Supporting Information for "Elucidating the mechanisms responsible for Hadley cell weakening under $4 \times CO_2$ forcing"

R. Chemke ¹ and L. M. Polvani 2,3

¹Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel

²Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA

³Department of Earth and Environmental Sciences, and Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY,

USA

Contents of this file

1. Table S1-S2

2. Figure S1-S3

	Model	Modeling Center			
1	ACCESS1.0	CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia), and BOM (Bureau of Meteorology, Australia)			
2	BCC-CSM1-1	Beijing Climate Center, China Meteorological Administration			
3	bcc-csm1-1-m	Beijing Climate Center, China Meteorological Administration			
4	CanESM2	Canadian Centre for Climate Modelling and Analysis			
5	CCSM4	National Center for Atmospheric Research			
6	CNRM-CM5	Centre National de Recherches Meteorologiques / Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique			
7	CSIRO-Mk3-6-0	Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence			
8	FGOALS-g2	LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsinghua University			
9	GFDL-CM3	Geophysical Fluid Dynamics Laboratory			
10	GFDL-ESM2G	Geophysical Fluid Dynamics Laboratory			
11	GFDL-ESM2M	Geophysical Fluid Dynamics Laboratory			
12	GISS-E2-H	NASA Goddard Institute for Space Studies			
13	GISS-E2-R	NASA Goddard Institute for Space Studies			
14	HadGEM2-ES	Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais)			
15	INMCM4	Institute for Numerical Mathematics			
16	IPSL-CM5A-LR	Institut Pierre-Simon Laplace			
17	IPSL-CM5B-LR	Institut Pierre-Simon Laplace			
18	MIROC5	Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology			
19	MRI-CGCM3	Meteorological Research Institute			
20	NorESM1-M	Norwegian Climate Centre			

:

Table S1.List of the 20 CMIP5 models analyzed in this study.

	θ_y	θ_p	OLR_y	$\mathrm{OLR}-\mathrm{Q}_{\mathrm{srf}}$	$OLR\theta_p^{-1}$
Pq^{-1}	-0.03	0.53	0.01	-0.04	0.61
$OLR\theta_p^{-1}$	-0.11	0.92	-0.17	-0.22	
$OLR - Q_{srf}$	-0.05	-0.27	0.16		
OLR_y	-0.21	-0.14			
$ heta_p$	0.13				

:

 Table 2.
 Cross-correlation of the quantities analyzed in this study. See Methods section in the main text for the definition of each quantity.

Figure S1. The fractional change (in %, relative to PI) in NH Ψ_{max} under the abrupt $4 \times \text{CO}_2$ forcing vs. the NH tropical mean surface temperature response (K). The error bars represent the 95% confidence interval calculated via Student's t-distribution across all models.

Figure S2. Time series of the fractional change (in %, relative to PI) of NH Ψ_{max} (black line) and $\Psi_{\text{max}}^{\text{KE}}$ (blue line) under the abrupt $4 \times \text{CO}_2$ forcing in CMIP5 (left column), and the relative contributions to changes in $\Psi_{\text{max}}^{\text{KE}}$ (right column) from: diabatic heating (Q_y), eddy heat fluxes (v'T'), eddy momentum fluxes (u'v'), zonal friction (X) and static stability (S²). The blue and red bars show the relative contributions to the first 10 years and last 50 years fractional change in $\Psi_{\text{max}}^{\text{KE}}$, respectively. Each row shows the results form a different model.

:

Figure S3. The relative contributions to changes in $\Psi_{\text{max}}^{\text{KE}}$ under the historical and RCP8.5 forcing in CESM LE from diabatic heating (Q_y, black), and from decomposing Q_y to latent (Q_y|_{latent}, blue) and radiative heating (Q_y|_{latent}, red)