gt. The GMM estima-

tor of θ is

θ̂GMM = arg min
θ

ḡT(θ)′"̂ḡT(θ).

Note that in general, θ̂GMM is not equal to θ̂ = (X̄, σ̂ 2), which
is what we use in our tests. Indeed, in the present case, estimat-
ing µ by GMM entails solving a nonlinear equation. Define

JT = TḡT(θ̂GMM)′"̂ḡT(θ̂GMM),
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where ḡT(θ̂GMM) is ḡT(θ) evaluated at θ = θ̂GMM. Then
JT converges in distribution to χ2

1 . But it follows from θ̂GMM (=
(X̄, σ̂ 2) that ḡT(θ̂GMM) (= ( 1

T

∑T
t=1(Xt − X̄ )3,0,0)′. Thus the

JT is not simply testing 1
T

∑T
t=1(Xt − X̄)3, the third sample

moment. GMM testing of overidentifying restrictions is thus
different from testing the skewness coefficient.

However, under normality assumption and with the theoret-
ical " as the weighting matrix, Richardson and Smith (1993)
showed that the GMM estimator of θ coincides with the sam-
ple mean and sample variance so that ḡT(θ̂GMM) = ( 1

T ×∑T
t=1(Xt − X̄)3,0,0)′. In this special case, the JT test is equiv-

alent to testing the skewness coefficient. This result is due
to the fact that the odd moments of the normal distribution
are 0, and thus the theoretical weighting matrix " has a block
structure under normality. Nevertheless, even for normal dis-
tributions, when a consistent estimator for " (not " itself ) is
used, the JT test will not be identical to testing the skewness
coefficient. Similarly, a GMM test of the overidentifying re-
striction on the fourth moment (e.g., choosing gt to be Wt in
Thm. 3 with µ4 = 3σ 4) is not equivalent to testing the kurtosis
coefficient.

Whereas the GMM test requires reestimation of the model
parameters (µ,σ 2) every time that a different null hypothesis
is tested (i.e., different null values of µ3 and µ4), our statistics
do not require reestimation of these parameters. Our statistics
directly test skewness and kurtosis coefficients. We simply con-
struct the statistics once, and compare them with the null values
of interest. Because our statistics are t-tests, we can also test
one-sided hypotheses. The GMM test is a two-sided test.

2.4 Testing for Normality

The skewness and kurtosis tests developed herein can be used
to test whether the data conform to any distribution of interest,
provided that the theoretical coefficients of skewness and kur-
tosis are known. A case of general interest is the Gaussian dis-
tribution. Under normality, τ = 0 and κ = 3. Let π̂3 be the test
defined earlier for testing τ = 0, and let π̂4 be the test statis-
tic for kurtosis evaluated at κ = 3; that is, π̂4 = π̂4(3). It can
be shown that π̂3 and π̂4 are asymptotically independent under
normality even for time series data (see the proof of Thm. 4 and
discussion in Lomnicki 1961). Thus a direct generalization of
the Jarque–Bera test to dependent data is

π̂34 = π̂2
3 + π̂2

4
d−→ χ2

2 .

An asymptotically equivalent test, based directly on the third
and fourth central moments, can be constructed as follows. Let

YT =
( 1√

T

∑T
t=1(Xt − X̄)3

1√
T

∑T
t=1[(Xt − X̄)4 − 3(σ̂ 2)2]

)
.

Under normality, it can be shown that

YT = γ
1√
T

T∑

t=1

Zt + op(1),

γ =
[

−3σ 2 0 1 0
0 −6σ 2 0 1

]
, and

(6)

Zt =





(Xt − µ)

(Xt − µ)2 − σ 2

(Xt − µ)3

(Xt − µ)4 − 3σ 4



 ,

with 1√
T

∑T
t=1 Zt

d−→ N(0,') and ' = limT→∞ TE(Z̄Z̄′).

Thus YT
d−→ N(0,γ'γ ′). Let γ̂ and '̂ be consistent estima-

tors of γ and '; then we have

µ̂34 = Y′
T(γ̂ '̂γ̂ ′)−1YT

d−→ χ2
2 .

Summarizing the foregoing results, we have the following.

Theorem 4. Suppose that Xt is stationary. Then, under the
null hypothesis of normality,

π̂34
d−→ χ2

2

and

µ̂34
d−→ χ2

2 .

It is notable from Theorem 4 that both two-dimensional tests
necessitate estimation of a four-dimensional long-run covari-
ance matrix. In contrast, the one-dimensional tests in Theorems
2 and 3 necessitate estimation of three-dimensional spectral
density matrices at the frequency 0. These formulas define the
vector series that should be used to construct a serial-correlation
consistent covariance matrix. For testing normality, the covari-
ance for the vector series Zt can be estimated by the covariance
of Ẑt = ((Xt − X̄), (Xt − X̄)2 − σ̂ 2, (Xt − X̄)3, (Xt − X̄)4 −3σ̂ 4)′.
Providing these formulas is one contribution of this article.

Under the theoretical weighting matrix, the GMM test of
Richardson and Smith (1993) can be written in our notation
as Y′

T'22YT , where '22 is the second diagonal block of the in-
verse of '. In actual implementation, the unknown '22 must be
replaced by a consistent estimator. When the weighting matrix
is not the theoretical one, then, as explained in Section 2.3, the
optimal GMM estimator for (µ,σ 2) is not the sample mean and
sample variance. The GMM test is thus not a function of YT
(or, equivalently, skewness and kurtosis coefficients). In con-
trast, our test µ̂34 is of the form Y′

T(γ̂ ′'̂γ̂ )−1YT , which is al-
ways a function of skewness and kurtosis. It is thus a direct
generalization of the Jarque–Bera test to dependent data. The
GMM test and µ̂34 are asymptotically equivalent under the null
of normality, but will have different power properties under the
alternative.

2.5 Testing Regression Residuals

We have thus far referred to our tests as unconditional tests,
in the sense that apart from the sample mean, no other infor-
mation is being removed before testing. In earlier work (Bai
and Ng 2001), we discussed how to test whether the regres-
sion residuals are symmetrically distributed. The test is based
on martingale transformations. It has very good finite-sample
properties, but its computation is more demanding. In view of
the simplicity of the unconditional tests for skewness, kurto-
sis, and normality just proposed, one might wonder whether the
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same tests can be applied to regression residuals, and, if so, to
what extent does estimation of the parameters of the regression
function affect the sampling distribution of the tests. Consider
the regression model

yt = α + x′
tβ + et,

where et is a sequence of mean-0, serially correlated distur-
bances. Lutkepohl (1993) considered autoregressive models
(xt is the lag of yt) with et being iid, and Kilian and Demiroglu
(2000) considered autoregressions with integrated variables. To
ensure consistency of least squares estimators for general seri-
ally correlated disturbances, we assume that et is independent
of xs for all t and s. We also assume that a central limit theo-
rem is valid for the vector (et, e2

t −σ 2
e , e3

t − Ee3
t , e4

t − Ee4
t ). The

objective is to test hypotheses on the skewness coefficient, the
kurtosis, and the normality of et. Because et is unobservable,
we use êt instead, where êt = yt − α̂ − x′

tβ̂ and α̂ and β̂ are the
least squares estimators of α and β .

Theorem 5. Assume that E‖xt‖4 ≤ M for all t, and 1
T ×∑T

t=1 xtx′
t

p−→ Q > 0. Let τ̂ , π̂3, π̂4(κ), π̂34, and µ̂34 be con-
structed as in previous sections with Xt replaced by êt (t =
1, . . . ,T). Assume that et is stationary up to the eighth order;
then Theorems 1–3 hold. In addition, under normality of et ,
Theorem 4 also holds.

Theorem 5 is a consequence of the following:

1√
T

T∑

t=1

ê j
t = 1√

T

T∑

t=1

(et − ē) j + op(1), j = 2,3,4. (7)

Result (7) implies the asymptotic equivalence of tests based
on êt and those on et . Note that the sum is divided by

√
T

rather than by T; thus (7) is much stronger than saying that
the jth moment of the residuals is asymptotically the same as
the jth moment of et. White and Macdonald (1980) proved (7)
when

√
T is replaced by T , and for iid disturbances.

The main implication of Theorem 5 is that inference on
disturbances can be performed using the estimated residuals.
Estimation of slope coefficients β does not affect the limiting
distributions of the skewness coefficient, kurtosis, and normal-
ity tests. Indeed, Theorems 1–4 may be considered special cases
of Theorem 5 in which the nonconstant regressors xt are absent.
Theorem 5 says that even if such regressors had been present,
the limiting distributions of these test statistics would not have
changed. Note, however, that when an intercept is not included
in the regression, êt in the foregoing equation should be re-
placed by êt − ê.

3. SIMULATIONS

To assess the size and power of the tests, we consider well-
known distributions, such as the normal, t, and chi-squared,
as well as distributions from the generalized lambda family.
This family encompasses a range of symmetric and asymmet-
ric distributions that can be easily generated because they are
defined in terms of the inverse of the cumulative distribution
F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, 0 < u < 1. The λ parame-

ters are taken from table 1 of Randles, Fligner, Policello, and
Wolfe (1980). Specifically, data are generated from seven sym-
metric and eight skewed distributions, listed in Appendix B.

To evaluate the size of the test for skewness, we draw et from
seven symmetric distributions. The power of the tests is as-
sessed by considering eight asymmetric distributions. Because
the kurtosis of all 15 distributions are known (and are given in
Table 2), the size and power of π̂4 as well as the normality tests
can be easily obtained.

The data used in the simulations are generated as Xt =
ρXt−1 + et . Many values of ρ were considered, and results are
presented for ρ = 0, .5, and .8. The long-run covariance ma-
trix is estimated by the kernel method with the truncation lag
selected using the automatic procedure of Andrews (1991). We
report results for the Bartlett kernel as discussed by Newey and
West (1987). We also considered the Parzen window, where the
weights are defined as w(x) = 1 − 6x2 + 6|x|3 if 0 ≤ |x| ≤ 1/2,
and w(x) = 2(1 − |x|)3 if 1/2 ≤ |x| ≤ 1. These additional re-
sults are available in the working version of this article, which
are available from the authors on request.

3.1 Skewness

We consider both one-tailed and two-tailed tests for symme-
try (denoted by π̂∗

3 and π̂∗∗
3 ). Results are reported at the 5%

level without loss of generality. The critical values are 1.64
(one-tailed) and 1.96 (two-tailed). We also consider µ̂35, a joint
test of the third and fifth central moments, and the 5% criti-
cal value is 5.99. Three sample sizes are considered: T = 100,
200, and 500. Table 1 indicates that π̂3 has accurate size even
for small T , but the µ̂35 statistic rejects less often than π3 un-
der the null. The size of the tests are, however, quite robust
to the degree of persistence in the data. It is useful to remark
that in theory, the µ35 test requires the data to have tenth mo-
ments. Even though the t5 distribution does not have sixth mo-
ment, the test still has good size. When a large number of
observations are available for testing symmetry, the µ35 test
can be a good complementary test to π̂3 because it is easy to
implement.

The two-sided test has low power, but imposing a priori
information on the direction of skewness leads to substantial
power gains. All of the tests considered have low power for
A4, A5, and A6 unless the sample size is large (say, more than
200 observations). The statistics developed by Randles et al.
(1980) for testing symmetry in iid data also have low power
for the same distributions, all of which have large kurtosis. In
general, µ̂35 has very good power even for T as small as 50.
However, whereas the size of the test is quite robust to serial
correlation in the data, the power function is quite sensitive to
persistence. Results for ρ = .8 reveal that the power of the tests
drops significantly when the degree of persistence increases.
The reason for this is that for AR(1) models, yt = ∑t

j=1 αjut−j

(assuming that y0 = 0). In the limit when α = 1, yt (scaled
by

√
T ) is asymptotically normal. The data thus become more

symmetric as persistence increases. This is confirmed on com-
parison with results for iid data, given in Table 1.
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Table 1. Size and Power of the Test Symmetry for τ = 0 (Newey–West kernel, no prewhitening)

T = 100 T = 200 T = 500
τ κ π̂∗∗

3 π̂∗
3 µ̂35 π̂∗∗

3 π̂∗
3 µ̂35 π̂∗∗

3 π̂∗
3 µ̂35

ρ = 0
S1 0 3.0 .04 .05 .02 .05 .06 .03 .06 .06 .04
S2 0 9.0 .03 .05 .02 .04 .05 .03 .03 .04 .02
S3 0 2.5 .04 .05 .03 .05 .06 .04 .05 .06 .04
S4 0 3.0 .03 .04 .01 .04 .05 .03 .05 .05 .04
S5 0 6.0 .03 .04 .02 .04 .05 .02 .04 .06 .03
S6 0 11.6 .02 .04 .02 .04 .05 .02 .03 .04 .03
S7 0 126.0 .03 .04 .01 .02 .04 .02 .03 .04 .02
A1 6.18 113.9 .43 .63 .62 .52 .69 .81 .68 .81 .95
A2 2.0 9.0 .74 .88 .94 .90 .96 1.00 .98 .99 1.00
A3 2.0 9.0 .75 .89 .96 .91 .97 1.00 .98 .99 1.00
A4 .5 2.2 .85 .93 .64 1.00 1.00 .99 1.00 1.00 1.00
A5 1.5 7.5 .67 .85 .79 .85 .94 .99 .98 1.00 1.00
A6 2.0 21.2 .23 .43 .22 .43 .64 .55 .72 .85 .93
A7 3.16 23.8 .56 .76 .79 .73 .87 .96 .87 .94 1.00
A8 3.8 40.7 .53 .71 .76 .67 .82 .95 .83 .92 .99

ρ = .5
S1 0 3.0 .03 .05 .03 .04 .05 .02 .05 .05 .04
S2 0 9.0 .03 .05 .02 .04 .05 .03 .04 .04 .03
S3 0 2.5 .02 .05 .01 .04 .06 .02 .04 .05 .03
S4 0 3.0 .03 .04 .02 .04 .05 .03 .05 .06 .04
S5 0 6.0 .03 .04 .01 .04 .06 .02 .05 .05 .03
S6 0 11.6 .03 .05 .02 .04 .05 .03 .04 .05 .03
S7 0 126.0 .04 .05 .01 .02 .04 .02 .03 .04 .03
A1 6.18 113.9 .43 .64 .62 .52 .71 .81 .68 .82 .94
A2 2.0 9.0 .62 .84 .77 .87 .94 .99 .97 1.00 1.00
A3 2.0 9.0 .65 .86 .78 .87 .95 1.00 .97 .99 1.00
A4 .5 2.2 .30 .54 .16 .70 .83 .48 .99 1.00 .97
A5 1.5 7.5 .44 .70 .32 .76 .90 .85 .96 .99 1.00
A6 2.0 21.2 .19 .38 .15 .37 .56 .38 .69 .82 .86
A7 3.16 23.8 .48 .72 .54 .67 .84 .90 .86 .94 .99
A8 3.8 40.7 .46 .67 .52 .64 .81 .92 .82 .92 .98

ρ = .8
S1 0 3.0 .02 .05 .01 .04 .06 .01 .03 .04 .02
S2 0 9.0 .04 .06 .02 .04 .06 .02 .04 .05 .03
S3 0 2.5 .02 .04 .01 .03 .05 .01 .05 .06 .03
S4 0 3.0 .02 .03 .01 .04 .05 .04 .05 .05 .04
S5 0 6.0 .02 .04 0 .03 .04 0 .04 .05 .02
S6 0 11.6 .04 .06 .03 .03 .06 .03 .06 .06 .04
S7 0 126.0 .04 .05 .02 .04 .04 .02 .04 .05 .03
A1 6.18 113.9 .07 .20 .06 .29 .55 .25 .64 .79 .81
A2 2.0 9.0 .01 .05 .04 .13 .28 .17 .73 .88 .77
A3 2.0 9.0 .01 .06 .05 .12 .27 .16 .73 .89 .78
A4 .5 2.2 .06 .18 .03 .12 .25 .06 .32 .47 .17
A5 1.5 7.5 .04 .16 0 .20 .41 .05 .64 .83 .51
A6 2.0 21.2 .06 .22 .04 .15 .33 .11 .45 .68 .42
A7 3.16 23.8 .02 .11 .01 .18 .43 .07 .72 .88 .82
A8 3.8 40.7 .04 .15 .01 .22 .49 .14 .72 .88 .89

∗ One-sided test. ∗∗ Two-sided test.

From the simulations, µ̂35 has a smaller probability of type I
error and higher power and dominates π̂3. In principle, a joint
test of more moments is feasible. But the higher-order moments
are difficult to estimate precisely. Thus the µ̂35 test is to be rec-
ommended when symmetry is the main concern.

There exist moment-free symmetry tests that do not require
the existence of high moments. For example, the test of Bai and
Ng (2001) is based on empirical distribution functions, whereas
that of Fan and Gencay (1995) is based on nonparametrically
estimated density functions. Even though these symmetry tests
may have better theoretical properties than moment-based tests,
moment-based tests such as the skewness coefficient are widely
used by applied researchers. There is thus merit to improving
our understanding of the properties of moment-based symmetry
tests in a time series setting.

3.2 Kurtosis and Normality

Table 2 reports results for π̂4(κ), which tests the true popu-
lation value of κ , and π̂4(3), which tests κ = 3 as would be the
case under normality. There are two notable results. First, there
are large size distortions, so that a large type I error could be
expected if one were to test κ = κ0. Second, although the test
has power to reject κ = 3, the power is very low for the sample
sizes considered. In many cases, serial correlation in the data
further reduces the power of the test. For example, consider
case A3 with κ = 9. With T = 1,000, the power is .90 when
ρ = 0, falls to .84 when ρ = .5, and is only .14 when ρ = .8.
One needs more than 5,000 observations to reject the hypothe-
sis that κ = 3 when ρ = .8. For this reason, we report results for
sample sizes much larger than for τ̂ to highlight the problems
with testing for kurtosis in finite samples.
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Table 2. Size and Power of the Test Kurtosis: Newey–West Kernel, No Prewhitening

T = 100 T = 200 T = 500 T = 1,000 T = 2,500 T = 5,000
τ κ π̂4(κ) π̂4(3) π̂4(κ) π̂4(3) π̂4(κ) π̂4(3) π̂4(κ) π̂4(3) π̂4(κ) π̂4(3) π̂4(κ) π̂4(3)

ρ = 0
S1 0 3.0 .02 .02 .02 .02 .02 .02 .02 .02 .01 .01 .01 .01
S2 0 9.0 .68 .02 .74 .13 .69 .53 .64 .70 .61 .82 .58 .88
S3 0 2.5 .01 .23 .01 .44 .01 .80 .01 .96 0 1.00 0 1.00
S4 0 3.0 .02 .02 .03 .03 .01 .01 .01 .01 .01 .01 .01 .01
S5 0 6.0 .35 .03 .37 .16 .37 .66 .32 .87 .25 .94 .24 .99
S6 0 11.6 .60 .08 .69 .28 .66 .63 .58 .73 .53 .84 .46 .89
S7 0 126.0 .43 .10 .48 .28 .37 .51 .25 .58 .11 .67 .05 .70
A1 6.18 113.9 .15 .19 .32 .28 .69 .41 .85 .49 .78 .60 .75 .67
A2 2.0 9.0 .24 .12 .29 .38 .29 .75 .24 .92 .17 .98 .15 1.00
A3 2.0 9.0 .25 .13 .29 .41 .27 .73 .26 .90 .16 .97 .15 1.00
A4 .5 2.2 .02 .52 .01 .81 .01 .99 .02 1.00 .01 1.00 .02 1.00
A5 1.5 7.5 .36 .04 .38 .20 .34 .65 .31 .84 .23 .97 .18 .99
A6 2.0 21.2 .61 .07 .81 .25 .77 .52 .74 .63 .67 .75 .62 .81
A7 3.16 23.8 .34 .16 .57 .34 .66 .57 .58 .66 .51 .82 .46 .88
A8 3.8 40.7 .30 .16 .56 .34 .78 .51 .73 .60 .67 .75 .61 .79

ρ = .5
S1 0 3.0 .01 .01 .01 .01 .01 .01 .01 .01 0 0 0 0
S2 0 9.0 .70 0 .84 .03 .85 .22 .81 .56 .84 .80 .81 .86
S3 0 2.5 0 .06 0 .07 0 .19 .02 .28 .10 .62 .40 .92
S4 0 3.0 .02 .02 .01 .01 .01 .01 .01 .01 0 0 0 0
S5 0 6.0 .35 0 .49 0 .59 .06 .61 .50 .69 .90 .78 .98
S6 0 11.6 .66 .01 .82 .07 .83 .43 .80 .68 .80 .84 .79 .88
S7 0 126.0 .48 .03 .62 .11 .60 .44 .54 .57 .37 .66 .28 .70
A1 6.18 113.9 .29 .09 .42 .24 .76 .39 .91 .49 .91 .60 .88 .68
A2 2.0 9.0 .46 .03 .58 .14 .67 .60 .70 .87 .78 .97 .85 1.00
A3 2.0 9.0 .44 .02 .56 .13 .63 .57 .71 .83 .78 .96 .86 .99
A4 .5 2.2 0 .12 0 .19 .01 .38 .13 .68 .76 .98 1.00 1.00
A5 1.5 7.5 .43 0 .52 .01 .61 .20 .65 .63 .72 .95 .78 .98
A6 2.0 21.2 .63 .01 .84 .05 .90 .33 .87 .59 .86 .75 .83 .80
A7 3.16 23.8 .42 .01 .65 .09 .83 .45 .80 .62 .80 .80 .79 .88
A8 3.8 40.7 .38 .03 .63 .11 .91 .44 .89 .59 .87 .75 .83 .80

ρ = .8
S1 0 3.0 .01 .01 .01 .01 0 0 0 0 0 0 0 0
S2 0 9.0 .53 .01 .77 0 .96 0 .95 .02 .96 .19 .97 .59
S3 0 2.5 0 .01 0 .01 0 .01 .02 .01 .20 .02 .75 .01
S4 0 3.0 .01 .01 .01 .01 0 0 0 0 0 0 0 0
S5 0 6.0 .28 0 .50 0 .81 0 .92 0 .96 .02 .99 .20
S6 0 11.6 .50 0 .79 .01 .96 .01 .97 .09 .96 .53 .97 .82
S7 0 126.0 .41 0 .62 .01 .83 .05 .86 .22 .79 .59 .75 .68
A1 6.18 113.9 .28 0 .48 .04 .72 .22 .88 .43 .98 .57 .97 .66
A2 2.0 9.0 .23 0 .65 0 .94 .03 .97 .16 .99 .64 1.00 .94
A3 2.0 9.0 .23 0 .66 .01 .91 .03 .98 .14 .99 .67 1.00 .94
A4 .5 2.2 0 0 0 0 .08 .01 .49 .02 .99 .03 1.00 .06
A5 1.5 7.5 .36 0 .63 0 .88 0 .95 .01 .97 .09 .99 .52
A6 2.0 21.2 .52 0 .76 0 .96 .03 .97 .13 .97 .55 .96 .75
A7 3.16 23.8 .32 0 .60 0 .90 .01 .96 .16 .97 .67 .97 .83
A8 3.8 40.7 .26 0 .59 0 .91 .07 .96 .28 .98 .69 .98 .77

To understand the properties of the kurtosis tests, Table 3 re-
ports the average estimates of κ and τ at the different sample
sizes. Three results are noteworthy. First, both τ̂ and κ̂ are gen-
erally downward biased, with biases increasing in ρ. However,
the biases are substantially larger for κ̂ . Second, even with T
as large as 5,000, κ cannot be estimated precisely from serially
correlated data. In some cases, κ̂ is severely biased for even iid
data (see, e.g., case A1). This result has the important empirical
implication that the sample kurtosis measure is generally unre-
liable and should always be viewed with caution. Third, the one
exception when κ̂ can be well estimated is when κ = 3. This is
important in interpreting the results for testing normality.

Table 4 reports the results for testing normality. Except for
the first row, which is based on the normal distribution and thus
indicates size, all other rows indicate power. The µ̂34 test is
generally more powerful than the π̂34 test. Because the kurtosis

test has such low power, the results for normality by and large
reflect the results for the tests for skewness. The tests have low
power when a distribution is symmetric. We also considered
prewhitening, as discussed by Andrews and Monahan (1992).
Prewhitening lowers the power of the tests when in fact the data
are not serially correlated, but raises power when the data are
genuinely serially correlated. These additional results are avail-
able in the working version of this article.

The fact that the kurtosis test has large size distortions might
appear problematic for the normality test. Interestingly, how-
ever, this is not the case. This is because κ̂ precisely estimates
κ when κ = 3, and size distortion is not an issue. Thus, al-
though the kurtosis test is itself not very useful per se, we can
still use it to test normality, as was done by Bera and Jarque
(1981). It is interesting to note that although the fourth moment
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Table 3. Sample Estimates of τ and κ

τ 100 200 500 1,000 2,500 5,000 κ 100 200 500 1,000 2,500 5,000

ρ = 0
S1 0 .01 −0 −0 0 0 −0 3.0 2.95 2.95 3.00 2.99 3.00 3.00
S2 0 −.01 .02 −.02 .01 −.02 −.02 9.0 5.38 6.11 6.66 7.88 7.87 8.12
S3 0 .01 0 0 0 0 0 2.5 2.47 2.49 2.49 2.50 2.50 2.50
S4 0 −.01 −0 0 −0 −0 −0 3.0 2.96 2.97 2.99 2.99 3.00 3.00
S5 0 −.02 −.02 0 .01 −0 0 6.0 4.95 5.39 5.63 5.75 5.90 5.88
S6 0 .03 .02 .02 −0 −.01 −.01 11.6 6.70 7.66 8.92 9.80 10.71 11.09
S7 0 .03 −.04 .06 −.01 −.03 −.08 126.0 8.96 12.49 17.62 19.64 28.66 35.93
A1 6.18 3.15 3.81 4.44 4.82 5.34 5.71 113.9 17.24 25.71 37.63 46.55 63.72 79.20
A2 2.0 1.78 1.90 1.95 1.97 1.99 1.99 9.0 7.14 8.05 8.47 8.70 8.91 8.93
A3 2.0 1.76 1.89 1.98 1.97 2.00 1.99 9.0 6.98 7.94 8.85 8.70 9.02 8.91
A4 .5 .48 .50 .51 .51 .51 .51 2.2 2.19 2.21 2.22 2.22 2.22 2.22
A5 1.5 1.33 1.43 1.47 1.49 1.51 1.52 7.5 5.86 6.53 6.90 7.16 7.30 7.42
A6 2.0 1.34 1.49 1.72 1.80 1.87 1.97 21.2 8.30 10.00 12.66 14.14 15.74 18.68
A7 3.16 2.33 2.60 2.84 3.01 3.11 3.13 23.8 10.81 13.64 16.98 19.83 21.92 22.58
A8 3.8 2.58 2.89 3.21 3.56 3.66 3.72 40.7 12.65 16.43 20.86 27.93 31.22 32.50

ρ = .5
S1 0 0 −0 −0 0 0 0 3.0 2.91 2.94 2.98 2.99 2.99 3.00
S2 0 −.02 .02 −.02 .01 −.01 −.01 9.0 4.31 4.81 5.16 5.91 5.88 6.09
S3 0 0 .01 0 0 −0 −0 2.5 2.63 2.67 2.68 2.70 2.70 2.70
S4 0 −.01 −.01 0 0 −0 −0 3.0 2.91 2.94 2.98 2.99 3.00 3.00
S5 0 −.02 −.01 −0 0 −0 −0 6.0 4.05 4.34 4.56 4.64 4.75 4.73
S6 0 .03 .01 .01 −0 −.01 −.01 11.6 5.06 5.72 6.51 7.08 7.61 7.87
S7 0 .02 −.05 .05 −0 −.03 −.06 126.0 6.43 8.57 11.65 12.91 18.27 22.72
A1 6.18 2.23 2.77 3.27 3.57 3.95 4.24 113.9 10.92 16.11 23.49 29.03 39.22 48.85
A2 2.0 1.21 1.35 1.42 1.45 1.47 1.47 9.0 5.14 5.80 6.18 6.36 6.51 6.52
A3 2.0 1.21 1.35 1.45 1.45 1.48 1.47 9.0 5.09 5.76 6.39 6.38 6.57 6.52
A4 .5 .35 .36 .37 .38 .38 .38 2.2 2.43 2.47 2.51 2.52 2.53 2.53
A5 1.5 .96 1.05 1.09 1.10 1.12 1.13 7.5 4.53 5.04 5.32 5.45 5.55 5.65
A6 2.0 .99 1.09 1.27 1.34 1.39 1.46 21.2 6.00 7.10 8.72 9.65 10.68 12.42
A7 3.16 1.65 1.90 2.10 2.22 2.31 2.32 23.8 7.31 9.17 11.29 13.01 14.33 14.68
A8 3.8 1.85 2.09 2.36 2.62 2.71 2.75 40.7 8.44 10.67 13.54 17.74 19.83 20.60

ρ = .8
S1 0 −0 0 −0 −0 0 0 3.0 2.80 2.90 2.95 2.99 2.98 2.99
S2 0 −.01 .01 −.01 .01 −.01 −.01 9.0 3.21 3.53 3.72 4.02 4.03 4.12
S3 0 0 .01 0 0 0 0 2.5 2.71 2.79 2.84 2.88 2.88 2.89
S4 0 −.01 −.02 0 0 −0 0 3.0 2.78 2.89 2.95 2.98 2.99 3.00
S5 0 −.01 0 −.01 0 −0 0 6.0 3.14 3.35 3.50 3.57 3.63 3.63
S6 0 .02 0 0 0 −0 −.01 11.6 3.48 3.81 4.18 4.44 4.64 4.78
S7 0 −.01 −.05 .03 .01 −.02 −.04 126.0 3.92 4.80 6.03 6.53 8.49 10.13
A1 6.18 .84 1.36 1.81 2.06 2.31 2.51 113.9 5.01 6.87 9.86 12.09 15.84 19.67
A2 2.0 .20 .49 .70 .79 .85 .86 9.0 3.71 3.90 4.07 4.19 4.25 4.27
A3 2.0 .20 .48 .73 .79 .85 .86 9.0 3.72 3.86 4.15 4.19 4.26 4.26
A4 .5 .32 .27 .25 .24 .23 .23 2.2 2.77 2.79 2.82 2.82 2.83 2.82
A5 1.5 .42 .52 .61 .64 .66 .67 7.5 3.17 3.46 3.73 3.82 3.90 3.97
A6 2.0 .56 .62 .76 .78 .83 .87 21.2 3.67 4.23 4.95 5.29 5.77 6.45
A7 3.16 .53 .88 1.14 1.27 1.35 1.37 23.8 4.07 4.85 5.76 6.47 7.09 7.20
A8 3.8 .67 .98 1.29 1.50 1.59 1.63 40.7 4.40 5.19 6.46 8.08 9.03 9.37

is less reliably estimated, the higher odd moments of symmet-
ric distributions, which are 0, if they exist, appear to be well
estimated. This is why the symmetry test µ̂35 performs well
even for random variables that do not have finite fifth moment.
For nonsymmetric distributions, the bias in high moments of-
ten translates into better power for µ̂35. In summary, whereas
the performance of the kurtosis test raises concerns about the
use of high moments in statistical testing, this concern is less
important when the objective is symmetry. As also pointed out
earlier, the behavior of the kurtosis test does not undermine the
performance of the normality test.

4. EMPIRICAL APPLICATIONS

We applied our tests to 21 macroeconomic time series. Data
for GDP, the GDP deflator, the consumption of durables, final
sales, the consumption of nondurables, residential investment,

and nonresidential investment are taken from the national ac-
counts and are quarterly data. The unemployment rate, employ-
ment, M2, and CPI are monthly series. The 30-day interest rate
and M2 are weekly data. (All data are taken from the Economic
Time Series Page, available at www.economagic.com.) With the
exception of the interest rate and the unemployment rate (for
which we do not take logs), we take the first difference of the
logarithm of the data before applying the tests. We also consid-
ered three exchange rates (in logged first differences), and the
value as well as the equally weighted CRSP daily stock returns.
These data are not transformed. The sample skewness and kur-
tosis coefficients for the 21 series are also reported, along with
tests for skewness, kurtosis, and normality.

The first column of Table 5 reports tests for symmetry, that
is, testing τ = 0, with τ̂ given in the fourth column. Several as-
pects of the results are of note. Following Delong and Summers
(1985), we fail to reject symmetry in output and industrial pro-

http://www.economagic.com
http://www.economagic.com
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Table 4. Size and Power of the Test Normality: Newey–West Kernel, No Prewhitening

T = 100 T = 200 T = 500 T = 1,000 T = 2,500 T = 5,000
τ κ π̂34 µ̂34 π̂34 µ̂34 π̂34 µ̂34 π̂34 µ̂34 π̂34 µ̂34 π̂34 µ̂34

ρ = 0
S1 0 3.0 .05 .02 .09 .03 .08 .03 .09 .03 .07 .02 .06 .03
S2 0 9.0 .03 .02 .11 .09 .39 .32 .62 .57 .81 .76 .89 .80
S3 0 2.5 .27 .16 .58 .35 .90 .72 .98 .94 1.00 1.00 1.00 1.00
S4 0 3.0 .03 .02 .08 .03 .07 .03 .07 .03 .06 .03 .06 .02
S5 0 6.0 .06 .03 .13 .12 .53 .43 .82 .74 .94 .89 .98 .96
S6 0 11.6 .07 .06 .22 .16 .50 .45 .67 .61 .85 .77 .91 .83
S7 0 126.0 .09 .07 .20 .17 .37 .35 .55 .46 .64 .56 .71 .61
A1 6.18 113.9 .84 .48 .94 .55 .99 .69 1.00 .80 1.00 .84 1.00 .90
A2 2.0 9.0 .99 .71 1.00 .88 1.00 .98 1.00 1.00 1.00 1.00 1.00 1.00
A3 2.0 9.0 .99 .74 1.00 .88 1.00 .96 1.00 1.00 1.00 1.00 1.00 1.00
A4 .5 2.2 1.00 .99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A5 1.5 7.5 .81 .60 1.00 .83 1.00 .98 1.00 .99 1.00 1.00 1.00 1.00
A6 2.0 21.2 .22 .27 .52 .53 .87 .76 .97 .86 1.00 .94 1.00 .94
A7 3.16 23.8 .95 .59 .99 .75 1.00 .86 1.00 .92 1.00 .97 1.00 .98
A8 3.8 40.7 .94 .56 .99 .68 1.00 .82 1.00 .88 1.00 .94 1.00 .98

ρ = .5
S1 0 3.0 .03 .01 .05 .01 .09 .02 .09 .02 .08 .01 .05 .02
S2 0 9.0 .02 .02 .05 .04 .20 .13 .48 .36 .76 .72 .87 .80
S3 0 2.5 .06 .02 .21 .05 .49 .11 .67 .20 .93 .44 1.00 .79
S4 0 3.0 .03 .01 .06 .02 .09 .02 .09 .02 .07 .02 .05 .01
S5 0 6.0 .01 .01 .04 .02 .22 .07 .59 .23 .90 .78 .98 .95
S6 0 11.6 .04 .03 .09 .07 .34 .24 .59 .55 .82 .74 .89 .83
S7 0 126.0 .04 .04 .11 .08 .33 .27 .50 .43 .62 .57 .70 .62
A1 6.18 113.9 .73 .48 .93 .57 .97 .69 .99 .80 .99 .85 1.00 .90
A2 2.0 9.0 .71 .51 1.00 .83 1.00 .97 1.00 1.00 1.00 1.00 1.00 1.00
A3 2.0 9.0 .71 .54 1.00 .84 1.00 .97 1.00 .99 1.00 1.00 1.00 1.00
A4 .5 2.2 .35 .21 .90 .75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A5 1.5 7.5 .21 .20 .83 .65 1.00 .95 1.00 .99 1.00 1.00 1.00 1.00
A6 2.0 21.2 .10 .11 .35 .36 .79 .73 .96 .84 1.00 .94 1.00 .95
A7 3.16 23.8 .45 .41 .97 .67 1.00 .85 1.00 .91 1.00 .97 1.00 .98
A8 3.8 40.7 .51 .41 .97 .64 1.00 .82 1.00 .88 1.00 .94 1.00 .98

ρ = .8
S1 0 3.0 .01 0 .02 .01 .04 .01 .07 .02 .09 .01 .07 .01
S2 0 9.0 .01 0 .02 .01 .03 .02 .09 .03 .26 .12 .64 .36
S3 0 2.5 .01 .01 .04 .01 .08 .01 .14 .03 .23 .02 .31 .03
S4 0 3.0 .01 .01 .03 .01 .06 .02 .08 .02 .10 .02 .08 .02
S5 0 6.0 0 0 0 0 .02 .01 .06 .01 .25 .04 .67 .11
S6 0 11.6 .01 .01 .02 .02 .06 .04 .14 .08 .55 .32 .78 .67
S7 0 126.0 .01 .01 .03 .02 .09 .05 .22 .14 .53 .42 .64 .58
A1 6.18 113.9 .02 .03 .16 .30 .88 .66 .97 .77 .99 .85 .99 .90
A2 2.0 9.0 .01 0 .07 .08 .56 .60 .99 .95 1.00 1.00 1.00 1.00
A3 2.0 9.0 .02 0 .06 .06 .60 .61 .99 .96 1.00 1.00 1.00 1.00
A4 .5 2.2 .01 0 .06 .03 .31 .13 .70 .38 .97 .85 1.00 .99
A5 1.5 7.5 0 0 .04 .04 .46 .40 .93 .85 1.00 1.00 1.00 1.00
A6 2.0 21.2 .01 .01 .06 .05 .36 .35 .73 .69 .98 .92 1.00 .94
A7 3.16 23.8 0 0 .03 .07 .73 .64 1.00 .85 1.00 .95 1.00 .98
A8 3.8 40.7 0 .01 .05 .11 .86 .71 .99 .85 1.00 .94 1.00 .97

duction. However, although these authors find asymmetry in the
unemployment rate, using a longer sample period and a dif-
ferent procedure to conduct inference, we find no evidence of
skewness in the unemployment rate. The U.S.–Japan exchange
rate, CPI inflation, and stock returns reject symmetry at 1%
level. We also reject symmetry in manufacturing employment
and the consumption of durable goods at the 10% level. Inter-
estingly, series that exhibit skewness also failed our conditional
symmetry test (Bai and Ng 2001).

The second column of Table 5 reports results for testing
κ = 3 with κ̂ given in the fifth column. We failed to find evi-
dence of excess kurtosis in any of the real variables but found
evidence of fat-tailed behavior in the two stock returns. These
are financial series whose fat-tailed properties have been well
documented. Our evidence is especially convincing in view of
the lower power of the test for kurtosis reported earlier.

Results for the normality test are reported in the third column
of Table 5. We reject normality in the U.S.–Japan exchange rate,
unemployment rate, CPI inflation, 30-day interest rate, and two
stock return series. With the exception of the 30-day interest
rate, which failed the kurtosis test but not the skewness test, se-
ries that exhibit non-Gaussian behavior all failed the symmetry
test. This accords with our observation that the power of the
normality test is derived from asymmetry.

5. CONCLUDING COMMENTS

The goal of this article was to obtain tests for skewness, kur-
tosis, and a joint test of normality suited for time series observa-
tions. Our results depend only on stationarity and the existence
of some moments. Monte Carlo simulations accord with our
prior that tests for kurtosis will have low power because of the
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Table 5. Macroeconomic Data

Sample Series π̂3 π̂4 π̂34 τ̂ κ̂

71:1–97:12 Canada–U.S. exchange rate 1.505 .359 2.438 .226 3.139
71:1–97:12 German–U.S. exchange rate −.682 .915 1.641 −.134 3.499
71:1–97:12 Japan–U.S. exchange rate −2.532 1.567 7.444 −.481 3.905
48:1–97:12 Unemployment rate .913 1.323 4.853 .308 8.621
46:1–97:12 Industrial production 1.195 1.417 2.305 .994 13.274
59:1–97:4 Inflation (GDP) 2.108 .188 4.529 .870 3.284
59:1–97:4 GDP −1.420 1.335 2.356 −.561 4.717
47:1–97:12 Inflation (CPI) 2.618 1.484 6.858 .942 4.491
81:10:30–96:05:10 30-day interest rate −.376 1.814 4.084 −.415 11.861
80:11:03–98:01:19 M2 −.096 .278 .202 −.017 3.116
59:3–96:4 Consumption durables −1.858 1.722 3.499 −.791 5.023
59:3–96:4 Consumption nondurables .596 1.341 3.623 .212 4.721
46:1–96:11 Employment −1.590 1.659 3.761 −.280 3.733
49:3–97:4 Investment −1.510 1.305 2.379 −.732 5.254
46:1–97:12 Manufacturing employment −1.890 1.845 3.580 −1.644 10.543
46:1–97:12 Nonmanufacturing employment .387 1.317 3.771 .117 5.857
59:3–97:4 Final sales −.035 1.421 2.688 −.017 5.404
59:3–97:4 Nonresidential investment −1.654 .828 2.775 −.409 3.680
59:3–97:4 Residential investment −1.019 1.240 2.058 −.457 5.134
90:01:02–96:12:31 Stock returns (V) −2.747 3.063 10.219 −.481 5.187
90:01:02–96:12:31 Stock returns (E) −3.782 2.632 16.349 −.990 6.943

NOTE: The 5% critical values are 1.96 for π 3 and π 4 and 5.99 for π 34 .

high moments involved. In finite samples, the test for kurtosis
has poor size. The difficulty in estimating kurtosis does not pose
a size problem for normality tests, however. Combining the co-
efficient of skewness with kurtosis as done by Bera and Jarque
is still useful for time series data, once the limiting variance
takes into account serial correlation in the data. Nonetheless,
the primary source of power in the test for normality is derived
from the test for skewness.

We first presented tests for the unconditional moment proper-
ties of the data, and then showed that when the tests are applied
to regression residuals, the limiting distributions of the condi-
tional tests are the same as those of the unconditional tests. It
should be clear that unconditional symmetry and conditional
symmetry generally do not imply each other. Consider an ex-
treme example, Xt = εt − εt−1, where the εt are iid. Whether
or not εt has a symmetric distribution, Xt is always symmetric,
because Xt and −Xt have the same distribution. However, con-
ditional on the information at t − 1 (which include εt−1), the
conditional distribution of Xt will be asymmetric provided that
εt is asymmetric.
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APPENDIX A: PROOFS

The following lemma is used in the proof of Theorem 1.

Lemma A.1. Suppose that Xt is stationary up to order r for
some r ≥ 2. Then

µ̂r = 1√
T

T∑

t=1

(Xt − X̄)r

= 1√
T

T∑

t=1

(Xt − µ)r − r µr−1
1√
T

T∑

t=1

(Xt − µ) + op(1).

Furthermore, by the delta method,
√

T
(
(σ̂ 2)r/2 − (σ 2)r/2) = r

2
(σ 2)r/2−1

√
T[σ̂ 2 − σ 2] + op(1).

Proof. We show (without loss of generality) the derivations
for r = 3. The generalization is immediate.

1√
T

T∑

t=1

(Xt − X̄)3

= 1√
T

T∑

t=1

(Xt − µ + µ − X̄)3

= 1√
T

T∑

t=1

(Xt − µ)3 + 3
1
T

T∑

t=1

(Xt − µ)2
√

T(µ − X̄)

+ 3(µ − X̄)2 1√
T

T∑

t=1

(Xt − µ) +
√

T(µ − X̄)3.

The last two terms are op(1), because
√

T(X̄ − µ) = Op(1).
Finally, note that 1

T

∑T
t=1(Xt − µ)2) = µ2 + op(1).

Proof of Theorem 1

τ̂ − τ = µ̂3

σ̂ 3 − µ3

σ 3

= µ̂3 − µ3

σ̂ 3 − τ
σ̂ 3 − σ 3

σ̂ 3

=
[ 1

T

∑T
t=1(Xt − X̄)3 − µ3

σ̂ 3

]
− τ

[
(σ̂ 2)3/2 − (σ 2)3/2

σ̂ 3

]

= 1
σ̂ 3

[
1
T

T∑

t=1

(
(Xt − µ)3 − µ3

)

− 3

(
1
T

T∑

t=1

(Xt − µ)2

)

(X̄ − µ)

]
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− 3τσ(σ̂ 2 − σ 2)

2σ̂ 3 + op(1)

= 1
σ̂ 3

[
1
T

T∑

t=1

(
(Xt − µ)3 − µ3

)

− 3

(
1
T

T∑

t=1

(Xt − µ)2

)(
1
T

T∑

t=1

Xt − µ

)]

− 3τσ

2Tσ̂ 3

[
T∑

t=1

(Xt − µ)2 − σ 2

]

+ op(1)

= 1
σ̂ 3 [ 1 −3σ 2 − 3στ

2 ]
1
T





∑T
t=1[(Xt − µ)3 − µ3]∑T

t=1(Xt − µ)
∑T

t=1[(Xt − µ)2 − σ 2]





+ op(1)

≡ α

σ̂ 3

1
T

T∑

t=1

Zt + op(1).

Proofs of Theorems 2 and 3

The proof follows from the same argument as Theorem 1.

Proof of Theorem 4

The convergence of µ̂34 in distribution to χ2
2 follows from

the central limit theorem for Zt as defined in (6). To see π̂34
d−→

χ2
2 , it suffices to argue that π̂3 and π̂4 are asymptotically inde-

pendent, so that the squared value of π̂3 and π̂4 are also as-
ymptotically independent. The limit of π̂3 is determined by the
partial sums of Zt [see (3)], whereas the limit of π̂4 is deter-
mined by the partial sums of Wt [see (5), with the second com-
ponent of Wt dropped off because the second component of β
is 0 under normality], where

Zt =
[

(Xt − µ)3

(Xt − µ)

]
and Wt =

[
(Xt − µ)4 − µ4

(Xt − µ)2 − σ 2

]
.

It is easy to verify that EZtW′
t = 0 for all t. Moreover,

EZt−jW′
t = 0 for all j. To see this, using the projection theory

for normal random variables, we can write Xt − µ = c(Xt−j −
µ) + ξt for a constant c, where ξt is a mean-0 normal random
variable independent of Xt−j. Thus powers of (Xt − µ) can be
expressed as those of (Xt−j − µ) and ξt . The desired result fol-
lows from EZt−jW′

t−j = 0 for all j and from the property of ξt .
The foregoing analysis shows that π̂3 and π̂4 are asymptotically
uncorrelated. Because they are asymptotically normal, they are
also asymptotically independent.

Proof of Theorem 5

It is sufficient to prove (7). By direct calculations, êt = et −
ē + (xt − x̄)′(β̂ − β). For j = 2,

ê2
t = (et − ē)2 + 2(et − ē)(xt − x̄)(β̂ −β)+[(xt − x̄)′(β̂ −β)]2.

From
∑T

t=1 ē(xt − x̄) = 0, we have

1√
T

T∑

t=1

ê2
t

= 1√
T

T∑

t=1

(et − ē)2 + 2
1
T

T∑

t=1

et(xt − x̄)
√

T(β̂ − β)

+ 1√
T

T∑

t=1

[(xt − x̄)′(β̂ − β)]2.

The last term is Op(T−1/2), because 1
T

∑T
t=1 ‖xt‖2 = Op(1)

and ‖β̂ − β‖2 = Op(T−1). The second term is also Op(T−1/2),
because 1

T
∑T

t=1 etxt = Op(T−1/2) and ēx̄ = Op(T−1/2). For
j = 3,

ê3
t = (et − ē)3 − 3(et − ē)2(xt − x̄)′(β̂ − β)

+ 3(et − ē)[(xt − x̄)′(β̂ − β)]2 + [(xt − x̄)′(β̂ − β)]3,

and thus

1√
T

T∑

t=1

ê3
t = 1√

T

T∑

t=1

(et − ē)3

− 3
1
T

T∑

t=1

(et − ē)2(xt − x̄)′
√

T(β̂ − β) + rT

where rT represents the remaining terms and it is easy to show
that rT = Op(T−1/2). The middle term requires extra argument.
But

1
T

T∑

t=1

(et − ē)2(xt − x̄) = 1
T

T∑

t=1

e2
t (xt − x̄)+2

1
T

T∑

t=1

et(xt − x̄)ē.

The second term is Op(T−1/2). The first term can be rewritten
as 1

T

∑T
t=1(e

2
t −σ 2)(xt − x̄), which is also Op(T−1/2), given the

assumptions on the series (e2
t − σ 2) and on xt . For j = 4,

ê4
t = (et − ē)4 − 4(et − ē)3(xt − x̄)′(β̂ − β)

+ 6(et − ē)2[(xt − x̄)′(β̂ − β)]2 + Op(T−3/2),

and thus

1√
T

T∑

t=1

ê4
t = 1√

T

T∑

t=1

(et − ē)4

− 4
1
T

T∑

t=1

(et − ē)3(xt − x̄)′
√

T(β̂ − β) + rT ,

where rT = Op(T−1/2) is very easy to argue. The middle term is
also OP(T−1/2). This follows from expanding (et − ē)3 and use
1
T

∑T
t=1 ek

t (xt − x̄) = op(1), for k = 1,2,3. For example, from∑T
t=1(xt − x̄) = 0, 1

T

∑T
t=1 e3

t (xt − x̄) = 1
T

∑T
t=1(e

3
t − µ3)(xt −

x̄) = Op(T−1/2), where µ3 = E(e3
t ) and e3

t − µ3 is a mean-0
process.
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APPENDIX B: DISTRIBUTIONS CONSIDERED

S1: N(0,1)
S2: t5
S3: e1I(z ≤ .5) + e2I(z > .5), where z ∼ U(0,1), e1 ∼

N(−1,1), and e2 ∼ N(1,1)
S4: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, λ1 = 0, λ2 =

.19754, λ3 = .134915, λ4 = .134915
S5: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, λ1 = 0, λ2 = −1,

λ3 = −.08, λ4 = −.08
S6: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, λ1 = 0, λ2 =

−.397912, λ3 = −.16, λ4 = −.16
S7: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, λ1 = 0, λ2 = −1,

λ3 = −.24, λ4 = −.24

A1: lognormal: exp(e), e ∼ N(0,1)
A2: χ2

2
A3: exponential: − ln(e), e ∼ N(0,1),
A4: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, λ1 = 0, λ2 = 1.0,

λ3 = 1.4, λ4 = .25
A5: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, λ1 = 0, λ2 = −1,

λ3 = −.0075, λ4 = −.03
A6: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, λ1 = 0, λ2 = −1,

λ3 = −.1, λ4 = −.18
A7: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, λ1 = 0, λ2 = −1,

λ3 = −.001, λ4 = −.13
A8: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, λ1 = 0, λ2 = −1,

λ3 = −.0001, λ4 = −.17

Note that S1–S7 are symmetric distributions, and A1–A8 are
asymmetric distributions.

[Received January 2003. Revised April 2004.]
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