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Abstract A simplified model of the moist axisymmetric Hadley circulation is examined in the asymptotic
limit in which surface drag is strong and the meridional wind is weak compared to the zonal wind. Our model
consists of the quasi-equilibrium tropical circulation model (QTCM) equations on an axisymmetric aquaplanet
equatorial beta-plane. This model includes two vertical momentum modes, one baroclinic and one barotropic.
Prior studies use either continuous stratification, or a shallow water system best viewed as representing the
upper troposphere. The analysis here focuses on the interaction of the baroclinic and barotropic modes, and
the way in which this interaction allows the constraints on the circulation known from the fully stratified case
to be satisfied in an approximate way. The dry equations, with temperature forced by Newtonian relaxation
towards a prescribed radiative equilibrium, are solved first. To leading order, the resulting circulation has
a zonal wind profile corresponding to uniform angular momentum at a level near the tropopause, and zero
zonal surface wind, owing to the cancelation of the barotropic and baroclinic modes there. The weak surface
winds are calculated from the first-order corrections. The broad features of these solutions are similar to those
obtained in previous studies of the dry Hadley circulation. The moist equations are solved next, with a fixed sea
surface temperature at the lower boundary and simple parameterizations of surface fluxes, deep convection,
and radiative transfer. The solutions yield the structure of the barotropic and baroclinic winds, as well as the
temperature and moisture fields. In addition, we derive expressions for the width and strength of the equatorial
precipitating region (ITCZ) and the width of the entire Hadley circulation. The ITCZ width is on the order of
a few degrees in the absence of any horizontal diffusion and is relatively insensitive to parameter variations.

Keywords Hadley circulation · Tropical dynamics · Geophysical fluid dynamics
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1 Introduction

The Hadley circulation is the axisymmetric component of the meridional (north–south) overturning of the
Earth’s tropical atmosphere. That is, it is the component of that overturning which results when the flow field
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is averaged in the zonal (east–west) direction. In the annual mean, air rises near the equator, accompanied
by copious rainfall as the moisture contained in the warm near-surface air condenses at lower temperatures
higher up. This, now dehydrated, upper-level air then flows poleward, and descends at subtropical latitudes,
where little rain occurs since the air is dry. The upper-level poleward flow also transports absolute angular
momentum, which the equatorial atmosphere generally has in excess at higher-latitude regions due to the
rotation of the Earth and the greater distance from the Earth’s axis at the equator. This leads to large relative
angular momentum, or strong upper-level westerly (eastward) flow relative to the surface, in the subtropical
jets at the poleward edges of the circulation. At the edge of the jet the air descends to the surface, where it flows
equatorward, losing angular momentum to surface drag. Surface fluxes restore both the angular momentum
and humidity of near-surface parcels towards those of the surface, until they ascend again near the equator; the
angular-momentum exchange leads to the existence of surface easterlies near the equator and surface westerlies
further poleward. These are arguably the most fundamental first-order features of the general circulation of
the atmosphere, which dynamical meteorology should be able to explain.

Superimposed on the zonal mean circulation are eddies, or nonaxisymmetric flow features that disappear
in the zonal average. These eddies can be quite large, particularly in the extratropics but also in the tropics,
and many important features of the general circulation are undeniably related to these eddies. The axisym-
metric Hadley circulation is also influenced by eddies, as the flow is nonlinear and eddy transports (rectified
wave–wave interaction terms in the zonally averaged equations of motion) can be important to the zonal mean
flow. Despite this, axisymmetric models of the Hadley circulation, in which no eddy effects are considered,
have been quite useful in building our understanding of the general circulation. Even though there is now
increasing evidence that eddies are even more important to the Hadley circulation than previously recognized
[25], axisymmetric models will remain a valid starting point. The eddies exist in the first place because the
flow which would occur in their absence is baroclinically unstable. Thus studying the axisymmetric circulation
is a necessary prerequisite to understanding the complete circulation [18,19].

The vertical structure in studies of the axisymmetric Hadley circulation is of two types. Some studies
consider a fully stratified atmosphere, in which the interior of the atmosphere is considered to be nearly invis-
cid, as described in Schneider [19] and further developed by Held and Hou [7]. This leads to conservation,
and homogenization of angular momentum in the interior, and thus to very (in fact unrealistically) strong
subtropical jets. Surface drag, however, is essential to the circulation as it restores the angular momentum of
near-surface air parcels back to that of the Earth’s surface, thus setting the value of the angular momentum
for the entire circulation. Because the interior is nearly inviscid, the effects of surface drag are felt only in
a thin boundary layer near the surface in these fully stratified models. Other studies consider only a single
layer of fluid, obeying a form of the shallow water equations, best thought of as representing only the inviscid
upper troposphere [8,9,16,21]. A flow-dependent mass source appears in the equation for the depth of the
layer, representing mass transport between the modeled layer and the lower troposphere. In these calculations,
surface drag enters implicitly through the value of the angular momentum (or zonal velocity) imputed to the
lower-tropospheric mass source that forces the modeled layer.

In contrast to Hadley cell theory, the theory for most other features of the tropical atmospheric circulation
favors a spectral, or modal representation of the vertical structure. This is not formally justifiable due to the
lack of a discrete upper boundary on the atmosphere (in contrast to the ocean), which prevents the existence
of normal-mode solutions, but nonetheless has been shown to give at least qualitatively acceptable results in
many circumstances. In many theories, starting from Matsuno [12], only the so-called first baroclinic mode,
containing horizontal velocity maxima of opposite sign at the surface and the tropopause with one zero crossing
between, is retained. This leads to a set of shallow water equations, but with a different interpretation than that
typically used in Hadley cell theory. Rather than representing flow in layers and neglecting vertical structure
within each layer, the equations represent the entire tropospheric flow and assume a specific nontrivial form for
the vertical structure. Because the first baroclinic mode velocity has a maximum at the surface, it is incapable
of representing the interaction of the flow with the surface drag, which acts to bring the near-surface flow to
zero without directly affecting upper levels. As shown below, in order to achieve a plausible representation of
the interaction with the surface drag, a barotropic or external mode must be added, with a uniform (or at least
uniform in sign) velocity throughout the troposphere. In a model with one barotropic and one baroclinic mode,
the two modes can cancel at the surface while adding constructively at upper levels, yielding small surface
winds and strong upper level winds, in qualitative agreement with observations.

In this study, we analyze the axisymmetric Hadley circulation in a two-mode model of this type, namely
the quasi-equilibrium tropical circulation model (QTCM; 13).Our first goal is to make the connection between
existing axisymmetric Hadley cell theory, which does not use modal decompositions, and the theory for the
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rest of the tropical circulation, much of which does. We have found in numerical simulations with such a model
that, for reasonable parameters, the cancelation of the modes at the surface and their constructive addition in
the upper troposphere occurs in such a way as to produce a result as close to what is found in fully stratified
models as the reduced modal structure allows [2]. These solutions have surface winds that are both small and
have the correct latitudinal structure (easterly flow near the equator, westerly further poleward) and upper
tropospheric winds characterized by uniform angular momentum at a level near the tropopause. This enhances
our confidence in the QTCM and two-mode models generally, but how and why this result occurs is not obvious
from inspection of the model equations, and is what we aim to explain in this study.

Our second goal is to understand some key aspects of the role of moisture in the Hadley circulation. Most
of the axisymmetric models have considered a dry atmosphere, with moist effects represented implicitly in
the choice of an equilibrium temperature profile, postulated to exist in the absence of any circulation. The
temperature field is continually relaxed towards the equilibrium profile as the circulation drives the temper-
ature away from it. A few studies with explicit moisture have been done (e.g., [2–5,10,14,15,17]) but the
QTCM’s reduced vertical structure and simplified (while still complete) physical parameterizations allows the
solution to be carried further analytically. One key result from this analysis is that the precipitating region,
or intertropical convergence zone (ITCZ) in the QTCM equations has a width and strength that are compa-
rable to those observed in the absence of horizontal diffusion. This is in contrast to a modified version of the
model containing a planetary boundary layer, in which the ITCZ width is controlled by diffusion and becomes
dramatically stronger and narrower than observed in its absence (Sobel and Neelin, this volume).

The axisymmetric QTCM equations are described in Sect. 2, and in Sect. 3 the inviscid QTCM one-mode
and two-mode models are solved to demonstrate that the QTCM equations, with their unique vertical structure
functions, are able to recreate the results of previous stratified inviscid models. In Sect. 4 a heuristic derivation
of the full dry and moist solutions is mapped out so that the important results of the study are not obscured by
the analysis. The dry asymptotic solution is derived in Sect. 5, the moist asymptotic solution is found in Sect. 6.
Both models are compared with numerical solutions of the full nonlinear axisymmetric QTCM equations with
conclusions in Sect. 7.

2 The quasi-equilibrium tropical circulation model (QTCM)

2.1 The QTCM decomposition

The variables of the QTCM, as described in [13], are obtained by projecting the primitive equations on to a set
of vertical structure functions designed to capture much of the observed tropical flow in an economical way.
The barotropic momentum variables, v0 = (u0, v0), and baroclinic momentum variables, v1 = (u1, v1), are in
units of [m/s], and the temperature T and moisture q are expressed in energy units [J/kg] (with cp absorbed).
Because horizontal variations in temperature and moisture are typically small compared to absolute values,
these variables are expressed as deviations from constant reference profiles. Assuming axisymmetric, steady
solutions, the structures of the QTCM variables are given by:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v(y, p) = V0(p) v0(y) + V1(p) v1(y) = V0(p)

[
u0(y)
v0(y)

]

+ V1(p)

[
u1(y)
v1(y)

]

, (a)

T (y, p) = Tref(p) + a1(p) T1(y), (b)

q(y, p) = qref(p) + b1(p) q1(y). (c)

(1)

The model has a rigid lid with the vertical velocity ω = 0 at the upper boundary and the lower boundary
is chosen to be an aquaplanet (no land or topography) which gives ω = 0 at the surface. These boundary
conditions on ω result in a nondivergent barotropic mode and the vertical velocity is determined only by the
baroclinic mode,

ω(y, p) = −�1(p)∇ · v1(y). (2)

The vertical structure functions for T are designed to mimic observed tropical profiles, which tend to be close
to moist adiabatic throughout the tropics. The vertical profiles for q are less easily justified, but the form of
(1c) is nearly equivalent to assuming a fixed vertical profile of relative humidity (note that the actual value of
q is not fixed). The barotropic mode of the horizontal velocity is constant with height,
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V0(p) = 1. (3)

The vertical structure function V1(p) for the baroclinic mode is derived from a1(p) by assuming that the
pressure gradient term has the same vertical structure as the other linear terms in the baroclinic momentum
equation. This leads to

V1(p) = a+
1 (p) − â+

1 , where a+
1 (p) =

ps∫

p

a1( ṕ) d ln ṕ, (4)

where ps is the surface pressure. The constant â+
1 , the vertical mean of a+

1 (p), is subtracted so that the vertical
integral of V1(p) is zero. The vertical structure function for ω is found from the baroclinic continuity equation
and has the form,

�1(p) = −
ps∫

p

V1( ṕ) d ṕ. (5)

It is important to note that there is no surface boundary layer in our model, and surface fluxes are computed
using variables evaluated at the surface. In general, values of any quantity at the surface (indicated by the
subscript s) and at the top of the atmosphere (indicated by the subscript t) are found by simply evaluating the
vertical structure functions at the surface ps and the nominal tropopause pt , respectively. Further discussion
and justification of the assumed vertical structure functions can be found in Yu and Neelin [26] and Neelin
and Zeng [13].

2.2 The axisymmetric moist model

The moist QTCM equations can be reduced to a one-dimensional model by considering axisymmetric steady
solutions: this is accomplished by setting ∂

∂x = 0 and ∂
∂t = 0 in the QTCM equations ([13]; eqs. 5.1–5.5).

The model here is further simplified by replacing the radiative forcing terms in the temperature equation ([13];
eq. 5.3) with a relaxation towards a given radiative equilibrium profile, TR(y), with a relaxation time, τR. The
turbulent eddy viscosity, ν, and the horizontal diffusion, KH, are set to zero but the surface drag terms, 1/τD,
are retained. The QTCM equations with these simplifications become

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂y

(
u1v1

) = − 1

τD
us, (a)

∂v0

∂y
= 0, (b)

v1
∂u0

∂y
+ α1 v1

∂u1

∂y
− α2 u1

∂v1

∂y
− f v1 = − V1s

τD
us, (c)

α3
∂

∂y
(v2

1) + f u1 = −κ
∂T1

∂y
− V1s

τD
vs, (d)

∂

∂y

{
MSr1v1 + MSp1v1T1

} = 1

τ ∗
c

H (q1 − T1)
[
q1 − T1

]+ 1

τR

(
TR(y) − T1

)
, (e)

− ∂

∂y

{
Mqr1v1 + Mqp1v1q1

}

= 1

τ ∗
c

H (q1 − T1)
[
T1 − q1

]+ 1

τE

[

1 + η2

V 2
s

(u2
s + v2

s )

] 1
2

{qsat(SST) − qs} , (f)

(6)

where (6a) is the integrated barotropic vorticity equation, (6b) is the barotropic divergence equation, (6c) is
the zonal baroclinic momentum equation, (6d) is the meridional baroclinic momentum equation, (6e) is the
temperature equation (〈a1V1〉 = MSp1 has been used to simplify the left-hand side, and 〈〉 is the vertical mean
in pressure coordinates), (6f) is the moisture equation (〈b1V1〉 = −Mqp1 has been used to simplify the LHS),
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f = 2� sin θ is the Coriolis parameter, V1s is the surface value of the baroclinic vertical structure function,
pT = ps − pt and κ = R/C p. The dry static stability MS as defined in ([13]; eqs. 4.16,4.17,4.18,4.19) has been
linearized about Tref , and the gross moist stratification Mq ([13]; eq. 5.10) is linearized about qref , resulting in

MS = MSr1 + MSp1 T1, (a)

Mq = Mqr1 + Mqp1 q1. (b)
(7)

Convection in the QTCM equations is represented by a modified Betts–Miller scheme that reduces con-
vective available potential energy (CAPE) in the column by relaxing the moisture and temperature towards a
equilibrium tropical sounding with a timescale τC , as described in [13; section 2b]. In the QTCM, the CAPE
projected on to the vertical basis functions is expressed as the difference between q1 and T1. In this model,
convection occurs when the CAPE is positive, q1 ≥ T1, where the [q1 − T1] term in (6e) represents convective
heating and the [T1 − q1] term in (6f) represents convective drying. The onset of convection in the column is
controlled by the Heaviside functions, H (q1 − T1), in (6e) and (6f), where

H (q1 − T1) =
{

1 if q1 ≥ T1
0 if q1 < T1

. (8)

In equation (6f), the last term on the right-hand side (RHS) is the parameterization of surface evaporation.
In the QTCM the evaporation is determined by the difference between the surface moisture and the saturation
value at the sea surface. The evaporation also depends on the sum of the surface winds plus a minimum wind
speed with a time scale τE and the strength of the surface wind dependence controlled by the coefficient η.

In (6a)–(6f), we have defined the time scales

1/τD ≡ gρaCD
Vs

〈V 2
1 〉pT

, 1/τ ∗
c ≡ 1

τc

â1b̂1

â1 + b̂1
, 1/τE ≡ gρaCD

Vs

pT
, (9)

and the constants

α1 ≡ 〈V 3
1 〉/〈V 2

1 〉, α2 ≡ 〈V1�1∂pV1〉/〈V 2
1 〉, α3 ≡ (α1 − α2)/2, α4 ≡ α1 + α2, λ ≡ −(α2 + V1s).

(10)

Finally, in order to discuss angular-momentum conservation, it is useful to construct a combined zonal
momentum equation by eliminating u1∂v1/∂y between (6a) and (6c); this has the form

v1

{
∂u0

∂y
+ α4

∂u1

∂y
− f

}

= λ

τD
us . (11)

2.3 The axisymmetric dry model

The dry version of the QTCM equations has no moisture equation (6f), and the effects of moisture are absorbed
into an equilibrium temperature function Teq(y). In the temperature equation (6e), the convective heating,
(1/τ ∗

C) H (q1 − T1)[q1 − T1], and radiative cooling, (1/τR) (TR(y) − T1) are both replaced by a single term
that relaxes T1 towards Teq with a time scale τeq, yielding

∂

∂y

{
MSr1v1 + MSp1v1T1

} = 1

τeq

(
Teq(y) − T1

)
. (12)

For the dry model, the momentum equations (6a), (6b), (6c) and (6d) remain unchanged, as they are not
explicitly coupled to the moisture q .
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2.4 The boundary conditions

In all cases the width of the Hadley cell YH is an unknown that is computed as part of the solution. In addition,
for the moist case, the width YP of the intertropical convergence zone (ITCZ) or convecting region is also an
unknown that is computed. Outside the cell, i.e., y > YH, the atmosphere is specified to be in radiative equi-
librium for the dry model, and radiative–convective equilibrium for the moist model, resulting in the boundary
conditions

T1(|y| ≥ YH) = Teq (dry case)

T1(|y| ≥ YH) = TRCE (moist case) (13)

where TRCE is the radiative–convective equilibrium temperature in the moist case, and Teq is the temperature
profile towards which T1 is relaxed relaxes in the dry case (physically, Teq also represents a radiative–convec-
tive equilibrium, but we use a different notation for clarity, since it is applied differently than in the dry case).
As a result, the meridional velocity outside the cell satisfies,

v0(|y| ≥ YH) = 0, (a)

v1(|y| ≥ YH) = 0. (b)
(14)

For this model, we choose forcing functions such that both TRCE and Teq are uniform in y for |y| > YH. In
the numerical solutions, the model naturally goes to the steady state described by (13) and (14) though no
constraint is imposed requiring this to occur; the numerically obtained YH need not be the same as that in the
analytical solutions, but in practice it is quite close. In the analytical solutions, the temperature and meridional
wind are required to go to their equilibrium values continuously at YH, but the zonal wind is allowed to be
discontinuous, and requires no boundary condition at YH. For the equatorially symmetric forcing discussed
here, the zonal and meridional winds vanish at the equator and the value of the temperature there is determined
from the solution,

v0(y = 0) = 0, (a)

v1(y = 0) = 0. (b)
(15)

For an equatorially asymmetric forcing, neither (15) nor any comparably similar condition holds; the prob-
lem becomes somewhat more complex (cf. [20,21,11]) and will not be discussed here. Integrating (6b) and
applying the boundary conditions for v0, (14a) and (15a), results in v0 vanishing everywhere,

v0(y) = 0. (16)

3 Dry inviscid solutions

3.1 The one-mode solution

The baroclinic component of the QTCM, taken in isolation, is isomorphic to the shallow water equations,
but its interpretation is different from that usually used in the context of the axisymmetric Hadley circulation.
Shallow water systems have been solved in this context [8,9,16], but interpreted as representing the upper-layer
flow, rather than as a modal structure giving the entire flow over the troposphere (with opposite signs in the
upper and lower tropospheres). The latter interpretation, used in models of the Walker circulation (e.g., [6]),
is inappropriate for the Hadley circulation, due to the role of surface drag and the central importance of the
barotropic mode. To illustrate this, we start by analyzing the baroclinic component of the QTCM equations
in isolation, on an f -plane ( f = constant), under a formulation equivalent to that of [16]. In this case, the
momentum equations (6c), (6d), and (11), with the barotropic zonal velocity u0 set to zero, and the dry temper-
ature equation (12) are used. This version of the model is completely inviscid and, as such, 1/τD is set to zero.
As in PS2002, the weak temperature gradient (WTG) approximation is made [24] and the term MSp1v1∂T1/∂y
in equation (12) is neglected. As a consequence the temperature dependent term in the dry static stability (7a)
is also be neglected (MSp1 = 0), and as a result MSp1T1∂v1/∂y in (12) is neglected too. The dry temperature
equation (12) for this one-mode dry model becomes,
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MSr1
∂v1

∂y
= 1

τeq

(
Teq − T1

)
. (17)

The combined zonal momentum equation, (11), with no surface drag and no barotropic mode is

v1

{

α4
∂u1

∂y
− f

}

= 0. (18)

Making the standard assumptions that v1 �= 0 and u1(0) = 0, equation (18) can integrated for u1(y),

u1(y) = f

α4
y. (19)

The meridional momentum equation (6d), neglecting the first term as is customary in studies of the Hadley
circulation, results in geostrophic balance

f u1 = −κ
∂T1

∂y
. (20)

Equation (20) can be integrated for T1(y) using the boundary condition (13) with Teq set to zero outside of the
cell,

T1(y) = f 2

2κα4
(Y 2

H − y2), (21)

and the meridional velocity is found by integrating (17),

v1(y) = 1

MSr1 τeq

y∫

0

(
Teq(ý) − T1(ý)

)
dý. (22)

In order to compare with the single-layer solution of [16], the equilibrium temperature distribution Teq(y) is
chosen to be a step function,

Teq(y) =
{

T eq for |y| < Yeq,
0 for |y| > Yeq.

(23)

The width YH of the Hadley circulation is found by taking the upper limit of the integral in (22) to be YH, and
using the boundary condition (14b) to enforce zero net mass across y = YH, implying

YH∫

0

(
Teq(ý) − T1(ý)

)
dý = 0. (24)

Using equation (21) for T1 and (23) for Teq, an expression for YH is found by evaluating the integral in (24),

YH =
[

3κα4

f 2 T eqYeq

] 1
3

. (25)

This expression for the angular momentum conserving YH is identical to the dimensional form of [16, eq. (10)]
up to the dimensionless QTCM constant α4. Notice, though, that the interpretation is different here. In [16], the
solution described only the upper tropospheric flow, whereas here it describes the flow in the entire troposphere.
In particular, (19) implies a surface zonal wind roughly as large as the upper tropospheric wind, an unphysical
result due to the neglect of surface drag.
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3.2 The two-mode solution

The two-mode dry inviscid model is the same as the one-mode model but with the zonal barotropic momentum
reintroduced, i.e., u0 �= 0. As 1/τD is still set to zero, it follows that the baroclinic and barotropic modes are
uncoupled. This is unphysical, but is done in order to illustrate that the coupling is essential to the solutions we
obtain later. The zonal barotropic momentum equation (6a) for the inviscid two-mode model with 1/τD = 0 is

∂

∂y

(
u1v1

) = 0. (26)

Equation (26), together with the boundary condition (15) at the equator, has two possible solutions: one with
v1(y) = 0 and the other with u1(y) = 0. The first solution is the thermal equilibrium solution as discussed
in [7]. For this solution there is no meridional circulation, T1 = Teq using equation (17), and u1 is in geo-
strophic balance with the gradient of Teq using (20). Hide’s theorem, as described in [7,18,19], specifies that
the maximum in angular momentum must occur at the surface where the generation of angular momentum by
friction can balance its export by diffusion. As in the model of [7], the angular momentum everywhere in the
domain must be less than or equal to that found at the surface wind at the equator. For a general equilibrium
temperature function Hide’s theorem will not always be satisfied, and for the Teq used in the one-mode solution,
(23), u1 = δ(y − Yeq), which clearly violates this condition.

The second solution has u1(y) = 0 and the meridional baroclinic momentum equation (6d) is not in
geostrophic balance but has the unconventional form,

α3
∂

∂y
(v2

1) = −κ
∂T1

∂y
. (27)

Equation (27) can be integrated, and applying boundary condition (15b), gives

α3v
2
1 = −κ T1, T1(0) = 0. (28)

The temperature equation (17) for YE < y ≤ YH, using (23) and (28), becomes

MSr1
∂v1

∂y
− α3

τeqκ
v2

1 = 0, (29)

and has the solution

v1(y) = − 1

α3/(κ MSr1τeq) y + c1
, (30)

where c1 is used to match to the y ≤ YE solution. By inspection, the boundary condition v1(YH) = 0 implies
that YH = ∞, which is unphysical. Note also that we have not solved for u0, as it is not necessary to do so in
order to obtain the baroclinic solution. In the absence of surface drag, the baroclinic and barotropic modes are
uncoupled, except in that the consideration of the barotropic mode yields the constraint (26).

3.3 Discussion

Neither of the dry inviscid solutions has a qualitatively acceptable physical structure. Note that (19), given the
structure of the baroclinic mode, implies surface zonal winds nearly as large as the upper tropospheric zonal
winds in the single-mode solution. This is inconsistent with observations, and is an artifact of the neglect of
surface drag. Adding finite surface drag to this single-mode model, however, would damp the upper tropo-
spheric winds as much as the surface winds, also inconsistent with observations. Adding a barotropic mode in
the absence of surface drag also yields problematic solutions, which either violate Hide’s theorem or have no
baroclinic zonal wind, strongly violating geostrophic balance and giving an infinite extent to the circulation.
The correct physical behavior requires the two modes to be coupled by surface drag. This allows the solution to
develop both weak surface winds, strong nearly angular momentum-conserving zonal winds aloft and a finite
cell width. For the following dry and moist models, two velocity modes are retained and the nonzero surface
drag term, 1/τD �= 0, is included in the momentum equations (6a), (6c), (6d) and (11).
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4 Heuristic derivation of solutions with surface drag

The procedure for obtaining asymptotic solutions to (6) is described in detail in the next section; here, for
the sake of clarity a heuristic derivation is given so the essential results are not obscured by the analysis. In
the previous section it was shown that the purely inviscid two-mode solution corresponds to an unphysical
circulation. In this section, in order to obtain a physically meaningful solution, the surface drag terms are
retained on the right-hand side of (6a), (6c), (6d) and (11); the turbulent eddy viscosity and the horizontal
diffusion (ν and KH respectively in [13]) are still neglected. Beginning with the combined zonal momentum
equation, (11), it is assumed that, to leading order, both sides of the equation are equal to zero. This yields the
desired result that surface winds are weak (but nonzero after we go to next order) while a form of angular-
momentum conservation holds in the upper troposphere, as is found in fully stratified, axisymmetric, nearly
inviscid solutions (e.g., [7]). On the RHS of (11) the zonal surface winds are assumed to equal zero at leading
order. This results in the barotropic zonal wind’s being proportional to the baroclinic zonal wind and allows
τD to be finite,

us = u0 + V1su1 = 0. (31)

To leading order the left-hand side (LHS) of equation (11) is also assumed to vanish,

v1

{
∂u0

∂y
+ α4

∂u1

∂y
− f

}

= 0. (32)

Equation (32) is inviscid only inasmuch as interior friction is neglected. It is justified, somewhat counterintu-
itively, by assuming that 1/τD is large; this renders us so small that the RHS of (11) can be neglected at leading
order, in spite of the fact that us is multiplied by the same large drag coefficient. (32) states that, if v1 is nonzero,
the absolute vorticity must vanish at a level where the basis function, V1(p), is equal to α5. Equivalently, it can
also be viewed as a statement of angular-momentum conservation at that level. For standard QTCM param-
eters, the level in question is approximately 300 hPa, 100 hPa below the nominal tropopause. Approximate
angular-momentum conservation at this level was found in the QTCM numerical solutions of Burns and Sobel
[2]. In fully stratified solutions, axisymmetric circulations conserve, and thus homogenize, angular momentum
throughout the free troposphere within the circulation; equivalently, they have zero absolute vorticity there
and (32) is the QTCM equivalent of this. The assumed modal structures do not allow zero absolute vorticity,
uniform angular momentum, or any other such constraint to hold throughout the troposphere for any solution
which has a baroclinic component; a relation such as (32) is the closest analog which is possible to the fully
stratified angular momentum constraint. Expressing u0 in terms of u1 from the zero surface wind condition
(31), the LHS of (11) becomes

v1

{

(α4 − V1s)
∂u1

∂y
− f

}

= 0. (33)

Assuming v1 is nonzero in the interior of the Hadley cell, the leading order solution for u1 is found from
equation (33) by integrating the terms in the bracket. The leading order balance in the meridional baroclinic
momentum equation (6d) is assumed to be geostrophic,

f u1 = −κ
∂T1

∂y
, (34)

and (34) can be integrated for T1.
In the analysis developed above, the dry and moist models are the same, because we have not considered

the temperature equation, but, beyond this point, we must consider the dry and moist models separately. For
the dry model, the temperature equation (12) is used. Once T1 is known, (12) can be integrated for v1, and
solutions can be found for both the nonlinear and linearized forms of (12). The similarity between the linear
and nonlinear solutions justifies the use of the WTG approximation [24]. The width of Hadley cell YH is
found, as in the one-mode solution, by evaluating the integral for v1 at YH and using the boundary condition
v1(YH) = 0. Finally, once u1 and v1 are known, the correction to the zonal surface winds can then be found
from the next-order barotropic zonal momentum equation,

∂

∂y

(
u1v1

) = − 1

τD
u(1)

s , (35)
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The moist model retains the moisture equation (6f) and uses the temperature equation (6e). The nonlinear
terms on the LHS of (6e) and (6f) scale as the temperature gradient and will be neglected. The meridional
surface wind dependence of the surface evaporation will be shown to be small, and using the leading order
zero zonal surface wind result (31), the WTG version of the moisture equation (6f) reduces to

−Mqr1
∂v1

∂y
= 1

τ ∗
c

H (q1 − T1)
[
T1 − q1

]+ 1

τE
{qsat(SST) − qs} , (36)

and the WTG version of the temperature equation (6e) is

MSr1
∂v1

∂y
= 1

τ ∗
c

H (q1 − T1)[q1 − T1] + 1

τR

(
TR(y) − T1

)
. (37)

Equations (36) and (37) are both piecewise linear, and can be solved for q1 and v1 in the convecting (q1 ≥ T1)
and nonconvecting (q1 < T1) regions of the cell. The cell width is again found by imposing v1(y = YH) = 0,
and the width of the convecting region, YP, is determined by locating the point where the T1(y) = q1(y). The
asymptotic results derived for both the dry and moist models will be shown to be in close agreement with a
numerical model of the full nonlinear system (6a)–(6f).

5 Dry solution with surface drag

The asymptotic analysis sketched above, is here carried out in detail for the dry model with no turbulent eddy
viscosity (ν = 0) and no horizontal diffusion (KH = 0) but with the surface drag 1/τD retained. The scales
used are described first, followed by the nondimensional equations with a parameter ε, which is small for small
values of τD and meridional winds that are weak compared to the zonal winds, as is observed for the zonal
mean tropical circulation. The leading order solution is determined, as well as the next order correction to the
zonal surface winds and an analytic expression for YH, the width of the circulation. Numerical solutions of
the full nonlinear system are presented and the asymptotic solutions are shown to be in close agreement with
the numerical results. The dry temperature equation (12) is used with an equilibrium temperature of the form,

Teq(y) ≡ Λ sech2(σ y) + T eq. (38)

The form the equilibrium temperature used here is designed to represent a forcing confined to the tropics, as
opposed to the global cosine-squared forcing used in [7].

5.1 Scale analysis

The following scales are used to nondimensionalize the variables of the dry system, where tildes are used to
indicate dimensional scales and starred variables are nondimensional:

u0 = Ũu∗
0, u1 = Ũu∗

1, v1 = Ṽ v∗
1 , y = L̃ y∗, T1 = T̃ T ∗

1 . (39)

A beta plane is used to approximate the Coriolis parameter f as a Taylor series about the equator, i.e.,
f = β L̃ y∗, where β = 2 �/re, and re is the radius of the Earth.

The length scale L̃ is chosen to be the equatorial deformation radius,

L̃ =
√

c

2β
=
[

1

2β

√
κ MSr1

â1

]1/2

, (40)

where c is the gravity-wave speed for the QTCM equations [22], and is given by

c =
√

κ MSr1

â1
. (41)
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Angular-momentum conservation (∂u1/∂y ∼ β y) is used to relate the zonal wind scale, Ũ , to L̃ ,

Ũ = β L̃2 = 1

2

√
κ MSr1

â1
. (42)

Assuming that geostrophy forms the dominant balance in the meridional baroclinic momentum equation (6d),
the scale for the temperature variations, T̃ , is

T̃ = Ũβ L̃2

κ
= β2 L̃4

κ
. (43)

A WTG balance is assumed in the temperature equation (12), MSr1∂v1/∂y ∼ 1/τeq(Teq(y) − T1). The WTG
balance also implies that the dry static stability, MS , is constant to leading order, resulting in the following
scale for the meridional wind,

Ṽ = T̃ L̃

τeq MSr1
. (44)

Although under a strict WTG assumption the scale for Teq should be larger than that for T1 [24], for the Hadley
circulation a strict interpretation of WTG is not appropriate and the temperature variation over the circulation
is comparable to, if smaller than by an order-unity factor, the equilibrium temperature variation [16]. Thus, T̃
is used as the scale for Teq, i.e., Teq = T̃ T ∗

eq, and the RHS of (12) also scales as T̃ , so that

1

τeq

[
Teq(y) − T1

] ∼ T̃

τeq
. (45)

5.2 Nondimensionalization

The scales defined in Sect. 5.1 are substituted into equations (6a), (6c), (6d) and (12), which become
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂

∂y

(
u∗

1v
∗
1

) = −u∗
s , (a)

ε
[
v∗

1
∂u∗

0

∂y∗ + α1 v∗
1
∂u∗

1

∂y∗ − α2 u∗
1
∂v∗

1

∂y∗ − 1

Ro
v∗

1 y∗] = −V1s u∗
s , (b)

α3 ε δ
∂(v∗2

1 )

∂y∗ + 1

Ek
y∗u∗

1 = − 1

Ek

∂T ∗
1

∂y∗ − δ V1s v∗
1 , (c)

∂

∂y

{
v∗

1 + � v∗
1 T ∗

1

} = T ∗
eq − T ∗

1 . (d)

(46)

Several dimensionless parameters appear in the above equations; these parameters are now discussed. The
equatorial Rossby number Ro, defined by

Ro ≡ Ũ

β L̃2
, (47)

is equal to one given our choice of scaling for Ũ , and thus will not be referred to beyond this point. The small
parameter ε, defined by

ε ≡ Ṽ 2/L̃

Ṽ /τD
= τD Ṽ

L̃
� 1, (48)

is the ratio of the meridional advective terms to the surface-drag terms in the momentum equations and typically
is of order 10−2. Using the scales defined in the previous section for Ũ and L̃ , and for typical values of 1/τD
the ratio of the zonal advective terms to the surface drag terms in the zonal momentum equations (6a) and (6c)
is of order one,
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Ũ 2/L̃

Ũ/τD
= τD Ũ

L̃
∼ 1. (49)

The momentum aspect ratio, δ, is defined as the ratio of the meridional velocity scale to the zonal velocity
scale, and can be shown to be of order ε by expressing it as the ratio of (48) over (49) yielding

δ ≡ Ṽ

Ũ
= τD Ṽ /L̃

τD Ũ/L̃
∼ ε. (50)

The zonal Ekman number, Ek, defined to be the ratio of the surface drag force to the Coriolis term, can be
shown to be order one using (47) and (49),

Ek ≡ Ũ

ŨτD β L̃
= Ũ

β L̃2

L̃

τD Ũ
= L̃

τD Ũ
∼ 1. (51)

� is defined to be a nondimensional parameter called the weak temperature gradient (WTG) number, and is
the ratio of the horizontal temperature advection term to the vertical advection term,

� ≡ MSp1T̃ Ṽ /L̃

MSr1Ṽ /L̃
= MSp1

MSr1
T̃ � 1. (52)

After nondimensionalizing, the combined zonal momentum equation (11) becomes

εv∗
1

{
∂u∗

0

∂y∗ + α4
∂u∗

1

∂y∗ − y∗
}

= λ u∗
s . (53)

Note that the RHS of (53) and (46a) differ by a factor of λ, which is determined by the model’s vertical structure
functions, and from [13] has a value of approximately 0.2, which is of order ε1/2. Since λ is dependent on the
model structure, it is not truly an adjustable parameter, as are, for example, the Coriolis parameter, convective
time scale, etc. Thus it is not strictly appropriate as a small parameter for asymptotic analysis (it cannot be sent
to zero), but using it as such is essential to derive a consistent solution that lies in the desired physical regime
as determined from fully stratified solutions. Physically, we wish to neglect surface drag in the combined
barotropic–baroclinic momentum equation (53), in order to obtain an angular momentum conservation law,
while retaining it in the barotropic momentum equation (46a), so that we can have both u1 and v1 nonzero.
By assuming λ ∼ ε1/2, we can make this happen. To leading order the zonal winds near the tropopause will
be angular momentum conserving, the surface winds will vanish, and the first nonzero correction to the zonal
surface winds will then be obtained from equation (46a). In the following we let λ = λ′ε1/2 with λ′ ∼ 1. After
substituting for λ′, (53) becomes

ε1/2v∗
1

{
∂u∗

0

∂y∗ + α4
∂u∗

1

∂y∗ − y∗
}

= λ′ u∗
s . (54)

Thus, at O(1), u∗
s will vanish as discussed below.

5.3 Asymptotic solutions

In order to find a perturbation solution to the dry Hadley circulation the dependent variables are expanded in
one half powers of the small parameter ε. As shown in (50), δ scales as ε so the variables may be expanded in
powers of ε only,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗
0 = ε0u(0)

0 + ε1/2u(1/2)
0 + ε1u(1)

0 + · · · (a)

u∗
1 = ε0u(0)

1 + ε1/2u(1/2)
1 + ε1u(1)

1 + · · · (b)

v∗
1 = ε0v

(0)
1 + ε1/2v

(1/2)
1 + ε1v

(1)
1 + · · · (c)

T ∗
1 = ε0T (0)

1 + ε1/2T (1/2)
1 + ε1T (1)

1 + · · · (d)

(55)
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Recall that v0 = 0 (see equation (16)) and thus need not be expanded or carried further. Also, the dry system
(46) is solved for both � ∼ O(1) and � ∼ O(ε) to examine the validity of the WTG assumption. Substituting
(55) into (46) and collecting similar powers of ε yields the characteristic asymptotic sequence of problems
which we now discuss.

At order O(ε0), (46a) and (46b) both give the result that the leading order barotropic and baroclinic
components of the surface zonal wind cancel at the surface, i.e.,

u(0)
0 + V1su

(0)
1 = 0. (56)

The meridional baroclinic momentum equation (46c), at order O(ε0), is an equation for geostrophic balance
between the zonal baroclinic wind and the temperature gradient,

y∗u(0)
1 = −∂T (0)

1

∂y∗ , (57)

and the dry temperature equation (46d), at O(ε0), is

∂

∂y∗
{
v

(0)
1 + � v

(0)
1 T (0)

1

}
= T ∗

eq − T (0)
1 . (58)

At this order u(0)
0 and u(0)

1 are still undetermined due to the degeneracy in equations (46a) and (46b). To solve
the leading order system, the order O(ε1/2) momentum equations must be considered.

At order O(ε1/2), the zonal barotropic momentum equation (46a) gives that the order O(ε1/2) zonal surface
winds are also equal to zero,

u(1/2)
s = 0, (59)

and the combined zonal momentum equation (54), using (59), becomes

v
(0)
1

{
∂u(0)

0

∂y∗ + α4
∂u(0)

1

∂y∗ − y∗
}

= λ′ u(1/2)
s = 0. (60)

The leading order dry solutions can now be obtained from equations (56), (57), (58) and (60), and take the
simple form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(0)
1 (y∗) = µ

2
y∗2

, (a)

u(0)
0 (y∗) = |V1s|µ

2
y∗2

, (b)

T (0)
1 (y∗) = −µ

8
y∗4 + T (0)

1 (0), (c)

v
(0)
1 (y∗) = 1

1 + � T (0)
1

y∗
∫

0

(
T ∗

eq + µ

8
ý4 − T (0)

1 (0)
)

dý, (d)

u(0)
s = 0, u(1/2)

s = 0, (e)

(61)

where µ ≡ 1/(α4 − V1s). The constant T (0)
1 (0) is determined by the boundary condition (13), and is found to

be

T (0)
1 (0) = µ

8
Y 4

H + T
∗
eq. (62)

The equilibrium temperature profile Teq(y∗), given by (38), is chosen to have maximum amplitude Λ, a value

of T eq away from the equator and a width σ . Using (38) and (61c), the leading order meridional wind v
(0)
1 (y∗)

is computed from (61d), and is given by

v
(0)
1 (y∗) = 1

1 + � T (0)
1

[
Λ∗

σ
tanh(σ y∗) + µ

40
y∗5 − µ

8
Y 4

H y∗
]

. (63)
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Finally, the value of YH is obtained by enforcing the boundary condition (14b) using (63), which gives

Λ∗

σ
tanh(σYH) − µ

10
Y 5

H = 0. (64)

This is transcendental in YH but, assuming σYH  1, tanh(σYH) can be approximated by 1 so that

YH ≈
{

10Λ∗

σµ

}1/5

. (65)

This result has the same form as in [19, eq. 20] for a continuously stratified atmosphere, and as in [16] for a
β-plane model. This correspondence gives us confidence that the expansion used here is reasonable. The width
of the Hadley circulation found here for a hyperbolic secant-squared forcing is less sensitive to Λ than in [7],
where YH is proportional to the square root of the amplitude of the forcing. This difference may be due to the
fact that the forcing in [7] is global, where as Teq here is limited to tropics.

Having solved the order O(ε0) system, the first nonzero correction to the zonal surface winds u(1)
s (y∗) are

found from the order O(ε1) zonal barotropic momentum equation (46a)

u(1)
s = − ∂

∂y

(
u(0)

1 v
(0)
1

)
, (66)

using (61a) for u(0)
1 and (63) for v

(0)
1 . This calculation of the surface zonal winds is similar to that described

by Lindzen and Hou [11].

5.4 Comparison with numerical solution

A numerical code has been written to solve the time-dependent full nonlinear axisymmetric dry equations:
(6a), (6c), (6d) and (12). The model uses explicit differencing for the spatial derivatives with an upwind scheme
for terms involving meridional advection at a resolution of 8.9 km. A staggered leapfrog scheme is used for the
time derivatives with a Robert filter and a time step of 30 s. The numerical solution has horizontal diffusion in
the momentum equations but with KH = 500 m2/s ∼ ε2 L̃2. The meridional boundary conditions are walls at
40◦ on each side of the equator, which does not affect the steady solution since it vanishes outside of the cell
at about 20◦. The model is initialized with zero winds and Teq(y) as given in (38), and is then run to steady
state.

Both asymptotic and numerical solutions of the dry model are plotted in Fig. 1, with the following parameter
settings:

τeq = 20 days, ε = 0.01, � = 0.02, Λ = 20 K, σ = 2.58 (10N/S), T eq = 287 K. (67)

The asymptotic solution has a cell width in close agreement with the numerical solution’s width, and the tem-
perature (Fig. 1a) and meridional wind with � ∼ 1 (Fig. 1b) are nearly indistinguishable from the numerical
solutions. The meridional wind with � ∼ ε (Fig. 1b) is close to the numerical solution but slightly weaker.
The accuracy of the � ∼ ε dry solution demonstrated here is used to justify scaling � as ε in the moist
model. The angular-momentum-conserving asymptotic solution has a discontinuity in the zonal winds at the
cell boundary (Fig. 1c), whereas the numerical solution’s zonal wind maximizes at slightly smaller |y| and then
goes to zero smoothly, but the two are otherwise in very close agreement. The surface zonal winds (Fig. 1d) in
both solutions are much weaker than the zonal winds aloft, as assumed in the construction of the asymptotic
solutions, and have easterlies near the equator and westerlies further poleward, as in the observations. The
near-equatorial surface easterlies in the asymptotic solution are slightly stronger than those in the numerical
solution but are broadly in good agreement, and the � ∼ ε surface winds again are weaker but still close to
the numerical solution. From this comparison with the numerical solutions, the asymptotic solution is found
to successfully capture the dry two-mode solution.
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Fig. 1 Dry axisymmetric solutions: solid numerical solution, dashed asymptotic solution with � ∼ 1, dotted asymptotic solution
with � ∼ ε. a Temperature, b meridional wind, c zonal wind at the tropopause, d surface zonal wind

6 Moist solution with surface drag

Having solved the dry equations, we turn towards a model where moisture is explicitly represented. In addi-
tion to equations (6a), (6c), (6d) and (11), the moist model includes the moisture equation (6f), and the full
temperature equation (6e) with the explicit representation of convective heating. The asymptotic analysis of
the moist model developed below follows the same steps as in the dry model. In particular the solutions for
u1, u0 and T1 are identical to those found in the dry model, as moisture only affects the solution of v1 (and of
course q1).

6.1 Scale analysis and nondimensionalization

The scales for u1, u0, v1 and T1 are the same as those described in the dry model, and moisture is nondimen-
sionalized by

q1 = Q̃ q∗
1 , (68)

where Q̃ is the dimensional scale and q∗
1 is the nondimensionalized moisture. The saturation vapor pressure

function qsat(SST(y)) in the evaporation term of (6f) is also be assumed to also scale as Q̃,

qsat = Q̃ q∗
sat. (69)
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In the dry problem there is a single timescale τeq that represents the total forcing in the system. In the moist
model this forcing is divided into radiative cooling, convective heating and surface evaporation with the con-
vective time scale τ ∗

C much shorter (12 h) than the surface flux time scale τE (7 days) or the radiative time scale
τR (30 days). Because of the relatively small value of τ ∗

C, q1 is close in value to T1 in convecting regions, and
as a result the moisture scale in the convecting regions (where H (q1 − T1) = 1) is assumed to be equal to the
temperature scale,

Q̃ = T̃ (in convecting regions). (70)

In the nonconvecting regions (where H (q1 − T1) = 0) the nondimensional moisture equation (6f) is

−µM
∂

∂y∗

{

v∗
1 + Mqp1

Mqr1
Q̃ v∗

1 q∗
}

= Q̃

T̃

τR

τE

[
1 + η2

V 2
s

U 2(u∗2

s + δ2v∗2

s )
] 1

2
{
q∗

sat(SST(y∗)) − q∗
s

}
. (71)

In order for the evaporation term on the RHS of (71) be of order one, the moisture scale is set equal to the
temperature scale, so that

Q̃ = T̃ (in nonconvecting regions) (72)

as well, and it is assumed that τR/τE ∼ 1. The scalings (70) and (72) imply that, when the WTG approximation
is made, horizontal moisture advection is neglected as well as horizontal temperature advection. This is not
valid under all circumstances, as moisture is not subject to the same dynamical constraints as temperature and
its horizontal advection can be important even when temperature is not (e.g., [23]).

The nondimensional momentum equations for the moist model, which are unchanged from the dry model
as they are not explicitly coupled to q1, are (46a), (46b) and (46c), the combined zonal momentum equation
is (54), and the moist temperature and moisture equations are, respectively:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂

∂y∗
{
v∗

1 + � v∗
1 T ∗

1

} = τR

τ ∗
c

H (q∗
1 − T ∗

1 )
[
q∗

1 − T ∗
1

]+ T ∗
R (y) − T ∗

1 , (a)

− ∂

∂y∗
{
µMv∗

1 + µm� v∗
1q∗

1

}
(b)

= τR

τ ∗
c

H (q∗
1 − T ∗

1 )
[
T ∗

1 − q∗
1

]+ τR

τE

[
1 + η′ 2 (u∗2

s + δ2v∗2

s )
] 1

2
{
q∗

sat(SST) − b1sq∗
1

}
,

(73)

where η′ ≡ η Ũ/Vs is a dimensionless parameter, µM ≡ Mqr1/MSr1, µm ≡ Mqp1/MSp1, b1s = b(ps) and
the WTG number � is defined in (52). The convective heating term

[
q1 − T1

]
in (73a) and the corresponding

convective drying term in (73b) are generally smaller than T1 or q1, but τR is an order of magnitude greater
than τ ∗

C, so that the convective forcing terms are of order one. As for the boundary conditions on T ∗
1 and q∗

1 at
YH, they are set to their nondimensional radiative–convective equilibrium values,

T ∗
1 (YH) = T ∗

RCE and q∗
1 (YH) = Q∗

RCE. (74)

The values of TRCE and QRCE are found by solving (73a) and (73b) for |y| ≥ YH with v∗
1 = ∂v∗

1/∂y∗ = 0 and
u∗

1 = u∗
0 = 0, yielding

T ∗
RCE = (τ ∗

C b1s + τE) T ∗
R + τR q∗

sat(|y∗| ≥ YH)

τE + (τR + τ ∗
C) b1s

, (a)

Q∗
RCE = (τ ∗

C + τR) q∗
sat(|y∗| ≥ YH) + τET ∗

R

τE + (τR + τ ∗
C) b1s

. (b)

(75)

As in the dry model, it is assumed that ε = τDṼ /(L̃) � 1. Since we have already shown that the dry
model, to leading order, is qualitatively unchanged by excluding the WTG terms (cf. Fig. 1), � is chosen to
be small in the moist model as well

� ∼ ε � 1. (76)
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Also, for simplicity, The radiative equilibrium temperature in equation (73a) is set to a constant value

T ∗
R = R∗. (77)

For convenience, the function q∗
sat(SST(y∗)) in equation (73b) is prescribed directly rather than prescribing

the SST distribution (because of the nonlinearity of the Clausius–Clapeyron relation, prescribing a simple
analytical form for SST does not generally result in a similarly simple form for qsat). Thus we set

q∗
sat(y∗) = Ξ∗ sech2(σ y∗) + q∗

0 , (78)

where Ξ , σ , and q0 are constants.

6.2 Asymptotic solutions

As already mentioned, the solutions for u1, u0 and T1 are same as those of the dry model and are given by
(61a), (61b) and (61c), except for the value of T (0)

1 (0) which is found by applying the radiative–convective
equilibrium boundary condition (74) to the temperature solution (61c), resulting in

T (0)
1 (0) = µ

8
Y 4

H + T ∗
RCE. (79)

The remaining part of the solution to the moist model consists of finding v∗
1 and q∗

1 . Due to the Heaviside
functions in equations (73a) and (73b) the moist model must be solved separately in the convecting (with
subscript C) and nonconvecting (with subscript NC) regions. The two regions are matched with the condition
that v1 and its first derivative are continuous so that the divergence is finite. The solution for q1 is continuous
by construction. The boundary between the two solutions is determined as the point at which q1 = T1. In
the nonconvecting region, the convective drying term [involving T1 − q1 in (6e)] vanishes, while in the con-
vecting region it continuously approaches zero as the boundary is approached. Since this term constitutes the
only difference in the moisture equation between the two regions, v1 and q1 are continuous at the boundary.
However, because the model neglects the horizontal advection of moisture to leading order, ∂q1/∂y may be
discontinuous.

6.2.1 The convecting solutions

In the convecting region the temperature equation (73a) at order O(ε0) is

∂v
(0)
C

∂y∗ = τR

τ ∗
C

{
q(0)

C − T (0)
1

}
+ R∗ − T (0)

1 , (80)

and the moisture equation (73b) at order O(ε0) is

−µM
∂v

(0)
C

∂y∗ = τR

τ ∗
C

{
T (0)

1 − q(0)
C

}
+ τR

τE

(
q∗

sat − b1sq(0)
C

)
, (81)

where the leading order zero zonal surface wind result (56) has been used in the evaporation term. Eliminating
∂v

(0)
C /∂y∗ between (80) and (81), the solution for the moisture in the convecting region is

q(0)
C = γ1

{

µM
τ ∗

C

τR
R∗ + τ ∗

C

τE
q∗

sat + γ2T (0)
1

}

, (82)

with γ1 ≡ 1 − µM + b1sτ
∗
C/τE, and γ2 ≡ 1 − µM − µMτ ∗

C/τR. The solution for the meridional velocity in the
convecting region, using boundary condition (15b), is then

v
(0)
C = γ1

{

γ3 R∗ y∗ + τR

τE

[
Ξ∗

σ
tanh(σ y∗) + q∗

0 y∗
]

+
(
γ3 + b1s

τR

τE

) [ µ

40
y∗5 − T (0)

1 (0) y∗
]}

, (83)

with γ3 ≡ 1 + b1sτ
∗
C/τE. Recall that the T (0)

1 terms in (82) and (83) involve the unknown width YH of the
Hadley cell, via (79) and (61c).
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6.2.2 The nonconvecting solution

In the nonconvecting region the temperature equation (73a) at order O(ε0) is

∂v
(0)
NC

∂y∗ = R∗ − T (0)
1 , (84)

and the moisture equation (73b) at order O(ε0) is

−µM
∂v

(0)
NC

∂y∗ = τR

τE

(
q∗

sat(SST) − b1sq(0)
NC

)
, (85)

where the leading order zero zonal surface wind result (56) has again been used in the evaporation term.
Solving (84) yields

v
(0)
NC =

y∗
∫

0

(
R∗ − T (0)

1

)
dý = R∗ y∗ + µ

40
y∗5 − T (0)

1 (0) y∗ + cNC, (86)

where cNC is determined by the condition v
(0)
C (YP) = v

(0)
NC(YP). Finally, the solution for q1 in the nonconvecting

region is found using (84) and (85) resulting in

q(0)
NC = µM

b1s

τE

τR

(
R∗ − T (0)

1

)+ q∗
sat

b1s
. (87)

6.3 The widths of the convecting region and the Hadley cell

The width of the ITCZ, YP, is found first by locating the point at which q1 = T1. The solution for YP is
determined by equating the temperature solution (61c) and the moisture solution (87),

µM
τE

τR
R∗ − γ4

[
− µ

8
y∗4 + T (0)

1 (0)
]

+ Ξ∗ sech2(σ y∗) + q∗
0 = 0, (88)

where γ4 ≡ b1s + µMτE/τR and T (0)
1 (0), as defined in (79), is a function of YH. Solving (88) numerically

gives four roots that are all real and come in positive and negative pairs. The first pair are real and give the
value of YP on either side of the equator. The second pair are also real and within the interval [0, YH]. This
second solution, denoted YB, reveals that, in addition to the equatorial convecting region, there is a another
small convecting region at the edge of the cell near YH, so that

0 < YP < YB < YH. (89)

These regions are illustrated in Fig. 2. Solutions labeled ‘C ’ correspond to the convecting ITCZ which begins
at the equator and ends at YP. Solutions in the nonconvecting region of the Hadley circulation, labeled ‘NC ’,
start at YP and extend to YB, which is close to YH. Solutions in the narrow precipitating boundary region are
labeled B. A radiative–convective equilibrium region lies outside of YH where there is no flow. The expression
for v

(0)
B is identical to v

(0)
C in (83) except for the constant cB determined by matching v

(0)
B (YB) = v

(0)
NC(YB),

and the expression for q(0)
B is identical to the one for q(0)

C in (82),

q(0)
B = q(0)

C , (a)

v
(0)
B = v

(0)
C + cB . (b)

(90)

An approximate expression for YP can be found from (88) assuming that Yp is within one deformation
radius of the equator, or in nondimensional terms, YP < 1. With this assumption, the Y 4

P term in (88) is
neglected and a solution for YP can be written, approximately,

YP ≈ 1

σ
sech−1

[√
1

Ξ∗
{
γ4

µ

8
Y 4

H − ϕ
}
]

, (91)
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Fig. 2 A schematic of precipitation in the convecting and nonconvecting regions

where ϕ ≡ q∗
0 + µM

τE

τR
R∗ − γ4T ∗

RCE. (92)

The inverse hyperbolic secant dependence of YP on YH here is specific to the forcing used in this model; if a
Gaussian-shaped forcing had been used, YP would have a logarithmic dependence on YH. The second solution
to (88) is found by assuming that σYB > 1 and sech2(σYP) ≈ 0. With these assumption, the second solution
to (88) is

YB ≈
{

Y 4
H − ϕ

γ4
µ
8

}1/4

. (93)

With approximate expressions for YP(YH) and YB(YH), a single equation for YH can now be constructed from
the boundary condition v

(0)
B (YH) = 0, and the conditions that qNC(YP) = T1(YP) and qB(YB) = T1(YB),

resulting in

Ξ∗ − γ5
µ σ

10
Y 5

H +
{

4

5
σYH

[

1 − 8ϕ

µγ4Y 4
H

]1/4

− 1

2
− sech−1

[√
1

Ξ∗
(
γ4

µ

8
Y 4

H − ϕ
) ]
}(

γ4
µ

8
Y 4

H − ϕ

)

= 0,

(94)

where γ5 ≡ τE/τR + b1s(τ
∗
C/τR + 1). In order to derive an expression for YH from (94), the inverse hyperbolic

secant term, which comes from the expression for YP, is expanded in a power series about (1/Ξ∗)(γ4µY 4
H/8−

ϕ) = 1, which corresponds to expanding about the equator (y∗ = 0). Retaining only the leading term yields

sech−1
[√

1

Ξ∗
(
γ4

µ

8
Y 4

H − ϕ
) ]

≈ 2

√

1 −
[

2γ4µ

ϕ + Ξ∗

]1/4 YH

2
, (95)

which is further approximated using a binomial expansion for the RHS, resulting in

2

√

1 −
[

2γ4µ

ϕ + Ξ∗

]1/4 YH

2
≈ 2 −

[
2γ4µ

ϕ + Ξ∗

]1/4 YH

2
. (96)

The term (1−8ϕ/(µγ4Y 4
H))1/4 in (94) is then approximated by assuming γ4µY 4

H/8 > ϕ, and using a binomial
expansion, so that

[

1 − 8ϕ

µγ4Y 4
H

]1/4

≈ 1 − 2 ϕ

γ4 µY 4
H

. (97)
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Substituting (95), (96) and (97) in (94), yields a polynomial in YH of degree eight, which can be further
approximated into the quartic

5

16
γ4µ Y 4

H +
{

σ + 1

2

[
2γ4µ

ϕ + Ξ∗

]1/4
}

ϕ YH −
(

Ξ∗ + 5

2
ϕ

)

= 0, (98)

by neglecting terms with small coefficients. Finally, this quartic has only one real positive solution, with the
approximate form

YH ≈ 2

{
Ξ∗ + 5

2 ϕ

5 γ4µ

}1/4

− 4

5

ϕ σ
√

5 γ4µ
(
Ξ∗ + 5

2 ϕ
) . (99)

Having obtained approximate analytic solutions, we now examine the sensitivity to the different parame-
ters of the model. The values of YH, YP and YB are numerically calculated by solving (88) and the boundary
condition v

(0)
B (YH) = 0, and these solutions are plotted in Fig. 3 and 4. The approximate analytic solutions

using (99) for YH, (91) for YP and (93) for YB are plotted in Fig. 5. The values of the parameters varied in
Fig. 3, 4, 5 are normalized by the following values

τC = 0.5 d, τR = 30 d, τE = 7.7 d, R = 272 K,

Ξ = 8 K, σ = 2.58 (10N/S), q0 = −6.03 K (SST = 295 K), (100)

which are used in the full nonlinear numerical solution of the model, described in the Sect. 6.4 below.
In Fig. 3a, YP is plotted versus τ ∗

C, τR, τE and R. YP is significantly sensitive to τ ∗
C, and has a finite width

for τ ∗
C = 0 (not shown here). As τ ∗

C, decreases the value of the moisture is relaxed more strongly to the
temperature, whose solution is independent of the moisture (61c) and in the limit that τ ∗

C → 0, the moisture
and temperature are equal. YP is also sensitive to R, is inversely proportional to τR and is relatively insensitive
to τE with a change of only a few tenths of a degree over all values of τE. In Fig. 3b the sensitivity of YH to
τ ∗

C, τR, τE and R is plotted. YH is inversely proportional to τ ∗
C, τE and R and is directly proportional to τR.

The numerically computed sensitivities of YP, YH and YB to the parameters of the SST forcing are plotted
in Fig. 4. In Fig. 4a the the sensitivity of YP and YB to Ξ and σ are plotted. YP is relatively insensitive to
increasing Ξ , σ , but increases slightly for small values of Ξ and σ . Both YP and YB are insensitive to varying
q0, which is not plotted here. For values of Ξ < 3.6, YB and YP meet, the nonconvecting region disappears and
the atmosphere is convecting throughout the domain. A similar transition between solutions with convection
everywhere and ones with a nonconvective region as the SST contrast was increased was found for nonrotat-
ing Walker-circulation solutions by Bretherton and Sobel [1]. Here, the solution with convection everywhere
persists to a larger SST contrast than in that study. While the two systems cannot be precisely compared, due to
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the different boundary conditions and forms for the SST profiles, we nonetheless speculate that this difference
is due primarily to the presence of a nonzero Coriolis parameter in the present case and the lack of the same in
Bretherton and Sobel [1]. The sensitivity of YH is plotted in the Fig. 4b: the cell size decreases as the height of
the SST forcing decreases (decreasing Ξ ), and as the width of forcing decreases (increasing σ ). YH is relatively
insensitive to q0, the constant term in (78), which sets the value of the SST outside of the cell.

The sensitivities of the approximate analytic solutions for YH, YP and YB to the SST forcing parameters
is plotted in Fig. 5. In Fig. 5a, YP and YB are plotted as functions of Ξ and σ . The sensitivities to q0 again
are not plotted, as YP and YB are only weak functions of q0. In Fig. 5b, YH as a function of Ξ , σ and q0 is
plotted. These plots show that the approximate analytical expressions are able to capture the correct size of the
of YP, YH and YB and the direction of change for the varied parameters, but slightly weaker sensitivities than
the numerical solutions. These sensitivities have also been computed without the second term on the RHS of
(99), but this term is essential to capturing the correct parameter dependence of YH.

Some of the parameter dependencies are easily understood. YH increases as a function of the forcing
strength, Ξ , and decreases, albeit weakly, as a function of forcing width, σ ; increasing σ decreases the magni-
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tude of the SST gradients, which ultimately (if indirectly) are the forcing for the meridional pressure gradients.
The sensitivities of YP to the SST profile parameters are not so transparent, but are in any case small. Of the
diabatic forcing parameters shown in Fig. 3, YP is most sensitive to R, and secondly to τc and τR. We do not
have simple physical arguments for these sensitivities. The sensitivities of YB are qualitatively similar to those
of YH; we do not attempt to analyze the changes in the width of the boundary region, YH − YB.

6.4 Comparison with numerical solution

A numerical solution for the moist model is found using the same numerical code described in the dry model
(Sect. 5.4) but with equation (12) replaced by (73a) and (73b). The asymptotic and numerical solutions are plot-
ted in Fig. 6 with the parameter values defined in (100) of Sect. 6.3. For these parameter values, ε = 7 × 10−3
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and � = 2 × 10−2, which are consistent with the small parameter assumptions. The width of the moist
asymptotic solution’s circulation nearly equals the numerical solution’s width. The asymptotic solution’s tem-
perature (Fig. 6a) is slightly greater near the equator but captures the width of the full numerical solution,
and the asymptotic meridional winds at the tropopause (Fig. 6b) are also very close to the numerical solution
but weaker at the maximum and minimum. The asymptotic solution’s zonal winds at the tropopause (Fig. 6c)
have similar agreement to the numerical solution as in the dry model, and the asymptotic surface zonal winds
(Fig. 6d) are slightly stronger than the numerical solution. The asymptotic solution’s moisture (Fig. 6e) and
precipitation (Fig. 6f) are in agreement with the numerical value of the width of the ITCZ, YP, but with peak
values that are noticeably weaker than those in the numerical results. We believe this discrepancy arises due
to the neglect of the moisture dependence of the Mq in the asymptotic solution (the term involving Mqp1 was
found to be O(ε)).

The moist Hadley circulation study of Fang and Tung [5] is similar to ours in its use of the WTG approxi-
mation to arrive at an asymptotic solution. Their model differs from the model presented here in their use of
a continuously stratified atmosphere and their convective region (ITCZ) is confined to a delta function. The
use of a continuous atmosphere allows them to solve for the sloping edge of the Hadley circulation, which is
not possible in this two-mode model, but they were unable to obtain a closed expression for the width of the
convective region as we have done here. Their strict enforcement of no temperature gradients at leading order
lead them to a temperature field that is constant throughout the Hadley circulation and is set by the temperature
in the ITCZ. They conclude that the temperature in a moist model of the Hadley circulation is greater than that
found in a dry model and that is should lead to a stronger circulation. In the model described here, unlike the
Fang and Tung model, the temperature solution allows for small temperature gradients at leading order. The
meridional circulation is slightly stronger in the moist model compared to the dry model, but the temperature
solutions for the dry and moist models are nearly identical though it is not immediately obvious how to compare
the forcings between the two models.

7 Conclusions

The model discussed in this study occupies the space in the hierarchy of axisymmetric atmospheric models
between numerical models with continuous stratification and simpler one-mode shallow water models, and is
capable of predicting the winds, temperature, moisture and width of the cell and ITCZ of the circulation. Our
analysis of the QTCM equations shows that the barotropic and baroclinic modes cancel at the surface due to the
strong surface drag and interact constructively near the tropopause. This arrangement of the momentum modes
enables the model to have both weak surface winds and strong, angular momentum conserving winds aloft, as
in fully stratified axisymmetric models of the Hadley circulation. In the asymptotic analysis discussed above,
angular-momentum conservation occurs at an order in ε which differs from that of the nonzero correction to
the surface winds (which is found at next order). This separation of the surface winds and angular momentum
conservation is only possible by making the assumption that λ ∼ ε1/2 in the combined momentum equation
(54), a slightly nonstandard step since λ depends on the vertical structure functions of the model and cannot
strictly be viewed as variable, i.e., it cannot literally be sent to zero as strictly required by the principles of
asymptotic analysis.

The results here show that the weak temperature gradient approximation (at least in the same loosened
form used by [16]) is valid for studying the Hadley circulation and enables the moist model to be solved using
asymptotic methods. The results of the dry model show that the inclusion of horizontal advection of temper-
ature is not essential to capture the dynamics of the two-mode Hadley cell. In the moist model, horizontal
moisture advection can also be neglected without great damage to the solutions. This is in contrast to the
results of Bretherton and Sobel [1] for the nonrotating Walker circulation. In that context, horizontal moisture
advection was found to play an important role in setting the location of the boundary between convective and
nonconvective regions.

This two-mode model is capable of generating an ITCZ whose width and strength are broadly comparable
to those observed in the absence of horizontal diffusion. This is in contrast to the model presented by Sobel
and Neelin (this volume), whose free troposphere is essentially the same as our model here but which adds a
near-surface boundary layer. In that model, configured axisymmetrically as here, horizontal diffusion is needed
to prevent the ITCZ from becoming very intense and narrow.
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Appendix

Table 1 Definition of variables, parameters and constants

Symbol Description Value Units

y Latitude Variable [m]
u0, u1 Zonal barotropic and baroclinic winds Variables [m/s]
v0, v1 Meridional barotropic and baroclinic winds Variables [m/s]
T1, q1 Baroclinic temperature and moisture Variables [J/kg]
Teq Equilibrium temperature profile Parameter [J/kg]
TRCE, QRCE Radiative–convective equilibrium temperature and moisture Variable [J/kg]
TR Radiative equilibrium temperature profile Parameter [J/kg]
YH, YC, YB Width of the Hadley circulation, convecting region and boundary region Variables [m]
α1 〈V 3

1 〉/〈V 2
1 〉 0.25 [1]

α2 〈V1�1∂p V1〉/〈V 2
1 〉 7.1 × 10−2 [1]

α3 (α1 − α2)/2 9.0 × 10−2 [1]
α4 α1 + α2 0.32 [1]
λ −(α2 + V1s) 0.17 [1]
� Rate of rotation of the Earth 7.29 × 10−5 [1/s]
rEarth Radius of the Earth 6.38 × 106 [m]
f Coriolis parameter (2� sin (y/rEarth)) Parameter [1/s]
β Variation of f with latitude (2�/rEarth) 2.29 × 10−11 [1/(s m)]
ε τD Ṽ /L̃ Parameter [1]
δ Ṽ /Ũ Parameter [1]
V1s Surface value of the baroclinic vertical velocity profile -0.24 [1]
c QTCM gravity-wave speed (

√
κ MSr1/̂a1) 47.7 [m/s]

κ R∗/cp 2.86 × 10−1 [1]
τeq Equilibrium temperature time scale Parameter [1/s]
τC, τR, τE, τD Time scales for convection, radiation, evaporation and surface drag Parameter [1/s]
τ ∗

C
1
τc

â1b̂1/(̂a1 + b̂1) Parameter [1/s]
MSr1 Reference value of the dry static stability 3.5 × 103 [J/kg]
MSp1 Change in the dry static stability per T1 change 3.4 × 10−2 [1]
Mqr1 Reference value of the gross moisture stratification 3.0 × 103 [J/kg]
Mqp1 Change in the gross moisture stratification per q1 change 2.7 × 10−2 [1]
η Weighting of the actual surface-wind contribution to the evaporation Parameter [1]
η′ ηŨ/Vs Parameter [1]
Vs Average surface-wind speed 10.0 [m/s]
qsat Surface moisture saturation vapor pressure Parameter [J/kg]
us , vs , Ts , qs Surface values of zonal and meridional wind, temperature and moisture Variables [m/s], [J/kg]
� Weak temperature gradient number, (MSp1/MSr1) T̃ Parameter [1]
Ro Rossby number 1.0 [1]
Ek Ekman number Parameter [1]
µ 1/(α4 − V1s) 1.8 [1]
µM Mqr1/MSr1 0.86 [1]
µm Mqp1/MSp1 0.79 [1]
b1s b(ps) 1.0 [1]
R Constant value used for TR Parameter [J/kg]
a1(p), b1(p) Vertical profiles of temperature and moisture Constant [1]
Ξ Amplitude of SST saturation vapor pressure Parameter [J/kg]
q0 Constant term in the SST vapor pressure Parameter [J/kg]
CD Bulk coefficient 1.0 × 10−3 [1]
ρa Density of air at sea level 1.23 [kg/m3]
ps, pt Pressure at the surface and top of the model 1.0 × 105, 2.0 × 104 [Pa]
pT ps − pt 8.0 × 104 [Pa]
â1, b̂1 The vertical averages of a1(p) and b1(p) 0.44, 0.45 [1]
Λ Amplitude of Teq Parameter [J/kg]
σ Width of Teq Parameter [1]
T eq Value of Teq away from the equator Parameter [J/kg]
vC , qC Convecting solution for meridional velocity and moisture Variables [m/s], [J/kg]
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Table 1 (contd.)

Symbol Description Value Units

vNC, qNC Nonconvecting solution for meridional velocity and moisture Variables [m/s], [J/kg]
vB, qB Boundary region solution for meridional velocity and moisture Variables [m/s], [J/kg]
γ1 1 − µM + b1sτ

∗
C/τE Parameter [1]

γ2 1 − µM − µMτ ∗
C/τR Parameter [1]

γ3 1 + b1sτ
∗
C/τE Parameter [1]

γ4 b1s + µMτE/τR Parameter [1]
γ5 τE/τR + b1s(τ

∗
C/τR + 1) Parameter [1]

cNC, cB Momentum integration constants in the nonconvecting and boundary regions Parameters [m/s]
ϕ q∗

0 + µM
τE
τR

R − γ4TRC E Parameter [1]
( )∗ Denotes a nondimensionalized variable
(̃ ) Denotes a dimensional scale
( )(0,1/2,1,...) Denotes the order in the asymptotic expansion
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