
1. Approximations for Spectral Integrals in Radiative Transfer Calculations
Radiation is the mechanism by which the Earth system achieves energy balance; radiative heating and cooling 
within the atmosphere also play a crucial role in setting the temperature profile of the atmosphere (Manabe & 
Wetherald, 1967). The strength of the interactions between radiation and the atmosphere depends strongly on 
frequency because the optical properties of gases, fundamentally determined by their molecular structure along 
with local temperature and pressure, vary rapidly in frequency by many orders of magnitude. (The optical prop-
erties of condensed materials such as clouds and aerosols vary much more slowly with frequency and are not 
considered here.)

The optical properties of the gases in the atmosphere can be determined at given frequencies based on detailed 
spectroscopic information describing each absorption line for each species (e.g., HITRAN, Gordon et al., 2022). 
The spectrally-integrated (broadband) exchange of radiation can be determined from this information to 
near-arbitrary accuracy by direct integration at very high spectral resolution. Results from line-by-line models 
taking this approach (along with high angular resolution) may be considered reference calculations (Pincus 
et al., 2020).

Highly detailed calculations are, however, impractical in applications such as the calculation of narrow-band 
radiances in satellite channels. In these contexts the radiative transfer integral is approximated using parameter-
izations. One such optimization parameterizes radiative transfer via linear regression (or, more recently, neural 
networks, Stegmann et al., 2022) against atmospheric and surface conditions, such as the The Joint Center for 
Satellite Data Assimilation's Community Radiative Transfer Model (Johnson et al., 2023). In the spectral dimen-
sion, radiances can be predicted by sparsely sampling frequencies and integrating via a weighted mean, thereby 
reducing the number of monochromatic radiative transfer calculations required (Buehler et al., 2010; Moncet 
et al., 2008).
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Plain Language Summary Quantifying the way radiation flows through the atmosphere is 
computationally expensive, and most applications require fast approximation. In this paper, we develop an 
empirically-optimized quadrature method that can compute quantities of interest in climate science and weather 
prediction such as radiative flux throughout the atmosphere, heating rates, and forcing by carbon dioxide. 
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In dynamical models of the atmosphere, radiation calculations must similarly be fast and accurate. The state-of-the-
art method for reducing spectral resolution is the correlated k-distribution (CKD) algorithm (Fu & Liou, 1992; 
Goody et al., 1989; Lacis & Oinas, 1991), which sorts frequencies according to their absorption coefficient k and 
determines the average at some set of quadrature points. The sorting and averaging creates a much smoother inte-
gral that can be evaluated with just tens or hundreds of quadrature points, as compared to the millions of points 
required by line-by-line models. These parameterizations seek to minimize the number of these quadrature points, 
called g-points, to limit computational cost (Hogan & Matricardi, 2022).

There is, however, no theory underlying k-distributions, so developers must make a range of somewhat arbitrary 
choices (Hogan & Matricardi,  2020a). Moreover, the common experience is that the absorption coefficients 
determined with any algorithm need to be tuned to match reference calculations (Hogan & Matricardi, 2022; 
Pincus et al., 2019), making the link between the reference and approximate calculations somewhat obscure.

Here we describe an approximation to spectral integration in the longwave consisting of a weighted sum of mono-
chromatic fluxes computed at a small set of discrete wavenumbers. We optimize both the members of this set 
and the linear weights to find the best estimate of the broadband integrated flux. The idea builds on approaches 
for computing narrow-band radiances originally developed for remote sensing applications (Buehler et al., 2010; 
Moncet et al., 2008) to sample the spectrum sparsely rather than averaging absorption coefficients. While our 
work is in the same spirit as de Mourgues et al. (2023), we take a more general approach and treat a wider range 
of applications including heating rates, boundary fluxes, and CO2 forcing. Our data is discretized more finely in 
the spectral dimension and more sparsely in the vertical, which prompts us to develop a cost function that will 
allow us to extrapolate the integration to atmospheres of different structures. We seek not only to develop a novel 
method, but also to understand any inherent properties and tradeoffs of the approach. To this end, we explore the 
relationship between the quantities targeted in the optimization and individual error profiles, test the effect of the 
vertical discretization of the training data set, and compare the performance of the empirically-optimized quad-
rature method to state-of-the-art correlated-k methods. We find that weighted, sampled monochromatic calcula-
tions can predict fluxes, heating rates, and CO2 forcing with error-cost relationships commensurate with modern 
correlated-k models, while being flexible to the needs of a given application.

2. Broadband Radiative Integral Calculation
The net broadband radiative flux at height z in the atmosphere, F(z), is given by integrating monochromatic fluxes 
across all wavenumbers:

𝐹𝐹 (𝑧𝑧) = ∫ 𝐹𝐹𝜈𝜈(𝑧𝑧) 𝑑𝑑𝜈𝜈 ≈
∑

𝑖𝑖

𝐹𝐹𝜈𝜈𝑖𝑖
(𝑧𝑧)Δ𝜈𝜈𝑖𝑖, 

where ν denotes wavenumber and Fν(z) is monochromatic net flux. We develop the method for the longwave in 
clear skies, so we disregard scattering.

Rather than calculating the line-by-line integral directly, we seek to compute the broadband net flux from a small 
subset of representative wavenumbers. This breaks the problem into two parts:

•  Optimally select the representative wavenumbers, and
•  Compute the net integrated flux from this subset.

Inspired by approaches originally developed for remote sensing applications (Buehler et  al.,  2010; Moncet 
et  al.,  2008), we select the representative subset via a combinatorial optimization algorithm called simulated 
annealing (Kirkpatrick et al., 1983), and calculate the net flux by performing a weighted sum of monochromatic 
fluxes found at the representative wavenumbers. In other words, we rewrite our problem as:

𝐹𝐹 (𝑧𝑧) ≈
∑

𝜈𝜈∈𝑆𝑆

𝑤𝑤𝜈𝜈𝐹𝐹𝜈𝜈(𝑧𝑧), (1)

where wν is the weight corresponding to wavenumber ν in the sparse subset S, and Fν(z) is the monochromatic 
flux found at wavenumber ν at height z. Though this is similar to the formulation of k-distributions (e.g., Equa-
tion 3 in Lacis and Oinas (1991)), here we are sampling monochromatic fluxes rather than averaging absorption 
coefficients. Furthermore, we sample across the entire longwave spectrum without imposing a band structure (cf. 
the Full-Spectrum Correlated-k, Hogan, 2010; Modest & Zhang, 2002).
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2.1. Line-By-Line Spectra and Correlated-k Data

In order to spectrally sample Fν∈S and choose wν, we need accurate, finely-resolved line-by-line spectra at arbi-
trary frequencies, as well as corresponding integrated fluxes and heating rates throughout the atmosphere. 
Atmospheric profiles used for training must be independent and provide a representative sample of conditions 
for a given applications.

We use the set of atmospheric conditions developed for the Correlated K-Distribution Model Intercomparison 
Project (CKDMIP; see Hogan & Matricardi,  2020a). The CKDMIP profiles are chosen from reanalysis data 
to represent the mean state as well as minimum and maximum extremes in water vapor concentration, ozone 
concentration, and temperature for the present day climate. We use software provided by CKDMIP to generate 
100 independent present-day, clear-sky reference flux profiles, half for training and half for testing, integrated 
in four hemispheric angles. Heating rates are computed from fluxes using a simple finite difference. Finally, we 
perturb the CO2 concentration of the 100 profiles to generate reference CO2 forcing values for the last glacial 
maximum (LGM) (180 ppm), pre-industrial (PI) (280 ppm), present day (∼415 ppm), 2× PI (560 ppm), 4× PI 
(1,120 ppm), 8× PI (2,240 ppm) (Hogan & Matricardi, 2020a), and 16× PI (4,480 ppm) for extreme paleoclimate 
scenarios (Bice & Norris, 2002).

2.2. Determining Optimal Weights for a Subset of Spectral Points

Given a subset of spectral points S of predetermined size |S|, we must obtain a set of weights such that the 
weighted sum of fluxes at those points predicts the broadband net flux across the spectrum. The weights wν are 
found by minimizing an objective function subject to several constraints.

Our first constraint is that all wν ≥ 0, since quadrature weights are always positive. Positive weights lend the 
method stability, as they prevent monochromatic fluxes from canceling (Buehler et al., 2010; Moncet et al., 2008). 
Second, the weights are normalized so that they sum to the length of the spectral domain, a general property of 
integration:

∑

𝑤𝑤𝜈𝜈 =
∑

𝑖𝑖

Δ𝜈𝜈𝑖𝑖 ≈ 3260 cm−1
, 

as we focus on the longwave. This is achieved by expressing the cost function in conjunction with the constraints 
as a linear program and solving using the convex optimization package cvxpy in Python (Agrawal et al., 2018; 
Diamond & Boyd, 2016).

2.3. Wavenumber Subset Optimization via Simulated Annealing

Next, we must identify an optimal subset at which to compute the predicted flux. We use simulated annealing, a 
stochastic optimization algorithm that can combinatorially evaluate different subsets in order to find a minimum 
in a given cost function (Kirkpatrick et al., 1983). The algorithm is guaranteed to converge asymptotically to 
a global minimum in cost function with probability 1 (Dekkers & Aarts, 1991), and can do so at much lower 
computational cost than a brute force approach for a large state space.

Buehler et al. (2010) provides a useful tutorial on algorithm implementation, and we follow most of their choices, 
except as follows. In our implementation of the algorithm, as in theirs, optimization is organized in sets of moves 
toward a minimum that the cost function value is averaged over (Buehler et  al.,  2010). However, our blocks 
consist only of 100 moves of which at least one must be accepted; otherwise, the algorithm is considered to have 
converged to a minimum and is terminated.

Because the optimization process is stochastic, we perform 16 independent optimizations for each subset size and 
plot the standard deviation away from the mean error in our results. We refer to a given set of wavenumbers and 
corresponding weights as a model.

2.4. Cost Function Formulation

As we are interested in optimizing multiple radiative quantities—fluxes, heating rates, and top-of-the-atmos-
phere CO2 forcing—we take inspiration from multi-objective optimization in the formulation of our cost function 
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(Yang, 2014). Given multiple optimization targets F (flux), H (heating rate), and 𝐴𝐴  (forcing), the simplest way to 
minimize their respective cost functions c simultaneously is to minimize their weighted sum:

𝐶𝐶 = 𝑓𝑓1𝐜𝐜(𝐹𝐹 ) + 𝑓𝑓2𝐜𝐜(𝐻𝐻) + 𝑓𝑓3𝐜𝐜( ). 

Each fi implicitly has the inverse units of its corresponding c to make the cost function unitless. Choosing the 
values of the weights fi is considered a subjective task with many valid solutions (Yang, 2014). In our case, the 
approach is as follows: first, we fix f2 = 1 and f3 = 0 as we vary f1, to focus on the tradeoff between heating rates 
and fluxes. For each value of f1, we fit linear weights to 100 random subsets of size 32 at every fifth vertical level 
for each of the 50 training atmospheres. The maximum relative (percent) error across vertical levels is recorded 
for each of the 100 iterations. The mean of these 100 iterations is plotted, where any random subset that produces 
an ill-conditioned problem (noninvertible data matrix) is ignored. The results of this experiment are shown in 
Figure 1a. The gray line indicates the parameter value f1 = 0.15 that is chosen, as it occurs where heating rate 
errors level off.

In Figure 1b, the same procedure is repeated while holding f1 = 0.15 and f2 = 1 fixed and varying f3. We choose 
parameter f3 = 1 in order to minimize increase in heating rate and flux errors.

3. Accuracy in Flux, Heating Rate, and CO2 Forcing Prediction
3.1. Boundary Fluxes

We illustrate the method by training the algorithm only on the outgoing atmospheric boundary fluxes: the 
upwelling flux at the top of the atmosphere and the downwelling flux at the surface. These fluxes can be useful 
for diagnostic calculations such as radiative forcing or the cloud radiative effect, and can help understand the 
Earth's energy balance. The simulated annealing and linear program both minimize the cost function

𝐶𝐶 =

√

(

𝐹𝐹
↑𝑇𝑇𝑇𝑇𝑇𝑇

𝑒𝑒𝑒𝑒𝑒𝑒
− 𝐹𝐹

↑𝑇𝑇𝑇𝑇𝑇𝑇

𝑟𝑟𝑒𝑒𝑟𝑟

)2

+

(

𝐹𝐹
↓𝑒𝑒𝑠𝑠𝑟𝑟𝑟𝑟 𝑠

𝑒𝑒𝑒𝑒𝑒𝑒
− 𝐹𝐹

↓𝑒𝑒𝑠𝑠𝑟𝑟𝑟𝑟 𝑠

𝑟𝑟𝑒𝑒𝑟𝑟

)2

𝑠 (2)

Fluxes at the boundaries of the atmosphere can be computed accurately with relatively sparse spectral informa-
tion (Figure 2). For various representative subset sizes, the best flux and weight configurations are recorded and 
the root mean squared error (RMSE) away from reference calculations,

Figure 1. The relative root mean squared error of each radiative term of interest is plotted as weighting parameters vary. In panel (a), the weight on the heating rate 
term f2 = 1 is held fixed while f1 is varied. In panel (b), f1 = 0.15 and f2 = 1 are held fixed while f3 is varied. The gray lines show the value of the parameter that is used 
throughout the study.
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

√

1

𝑁𝑁

1

𝑅𝑅

∑

𝑚𝑚𝑚𝑚𝑚

(

𝐹𝐹
𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒
− 𝐹𝐹

𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑒𝑒𝑟𝑟

)2

𝑚 

where n indexes the atmospheric profiles and m indexes vertical levels (here, just the boundaries), is plotted. This 
is the same as the cost function up to a constant multiplier, which serves to take the average of the error across 
atmospheric profiles and vertical levels rather than the sum. Additionally, using data submitted to CKDMIP 
(Hogan & Matricardi, 2020a) and available online, our results are plotted alongside metrics from modern CKD 
models, the 27 g-point ecCKD (Hogan & Matricardi, 2022), which is trained on the CKDMIP training data, and 
the reduced 128 g-point RRTMGP (Pincus et al., 2019).

First, to separate the contributions of simulated annealing and linear programming, weights are computed via a 
Riemann sum (defined by the Euclidian distance between wavenumbers), performed over the quadrature points 
during optimization, rather than by the linear program. The pink curve shows that for a simple diagnostic calcu-
lation, the Riemann sum can perform at around 1 W/m 2 error with 32 spectral points, similarly to correlated-k 
models, highlighting the effectiveness of simulated annealing at choosing an appropriate representative subset. 
The purple and blue curves show the training and testing error, respectively, using both simulated annealing 
and linear weight optimization. Here, eight spectral points allow fluxes at the boundaries of the atmosphere to 
be computed to within 1 W/m 2 (1% accuracy), comparable to ecCKD and RRTMGP. With more than 16 spec-
tral points, errors in testing data decrease much less rapidly with spectral detail than do errors in training data, 
indicating overfitting to the training data set. However, the difference between the Riemann sum error and the 
RMS testing error of the model that optimizes Equation 2 is at close to 1 W/m 2 throughout. This highlights the 
importance of optimizing both the linear weights and the representative spectral subset.

3.2. Net Flux and Heating Rate Profiles

Boundary fluxes control the total energy exchanged by the Earth and the atmosphere; flux profiles throughout the 
atmosphere set heating rates and hence the diabatic forcing of circulation. Simultaneous prediction of fluxes and 
heating rate can be achieved by specifying a cost function that contains both quantities, that is,

𝐶𝐶 = 𝑓𝑓1‖𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐹𝐹𝑟𝑟𝑒𝑒𝑓𝑓‖ + 𝑓𝑓2‖𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒 −𝐻𝐻𝑟𝑟𝑒𝑒𝑓𝑓‖, (3)

Figure 2. The root mean squared error, in units of W/m 2, across a range of wavenumber subset sizes for boundary fluxes—
upward flux at the top of the atmosphere and downward at the bottom. The blue curve represents the training set, and the 
purple the testing, when trained on the cost function in Equation 2; the pink curve represents training error when the integral 
is performed using a Riemann sum over the chosen spectral points. We omit Riemann testing error as it is nearly identical to 
the training error. Envelopes denote standard deviation across 16 independent optimizations, and crosses show where training 
took place. The same metric is plotted for boundary fluxes predicted by correlated-k models ecCKD (black) and RRTMGP 
(red). 10%, 1%, and 0.1% of mean boundary fluxes are plotted in gray.
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which sums the ℓ 2 norm of the differences between estimated and reference heating rate and net flux with 
weights fi across all included training profiles and vertical levels, formulated similarly to Equation 2 in Hogan and 
Matricardi (2022). Fest is defined as the dot product between the weights and the monochromatic fluxes, as in Equa-
tion 1, and the heating rate is computed using this predicted flux; for each vertical level m in a given training profile:

���� = −�
�
��

�����

��
≈ −�

�
��

��
��� − ��+1

���

�� − ��+1
, 

where S = 3,600 ⋅ 24 s/day is a scale factor; g = 9.81 m/s 2 is the acceleration due to gravity; cp = 1,004 J/
kg K is the specific heat at constant pressure for dry air; and p m is pressure provided by the CKDMIP data set 
at vertical level m, given in Pa. The heating rate is obtained in units of K/day. Finally, f1 = 0.15 and f2 = 1 are 
empirically derived hyperparameters that balance the optimization of heating rates and fluxes, as discussed in 
Figure 1. This cost function is used both to choose the optimal spectral subset as well as to find the associated 
weights.

We train the model on every fifth vertical level of the CKDMIP data set to predict vertically-resolved fluxes for 
these applications. The algorithm requires random access to a large (∼170 GB) data set, so this is a practical 
limitation, but also allows us to treat some levels as out-of-sample, which can help us understand the impact of 
the vertical discretization of the atmosphere on the accuracy of the algorithm. In other words, we insist that our 
algorithm learns to integrate across the spectral dimension independently of any implicit vertical structure.

In Figure 3, we show the profiles of absolute RMSE (W/m 2) of flux predicted by the minimization of Equation 3 
for each subset size in order to examine this vertical dependence. We compare to ecCKD on the training plot as it 
is trained on CKDMIP data, and to RRTMGP on the testing plot, as it is not. Both here and in Figure 4, pressure 
is plotted linearly in CKDMIP model level because training levels were chosen linearly in model level. The figure 
demonstrates good generalizability of the method in the vertical as well as to out-of-sample atmospheric profiles. 
Throughout the vertical profile, errors remain of a constant order of magnitude. Extrusions between training 
levels become more pronounced in larger subset sizes, indicating overfitting. Errors in the testing set are of simi-
lar order of magnitude to those in the training set. With 32 spectral points, we achieve errors within 0.3 W/m 2 
(about 0.1% relative error), comparable to the correlated-k models.

Figure 3. The root mean squared error (RMSE) (W/m 2) for predicted flux values for each pressure level, for a model that minimizes both flux error and heating rate 
error (Equation 3). Subset sizes are shown above the plot. Panel (a) shows results for the training set, and panel (b) plots out-of-sample testing data. Since the algorithm 
is trained only on every fifth vertical level, denoted by crosses on the training plot, in-between levels in the training set are also out-of-sample. Envelopes denote 
the standard deviation in RMSE across 16 algorithm runs. We highlight ecCKD on the training plot since it is trained on the CKDMIP data (black line), and show 
RRTMGP on the testing plot, since it is tested on our training data (red line). 1% and 0.1% of the mean flux at each level is plotted in gray for reference.

 19422466, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003819 by T
est, W

iley O
nline L

ibrary on [30/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

CZARNECKI ET AL.

10.1029/2023MS003819

7 of 13

Calculating heating rates from predicted fluxes with accuracy is difficult, especially at high altitudes, where 
the small pressure difference will magnify any errors in the flux. Furthermore, since heating rate is a deriva-
tive of flux computed by a simple finite difference, the heating rate error will be determined by the difference 
in flux error at adjoining vertical levels, rather than by the error in the fluxes themselves. Thus, to produce 
good estimates of heating rate profiles, we include heating rates in the cost function (Equation 3). Without this 
term, the optimization produces large heating rate errors in the stratosphere and above, even for large subset 
sizes.

Figure 4 shows the absolute RMSE in heating rates, in units of K/day. Similarly as in Figure 3, levels we trained 
on are marked with crosses. In panels (a) and (b), heating RMSE is shown only for the levels in the training set. 
Though errors are relatively large for small subset sizes, the errors for 32 and 64 wavenumbers are commensurate 
with CKD models throughout the atmosphere, maintaining errors of <0.2 K/day (approaching 1%).

Figure 4. The absolute root mean squared error (RMSE) (in K/day) of the heating rate calculated from predicted fluxes throughout the atmosphere. Subset sizes are 
noted above the plot. Panel (a) shows the RMSE of heating rates at only the pressure levels in the training set; panel (b) shows the associated out-of-sample atmospheric 
columns; (c) shows results for the training set using predicted fluxes for all model levels; panel (d) shows absolute RMSE for out-of-sample atmospheric profiles for 
all levels. Envelopes denote the standard deviation in absolute RMSE across 16 algorithm runs. The black and red lines show heating rates predicted by ecCKD and 
RRTMGP, respectively. 10% and 1% of the mean heating rate profile are plotted in gray dotted lines.
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In panels (c) and (d), heating rates computed from predicted fluxes at all levels (as in Figure 3) are shown. Here, for 
small subset sizes (≤16 representative wavenumbers), heating rate errors are larger, especially high in the atmosphere; 
in the layers immediately above the ground, the errors subset sizes 4 and 8 reach as high as 8 and 5 K/day, respec-
tively, due to the fine pressure discretization in these levels. Even for 16 predictors, where flux errors are commen-
surate with correlated-k models in Figure 3 at about 1 W/m 2 (1%) error throughout the atmosphere, the heating rate 
error is large where pressure thickness is small. For 64 predictors, the heating rate errors of our model are smaller than 
0.5 K/day for both training and testing throughout most of the atmosphere. However, the dependence of accuracy on 
vertical discretization is highlighted here. The method extrapolates fluxes to out-of-sample levels well because the 
relationship between the monochromatic fluxes and the broadband integral remains fixed. This is not true of heating 
rates when training is performed on certain pressure levels and extrapolation to different pressure levels is attempted.

3.3. Forcing by CO2

The top-of-the-atmosphere radiative forcing is defined as the difference in outgoing longwave radiation (OLR) 
between two states. This quantity is crucial for studying how Earth's energy balance will evolve with changing 
atmospheric composition. As with heating rates, it is not sufficient to predict the OLR in the two states; we must 
also minimize their difference. We adjust our cost function accordingly:

𝐶𝐶 = 𝑓𝑓1‖𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐹𝐹𝑟𝑟𝑒𝑒𝑓𝑓‖ + 𝑓𝑓2‖𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒 −𝐻𝐻𝑟𝑟𝑒𝑒𝑓𝑓‖ + 𝑓𝑓3‖𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑟𝑟𝑒𝑒𝑓𝑓‖, (4)

where the TOA forcing by 𝐴𝐴 CO2 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑂𝑂𝑂𝑂𝑂𝑂
𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒

𝑒𝑒𝑒𝑒𝑒𝑒
− 𝑂𝑂𝑂𝑂𝑂𝑂

𝑝𝑝𝑒𝑒𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝

𝑒𝑒𝑒𝑒𝑒𝑒
 , and similarly for 𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟 . Hyperparameters f1 = 0.15 

and f2 = 1 are as in Equation 3, and f3 is set to 1, as described by Figure 1. Here, we use the difference between 
8× PI CO2 and present-day conditions in the cost function, and extrapolate to forcing between present-day and the 
scenarios used in CKDMIP: LGM, PI, 2× PI, and 8× PI (Hogan & Matricardi, 2020a). We also extrapolate to 16× 
PI (4,480 ppm), to test whether our model can be useful in extreme paleoclimate scenarios (Bice & Norris, 2002).

Figure 5 shows the RMSE for different subset sizes across all the CO2 scenarios. Our method displays highest 
errors in extrapolations to very low and very high CO2 scenarios, such as the LGM and the extreme paleoclimate 
scenario. With 64 spectral points, we can achieve about 0.2 W/m 2 (<10%) error across scenarios, which is similar 
to the correlated-k models. Training on just the 2,240 ppm scenario is able to maintain errors within 10% for all 
climate scenarios for 32 and 64 spectral points, including extreme high and low CO2 concentrations.

Figure 5. The root mean squared error (in units of W/m 2) of the forcing by CO2 is plotted for different subset sizes across various climate scenarios. Panel (a) shows 
the error from the training set, and testing error on panel (b). Crosses indicate that only forcing from the 2,240 ppm training scenario is included in the cost function. 
The results from ecCKD and RRTMGP are shown in black and red, respectively. Clouds show the standard error across 16 independent optimizations. 10% and 1% of 
the mean forcing for each scenario are plotted in gray dotted lines.
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The choice of climate scenario to train on is somewhat arbitrary; training on any perturbation of CO2 yields 
similar results. This is demonstrated in Figure 6, where the RMSE in CO2 forcing is plotted for three independ-
ent optimizations trained on the various climate scenarios, each with 32 spectral points. The 8× PI scenario 
is the same as Figure  5. There are minima in the RMS at the scenarios trained on, and scenarios that are 
further out-of-sample yield higher errors. For example, when training on the LGM or PI CO2 concentrations, the 
dramatically-different 16× PI scenario is predicted with up to 1 W/m 2 error. However, the quadrature method 
remains flexible to different applications, as predictions for all scenarios remain within about 10% error for 32 
spectral points.

4. Evaluating Optimization Priorities
One of our aspirations is to create a framework in which optimization goals can be explicitly and transparently 
specified. For instance, for a weather model, it may be imperative to predict fluxes and heating rates well, but 
forcing by CO2 may not be a concern. Adding terms to the cost function increases optimization times. It also 
results in an error tradeoff, as ensuring that multiple quantities are equally optimized yields larger errors in each 
individual quantity.

Figure 7 highlights the importance of including quantities of interest in the cost function. In panel (a), the mean 
RMSE of outgoing fluxes is shown across subset sizes. While the model trained only on the outgoing fluxes (dark 
red) outperforms all others, on average, for almost all subset sizes, the others are not far behind. In panel (b), we 
examine the mean RMSE of the predicted flux. The tradeoff of adding extra quantities to the cost function is 
demonstrated—the model trained only on fluxes (red) is consistently more accurate than all others, and adding 
heating rates (orange) or CO2 (yellow) to the cost function decreases slightly accuracy for all subset sizes. As 
shown above, including the flux derivative in the cost function is imperative in accurately reproducing heating 
rates. In panel (c), the mean RMSE of heating rates is shown for different models. The models trained on heating 
rates (orange and yellow) achieve 10% error, on average, with 32 spectral points, while the model trained only on 
fluxes (red) exhibits larger errors. Finally, in panel (d), we explore forcing by CO2. Here, it is clear that in order to 
reproduce this TOA radiative forcing, we must include it in the cost function. Although including CO2 forcing in 
the cost function increases errors in the flux profiles and boundary fluxes, these increases are small.

Figure 6. The root mean squared error (in units of W/m 2) of the forcing by CO2 is plotted for a 32-wavenumber subset trained on the different climate scenarios: the 
last glacial maximum, pre-industrial concentrations (PI), and 2-, 4-, 8-, and 16× PI CO2. Panel (a) shows the error from the training set, and testing error on panel (b). 
Crosses indicate which training scenario is included in the cost function. The results from ecCKD and RRTMGP are shown in black and red, respectively. 10% and 1% 
of the mean forcing for each scenario are plotted in gray dotted lines. Clouds show the standard error across just three independent optimizations.
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5. Physical Interpretation of Optimization Choices
Though simulated annealing is a stochastic optimization algorithm agnostic to the physics of the Earth system, we 
hope to draw some physical understanding from the wavenumber subsets and associated weights that are chosen. 
Figure 8 shows the location of subset members on an example OLR spectrum for three independent optimiza-
tions. Bars are shown below the spectrum noting major features: the atmospheric water vapor window as well as 
absorption by water vapor, carbon dioxide, and ozone. On these bars, the dots indicate where subset members lay 
on the spectrum for three 16-member models trained on heating rates and fluxes (Equation 3). The size of the dots 
is proportional to the value of the monochromatic flux at that wavenumber multiplied by its linear weight. This 
quantifies how much a given subset member contributes to the integrated broadband flux. The colors correspond 
to the three different models.

The optimization chooses wavenumbers that are distributed across the spectrum, spanning absorption by all three 
major gases as well as the water vapor window. Where the Planck curve is small, such as the tails of the spectrum, 
few points are chosen, and those that are tend not to be “important.” The largest contributions tend to come from 
the water vapor window, followed by the main CO2 and H2O bands.

Next, the amount of absorption captured by each subset member is quantified through optical depth. For each 
wavenumber in a given subset S, the pressure level at which optical depth τ = 1 is reached from the top of the 
atmosphere is recorded. The wavenumbers are then sorted by this pressure level, averaged across training atmos-
pheric profiles and independent optimizations, and then plotted in Figure 9. The colorful lines correspond to an 
optimization minimizing error in both heating rates and fluxes (Equation 3), while the accompanying gray curves 
result from optimizing only fluxes.

As the size of the subset increases, the members span more of the atmosphere—the pressure of the highest-altitude 
(lowest-pressure) optically-thick level decreases. Furthermore, more levels that radiate at higher pressures in the 
atmosphere are included: the slope of the lines below 100 hPa decreases. Finally, the models trained on only 
fluxes span less of the atmosphere and contain more wavenumbers that radiate from higher pressures on average. 
This explains why the model trained only on fluxes cannot predict heating rates at low pressures with accuracy, 

Figure 7. The average errors for models trained on various cost functions: one including only boundary fluxes (Equation 2), in dark red; one including every fifth net 
flux in the vertical, in red; one trained on these fluxes as well as corresponding heating rates (Equation 3), in orange; and one where the cost function encompasses 
fluxes, heating rates, and the CO2 forcing between present day and 8× PI CO2 (Equation 4), in yellow. The panels show: (a) the mean root mean squared error (RMSE) 
for boundary fluxes; (b) the mean RMSE for fluxes throughout the atmospheric column; (c) the average absolute RMSE of heating rates throughout the atmospheric 
profile and (d) the average RMSE of forcing by CO2 across climate scenarios. The crosses indicate where the given quantity was included in the cost function. 10%, 1%, 
and 0.1% of the mean reference values for each quantity are plotted in gray dotted lines.
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and further justifies our inclusion of heating rates in the cost function. It also proposes a relationship between 
the vertical discretization of the training atmospheres and the number of subset members required to accurately 
predict heating rates.

6. Conclusions
In this paper, we demonstrate that a small set of spectral points can be used to predict flux profiles, heating rate 
profiles, and CO2 forcing with accuracy comparable to CKD methods. The empirically-optimized quadrature 

Figure 8. Below an example of a spectrum of outgoing longwave radiation, major absorbers are noted. Dots mark the 
members of three independent, optimal wavenumber subsets. The colors correspond to these independent optimizations. The 
size of the dots is proportional to the importance of that spectral point to the broadband flux integration.

Figure 9. For each wavenumber in the final subset S, the pressure level at which that wavenumber first reaches optical depth 
τ = 1 from the top of the atmosphere is plotted. The colorful lines correspond to models optimizing both fluxes and heating 
rates (Equation 3), and the accompanying gray lines correspond to models optimizing only fluxes.
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method selects an optimal subset of spectral points at which to compute a weighted sum to estimate the broadband 
net flux integral. We apply the method to predicting fluxes throughout the vertical column and test its generaliz-
ability to out-of-sample atmospheric profiles. We can achieve accuracy to within 1 W/m 2 for vertically-resolved 
net fluxes with 16 spectral points while avoiding overfitting.

We show that in order to reproduce heating rates accurately, especially high in the atmosphere, we must optimize 
not only on fluxes, but also on the difference between fluxes at consecutive height levels. Including heating rates 
in the cost function yields errors of less than 0.2 K/day throughout the atmospheric column for subsets of 32 
points. Similarly, in order to explore applications in climate science, we include forcing by CO2 in the cost func-
tion. We find that by training only on an 8× PI scenario, we can extrapolate to reproduce top-of-the-atmosphere 
forcing within 10% (<1 W/m 2) with 32 or 64 spectral points across various scenarios. The ability to optimize 
quantities of interest lends flexibility to different applications to the method.

While our approach performs well on the present-day clear-sky scenarios provided in CKDMIP, there are 
several limitations to this initial demonstration. First, we have chosen to focus on clear-sky scenarios, as many 
k-distributions are initially developed using only clear skies (e.g., Pincus et al., 2019). The optical properties of 
clouds vary only weakly with wavenumber so we anticipate that training on cloudy profiles would not change the 
accuracy or the flexibility of our quadrature method. However, as with choosing clear-sky profiles, choosing an 
appropriate set of cloudy training profiles is a challenge, and so we leave it out of the scope of this work.

We have also limited our training and testing data to the CKDMIP sets, which commits us to certain atmospheric 
condition and vertical discretization choices. Choosing training atmospheres that will represent diverse condi-
tions and generalize well is an open question for many statistical and machine learning applications, and we use 
only 50. Furthermore, memory constraints (the total size of the spectral training data set is about 170 GB) also 
prevent us from training on all model levels in the vertical. Though this allows us to highlight the importance of 
the vertical discretization of the data set, using a finer grid would certainly improve both flux and heating rate 
predictions. It may also require more spectral points to parameterize the extra information.

Finally, though we know many greenhouse gases exert a forcing on the climate, we focus only on CO2. Since we 
fit one set of weights with a linear regression, there is a limit on how many related quantities we can optimize at 
once before we formulate an ill-conditioned problem. In order to predict forcing by different gases, or improve 
our CO2 forcing estimates across different scenarios, we will have to consider how best to include many differ-
ent  optimization targets.

Data Availability Statement
Model output data and the Jupyter notebook for creating figures shown in this paper are publicly available at 
Czarnecki et al. (2023). The line-by-line code and data is freely available from the CKDMIP project Hogan and 
Matricardi (2020b).
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