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Abstract The Whole Atmosphere Community Climate Model version 6 (WACCM6) is a major update
of the whole atmosphere modeling capability in the Community Earth System Model (CESM), featuring
enhanced physical, chemical and aerosol parameterizations. This work describes WACCM6 and some of
the important features of the model. WACCM6 can reproduce many modes of variability and trends in the
middle atmosphere, including the quasi-biennial oscillation, stratospheric sudden warmings, and the
evolution of Southern Hemisphere springtime ozone depletion over the twentieth century. WACCM6 can
also reproduce the climate and temperature trends of the 20th century throughout the atmospheric
column. The representation of the climate has improved in WACCM6, relative to WACCM4. In addition,
there are improvements in high-latitude climate variability at the surface and sea ice extent in WACCM6
over the lower top version of the model (CAM6) that comes from the extended vertical domain and
expanded aerosol chemistry in WACCM6, highlighting the importance of the stratosphere and
tropospheric chemistry for high-latitude climate variability.

Plain Language Summary This manuscript describes the Whole Atmosphere Community
Climate Model Version 6 (WACCM6), a chemistry and climate model which extends up to 140 km in the
upper atmosphere. WACCM6 reproduces many important features of the climate system, and the addition
of detailed chemistry and the higher than normal model top produces slightly improved simulations of the
Arctic region.

1. Introduction
The climate system is driven by energy from the Sun, mediated by the absorption and scattering of that
energy by the atmosphere (including clouds) before it arrives at the surface of the Earth. Simulating the cli-
mate system means more than just simulation of the surface climate and the troposphere. For example, the
climate and chemistry of the stratosphere may also affect the surface, by changing surface forcing through
the climatology of water vapor and ozone (Solomon et al., 2010), by stratospheric aerosol loading (Mills et al.,
2016), or dynamical interactions between the stratosphere and troposphere with impacts all the way to the
surface (Baldwin & Dunkerton, 2001). Thompson et al. (2002) and Charlton-Perez et al. (2013) illustrated
how the middle atmosphere can improve predictability of the lower atmosphere. In addition to surface cli-
mate variables such as temperature and precipitation, the climate system includes chemical reactions that
impact humans and ecosystems through the oxidizing capacity of the troposphere, including near-surface
and tropospheric ozone (e.g., Lefohn et al., 2018). Changes in chemistry and dynamics also affect absorbed
radiation through the stratospheric ozone layer (World Meteorological Organization, 2011). Stratospheric
ozone changes are the premier example of the influence of stratospheric composition on climate (e.g., Son
et al., 2010) and air quality (Hodzic & Madronich, 2018). Finally, the dynamics of the sun may affect the
atmosphere, particularly the upper atmosphere (from the mesosphere to thermosphere to ionosphere). In
periods of extreme solar activity, solar forcing, mediated by upper atmospheric processes, can impact elec-
trically sensitive human structures from power grids to electronic devices, making it critical to understand
the “whole” atmosphere.
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Simulating the Earth system and its impacts on human health and ecosystems requires the use of com-
prehensive simulations that can represent the physical, dynamical, and chemical climate of the whole
atmosphere. It is for precisely this reason that the Whole Atmosphere Community Climate Model (WACCM)
was developed (Garcia et al., 2007) and also used for coupled climate simulations (Marsh et al., 2013).

WACCM was developed for, and has been used to examine many important science questions that can
only be addressed with whole atmosphere models. Prior studies with WACCM include trends resulting
from increasing greenhouse gases (e.g., Garcia et al., 2007), the climatology of the tropical tropopause layer
(Gettelman & Birner, 2007), the response of the atmosphere to the solar cycle and the flux of energetic par-
ticles (e.g., Jackman et al., 2009; Marsh et al., 2007; Matthes et al., 2010), the development and recovery of
the ozone hole (Eyring et al., 2007, 2010), the response of the stratosphere to El Niño–Southern Oscillation
(Calvo et al., 2010; Sassi et al., 2004), and to understand effects of stratospheric geoengineering (Tilmes et al.,
2009). WACCM has also been run as the atmosphere in an Earth system model coupled to an ocean (Marsh
et al., 2013) and that version (WACCM4) has been used to study the impact of volcanic eruptions on tropo-
spheric climate (Mills et al., 2017), stratospheric temperature trends (Randel et al., 2017), and the processes
driving the quasi-biennial oscillation (Garcia & Richter, 2018).

This work documents version 6 of the Whole Atmosphere Community Climate Model (WACCM6) in the
Community Earth System Model version 2 (CESM2). Section 2 describes WACCM6 and its role in the fully
coupled Earth System Model (ESM) CESM2. We will refer to the atmosphere model as WACCM6, and the
fully coupled system with that atmosphere as CESM2-WACCM6. Section 3 describes the available model
configurations, and section 4 the specific simulations used in this study. Section 5 presents WACCM6 sim-
ulations, Section 6 describes differences between WACCM and the Community Atmosphere Model (CAM)
versions and section 7 presents conclusions.

2. Model Description
This section documents the important features and changes to WACCM since WACCM4 (Marsh et al., 2013).

2.1. Physical Atmosphere
WACCM6 is the whole atmosphere version of the Community Atmosphere Model version 6 (CAM6). Unlike
in previous versions of CESM, WACCM6 is identical to CAM6 in the range of processes that are parameter-
ized. The only exception is the representation of parameterized gravity waves (see section 2.2). A summary
of the current parameterizations for CAM6 and WACCM6 clouds and aerosols is contained in Table 1. These
are detailed further below as applied to WACCM6.

Table 1 describes the different versions of WACCM starting with WACCM4, described by Marsh et al. (2013).
WACCM-CCMI was developed for the Chemistry Climate Modeling Iniative (CCMI) and features updated
tropospheric and stratospheric chemistry. WACCM5 (Mills et al., 2017) is based on WACCM4 chemistry,
but with updated physical parameterizations following Neale et al. (2010) and features adjustments to the
physical parameterizations and gravity wave schemes (section 2.2), as well as updated stratospheric prog-
nostic aerosols (Mills et al., 2016). WACCM5 also transitions to higher horizontal and vertical resolution.
WACCM-CCMI emphasized the evolution of chemistry and WACCM5 the evolution of dynamics. WACCM6
combines the new aspects of both models with additional updates for CESM2.

WACCM6 was also designed to better match CAM6 in CESM2 and uses all the same physical parameteriza-
tions as CAM6 (plus some additional gravity waves detailed in section 2.2). WACCM6 also moved to higher
horizontal resolution. One of the major reasons to move to a 1◦ horizontal resolution for WACCM is to match
the resolution of the low top model CAM6: this removes one of the major differences between CAM and
WACCM. A lower resolution (2◦) version of WACCM6 was released in CESM2.1.1.

2.2. Gravity Wave Drag
In addition to the orographic gravity wave drag parameterization that is identical between CAM6 and
WACCM6, WACCM6 includes a nonorographic gravity wave drag parameterization following Richter et al.
(2010) with separate specification of frontal and convective gravity wave sources. Two main adjustable
parameters in the frontal gravity wave source specification have been changed since WACCM4 due to the
increased horizontal resolution in WACCM6: The frontogenesis threshold in WACCM6 is set to 0.108 K2

(100 km)−2 ·h−1 and the source stress of frontally generated waves is set to 𝜏b = 3 × 10−3 Pa. These parame-
ters are the same as those used in Mills et al. (2017) for WACCM5. In order to obtain an internally generated
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Table 1
Parameterizations in Different Versions of WACCM

Common name WACCM4 WACCM-CCMI WACCM5 WACCM6
Horizontal resolution 1.9◦ × 2.5◦ 1.9◦ × 2.5◦ 0.95◦ × 1.25◦ 0.95◦ × 1.25◦

Vertical levels 66 66 70 70
Deep convection ZM ZM ZM* ZM*
Boundary layer HB HB UW CLUBB
Shallow convection Hack Hack UW CLUBB
Macrophysics RK RK Park CLUBB
Microphysics RK RK MG2 MG2
Radiation CAMRT CAMRT RRTMG RRTMG
Aerosols Bulk Bulk MAM3 MAM4
QBO Nudged Nudged Interactive Interactive
Chemical mechanism MA(59) TSMLT (180) MA(59) TSMLT1 (228)
Chemical rates JPL-06 JPL-11 JPL-06 JPL-15
SOA 2-product 2-product SOAG VBS
Sulfate SAD CCMVal2 CCMI Interactive Interactive
Ice SAD Bulk Bulk Bulk MG2
Solar variability CMIP5-Solar CCMVal2-Solar CMIP5-Solar CMIP6-Solar
GHG abundances CMIP5 RCPs CMIP5 RCPs CMIP5 RCPs CMIP6 SSPs
Halogens CMIP5 RCPs WMO 2010 CMIP5 RCPs CMIP6 SSPs

Note. References are listed in alphabetical order: CAMRT: Collins et al. (2002), CLUBB: Bogenschutz
et al. (2013), Larson et al. (2002), CMIP5 RCPs: Meinshausen et al. (2011), CMIP6: SSPs Meinshausen
et al. (2017), Hack: Hack (1994), HB: Boville et al. (2006), JPL-06, JPL-11, JPL-15: Burkholder et al.
(2015), MAM3: Liu et al. (2012), Mills et al. (2016), MAM4: Liu et al. (2016), Mills et al. (2016), MG2:
Gettelman and Morrison (2015), Park: Park et al. (2014), RRTMG: Iacono et al. (2008), Mlawer et al.
(1997), SOAG: Liu et al. (2012), UW: Park and Bretherton (2009), VBS: Hodzic et al. (2016), WMO
2010 : World Meteorological Organization (2011), ZM: Zhang and McFarlane (1995), ZM*: Zhang and
McFarlane (1995), Neale et al. (2008), 2-product: Heald et al. (2008).

QBO with a reasonable period, a scaling factor of 0.25 was applied to the depth of heating in the deep con-
vective parameterization (which reduces the effective phase speeds of convectively generated gravity waves),
and the efficiency of convectively generated waves was changed to 0.4 (Mills et al., 2017).

Updated orographic schemes were implemented in WACCM6 for planetary boundary layer (PBL) form
drag and orographic gravity waves (OGW). The updated PBL form drag scheme is that of Beljaars et al.
(2004). The updated OGW scheme incorporates near-surface nonlinear drag processes following Scinocca
and McFarlane (2000) and uses a feature-based algorithm to derive forcing data based on Bacmeister
et al. (1994).

2.3. Solar and Geomagnetic Forcing
For almost all model configurations, WACCM6 uses the recommended CMIP6 solar and geomagnetic forc-
ing as described in Matthes et al. (2017) and available via http://solarisheppa.geomar.de/cmip6. The solar
spectral irradiance used to calculate heating and photolysis rates are averages from two semiempirical mod-
els: version 2 of the Naval Research Laboratory model (NRLSSI2, Coddington et al., 2015) and a composite of
two Spectral And Total Irradiance REconstruction (SATIRE) models (Yeo et al., 2015). For photoionization
and heating rates at wavelengths shorter than Lyman-𝛼, WACCM6 uses the parameterization of Solomon
and Qian (2005), that takes as input the F10.7 index. Geomagnetic variability affects the flux of energetic
particles that precipitate into the atmosphere, ionizing and possibly dissociating major species. Ion-pair pro-
duction rates (IPR) by galactic cosmic rays, solar protons, and medium-energy electrons are also prescribed
following Matthes et al. (2017). IPRs are specified on pressure levels and a magnetic latitude grid, which are
interpolated to the WACCM6 geographic grid. For all chemical mechanisms other than the MAD mecha-
nism described below, IPR rates are converted into rates of production for odd-hydrogen and odd-nitrogen
species following Jackman et al. (2009).
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For lower-energy electrons that precipitate in the auroral regions, WACCM6 continues to use the parame-
terized auroral oval model of Roble and Ridley (1994), the implementation of which in WACCM is described
in Marsh et al. (2007). This model takes as input the power input to the atmosphere from energetic particle
bombardment integrated over either the Northern or Southern Hemisphere, known as hemispheric power
(HP) in gigawatts (GW). In WACCM, HP is assumed to be related only to the Kp geomagnetic index through
the following revised relationship based on the formulation of Zhang and Paxton (https://doi.org/10.1016/
j.jastp.2008.03.008):

HP(GW) =16.82e0.32Kp − 4.86 Kp ≤ 7
=153.13 + 73.4(Kp − 7.0) Kp > 7

In the preindustrial control simulations, the solar and geomagnetic forcing are an average over the period
1850 to 1873. For transient simulations, solar and geomagnetic forcing are linearly interpolated at each
model time step from daily averaged data. The model is capable of using higher-frequency forcing files,
should the scientific application demand it (e.g., the modeling of solar storms).

It should be noted that beginning 1 January 2015, solar forcing data are projections based on historical solar
cycles rather than from observations. It is for this reason that in non-CMIP6 simulations that are nudged
to reanalysis (see section 3), WACCM6 uses only irradiance fluxes from NRLSSI2, which are updated rou-
tinely and available from National Centers for Environmental Information (data set https://doi.org/10.7289/
V51J97P6).

2.4. Chemistry
WACCM6 is designed to represent a full suite of chemical constituents. It shares the four mode Modal
Aerosol Model (MAM4, Liu et al., 2016; Mills et al., 2016) with CAM6 but adds chemistry (explicitly cal-
culating the oxidants which are specified in CAM6). The baseline chemical mechanism (the collection of
reactions and species) contains reactions relevant for the whole atmosphere: troposphere, stratosphere,
mesosphere and lower thermosphere (TSMLT). Three additional chemistry mechanisms are available: a
tropopshere and stratosphere (TS) mechanism, a middle atmosphere (MA) mechanism with a reduced set
of tropospheric reactions, and the same MA mechanism with the addition of D region ion chemistry (MAD).

Here we describe the TSMLT mechanism used in WACCM. This is a superset of all the other mechanisms,
except that it does not contain detailed D region ion chemistry (see below). The chemical species within
this mechanism include the extended Ox, NOx, HOx, ClOx, and BrOx chemical families, along with CH4
and its degradation products. In addition to CH4, we also include N2O (major source of NOx), H2O (major
source of HOx), plus various natural and anthropogenic precursors of the ClOx and BrOx families. This
mechanism also includes primary nonmethane hydrocarbons and related oxygenated organic compounds.
The chemical processes have evolved from previous versions (e.g., Emmons et al., 2010; Kinnison et al.,
2007; Lamarque et al., 2012; Marsh et al., 2013; Tilmes et al., 2016). Reaction rates are updated following
JPL 2015 recommendations (Burkholder et al., 2015).

The current mechanism includes a new detailed representation of secondary organic aerosols (SOAs) based
on the volatility basis set (VBS) approach from major anthropogenic and biogenic volatile organic com-
pound precursors (Hodzic et al., 2016). The WACCM mechanism includes a total of 231 solution species,
583 chemical reactions broken down into 150 photolysis reactions, 403 gas-phase reactions, 13 tropospheric,
and 17 stratospheric heterogeneous reactions. The photolytic calculations are based on both inline chem-
ical modules and a lookup table approach (Kinnison et al., 2007). The chemical mechanism includes two
very short-lived halogens: CHBr3 and CH2Br2. The surface mole fraction for these two species is set to 1.2
pptv (i.e., 6 pptv of total bromine). This approach adds an additional ∼5 pptv of inorganic bromine to the
stratosphere.

The heterogeneous reactions use aerosol surface area density (SAD) derived from MAM4 (Mills et al., 2016).
The tropospheric heterogeneous reactions take four aerosol types into account (i.e., sulfate, black carbon,
particulate organic matter, and secondary organic aerosol). The stratosphere heterogeneous reactions occur
on three aerosol types (i.e., sulfate, nitric acid trihydrate, and water-ice). The liquid binary sulfate aerosol
SAD is derived from MAM4, but modified in very cold regions (<200 K) using the Aerosol Physical Chem-
istry Model (Tabazadeh et al., 1994) to represent supercooled ternary solution aerosols. WACCM6 uses
CMIP6 specified mixing ratios for greenhouse gases (Meinshausen et al., 2017), reactive gases and aerosols
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from anthropogenic sources, including aircraft NOx (Hoesly et al., 2018) and biomass burning (vanMarle
et al., 2017). Biogenic emissions are calculated online in CLM with MEGANv2.1 (Guenther et al., 2012).
Lightning NOx emissions are interactive, and total ∼3–4 TgN/year.

The water-ICE and nitric acid trihydrate SAD approach is described in Kinnison et al. (2007) with updates
listed in Solomon et al. (2015). The chemical mechanism includes nine chemical tracers (SF6, O3S, E90,
AOA_NH, AOA1, AOA2, ST80_25, NH5, and NH50). These tracers are described in Tilmes et al. (2016). The
mesosphere and lower thermosphere chemistry component of WACCM6 includes the species and reactions
described in Marsh et al. (2007). The radiatively active gases in WACCM include H2O, O2, CO2, O3, N2O,
CH4, CFC12, aerosols, and an “equivalent CFC11” (CFC11eq), which includes radiative effects of CFC11
along with a scaling to reflect other CFCs and HFCs (Meinshausen et al., 2017).

The gas phase chemistry of the MA chemical mechanism is closer to the chemical mechanism used in
WACCM4 than the TSMLT or MAD mechanisms. The MA mechamism includes two additional species not
present in WACCM4. These species are the metastable states O+(2D) and O+(2P), which are important for
the energetics of the thermosphere but do not have any impact on composition or chemistry in the lower
atmosphere. As with all mechanisms, the rate coefficients have been updated to JPL-2015.

The middle atmosphere D region (MAD) chemical mechanism, which adds negative ion and cluster ion
chemistry, was first implemented in WACCM4 and is described in Verronen et al. (2016). Since version 3
of WACCM, the chemical mechanism has solved for the densities of five ions and electrons that make up
the E region ionosphere (Marsh et al., 2007). The MAD mechanism adds 15 positive and 21 negative ions
and addresses several deficiencies in the mesosphere that occur when only E region ions are considered.
The first is that the dominant negative charge carriers are no longer electrons below 75 km, but negative
ions such as Cl−(HCl), HCO−

3 and NO−
3 (HNO3). The negative charge is balanced not by O+

2 and NO+, as in
the E region, but by proton hydrates (H+(H2O)n=3,4,5). This should yield a better representation of electron
density throughout the mesosphere according to established theory (Brasseur & Solomon, 1986), though
WACCM6 electron density profiles have not yet been validated against observations in the lower mesosphere.
The second improvement is that production of odd-hydrogen (H, OH) and odd-nitrogen (N, NO) from ion-
ization by energetic particles is no longer parameterized but flows through the complex chemistry following
the ionization of the major species (N2, O2). It includes the chemistry that produces the enhanced levels of
HNO3 observed in the polar middle stratosphere following a solar storm that is not seen in simulations with
the MA mechanism (e.g., Orsolini et al., 2018). Andersson et al. (2016) showed improved representation of
MA chemistry with the D region ions during a solar proton event.

2.5. Prognostic Stratospheric Aerosols
WACCM6 features prognostic stratospheric aerosols. As described by Mills et al. (2016), the modal aerosol
model, MAM (Liu et al., 2012, 2016) has been modified to change the mode widths and allow growth of
sulfate aerosol into the coarse, or large size, mode (MAM4). This is important to properly represent aerosol
sources in the stratosphere, including volcanic emissions, and natural background emissions of carbonyl
sulfide (OCS), which form the stratospheric aerosol layer. Historical variability in OCS is included as a
time-varying lower boundary condition (Montzka et al., 2004). SO2 emissions from volcanic eruptions are
derived from version 3.11 of Volcanic Emissions for Earth System Models Neely and Schmidt (2016, Volca-
nEESM). Because VolcanEESM is based on observations of volcanic SO2 clouds weeks to months after an
eruption, we must account for aerosol self-lofting due to in situ absorption of longwave radiation in esti-
mating the initial altitude of large volcanic SO2 clouds. For eruptions inputting more than 3.5 Tg of SO2, we
therefore impose a maximum altitude of 20 km, as discussed in Mills et al. (2016) for the case of the 1991
Pinatubo eruption. This adjustment affects four eruptions in the historical period of simulation (1850-2014):
Krakatau (1883), Agung (1963), El Chichón (1982), and Pinatubo (1991).

To account for the loss of sulfur on ice and ash as observed in the initial 10 days following the 1991 Pinatubo
eruption, we scale the mass input to the model by a factor of 5/9 from eruptions estimated to have emit-
ted more than 15 Tg of SO2. This adjustment affects two eruptions: Krakatau (1883), and Pinatubo (1991).
The rationale for these altitude and mass adjustments is discussed further in Mills et al. (2016). For each
day of eruption, SO2 emissions occurs over 6 hr from 1200 to 1800 UT. A complete table of volcanic erup-
tions and emissions parameters is included as metadata in the VolcanEESM netCDF file used for historical
simulations, which is publicly available from the CESM2 inputdata repository.
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Table 2
WACCM/CAM Configurations Used in This Paper, Including cost (CPU-Hours) of the Model

CESM2- CESM2-
WACCM6 WACCM6-SD WACCM6 WACCM6 WACCM6-SC

Name Historical Specified Coupled Coupled Specified
Description (AMIP) Dynamics 1850 Control Historical Chemistry
WACCM component set FWHIST FWSD BW1850 BWHIST FWscHIST
CAM component set FHIST FWSD B1850 BHIST FHIST
WACCM ensembles 3 1 1 3 1
# years or dates 1950–2014 2005–2017 500 years 1850–2014 1979–2014
Coupled ocean/ice No No Yes Yes No
Specified dynamics No Yes No No No
Chemistry TSMLT1 TSMLT1 TSMLT1 TSMLT1 Specified
CPU-hrs/sim-year 22,000 21,000 27,000 30,000 5,700

Following CMIP6 guidance (Eyring et al., 2016), we include in preindustrial control simulations background
volcanic aerosol at a level to match average radiative forcing over the historical simulation (i.e., 1850–2014
mean). Our preindustrial control simulations therefore include constant SO2 emission rates time-averaged
from all eruptions over the historical period. SO2 emissions from volcanic eruptions are zeroed below the
tropopause in preindustrial simulations.

2.6. Secondary Organic Aerosols
WACCM6 also includes an interactive Secondary Organic Aerosol (SOA) approach based on the VBS (Tilmes
et al., to be submitted) with the TSMLT mechanism. Gas phase semivolatile SOA components (SOAG) are
formed from anthropogenic and biomass burning precursor emissions at the surface, as well as from bio-
genic emissions from the Model of Emissions of Gases and Aerosols from Nature version 2.1 (Guenther
et al., 2012). In addition to the traditional SOA precursors such as isoprene, monoterpenes, aromatics, and
short-chain volatile organic compounds, the updated mechanism also includes the long-chain n-alkanes (C
> 12) that are not included in the standard emission inventories and that were added as coemitted species
with primary organic carbon emissions from fossil fuel and biomass burning sources. This approach is more
interactive than earlier approaches since the formation of organic SOA interacts with changes in the land
model and climate variables. In addition, the new SOA approach includes a more comprehensive descrip-
tion of processes including the water solubility of intermediate organic vapors that determines their dry
and wet deposition, formation of SOA by the uptake of glyoxal SOAGs into aqueous aerosols (Knote et al.,
2014), and photolytic removal of particulate SOA Hodzic et al. (2015). In addition to the basic SOA scheme
in WACCM6, the model can be run with an extended SOA scheme, where source contribution of different
precursor emissions from biomass burning, fossil fuel, and biogenic emissions to SOA can be identified.

3. Configurations
The basic configuration of WACCM6 features ∼1◦ (0.9◦ latitude × 1.25◦ longitude) horizontal resolution
using the finite volume dynamical core (Lin & Rood, 1997). WACCM6 has 70 levels in the vertical from the
surface to 6 × 10−6 hPa (∼140 km). By contrast, CAM6 has 32 levels with a top at 3.6 hPa. Notably, CAM6
and WACCM6 share the same vertical level structure up to the 87 hPa level.

WACCM6 has several different baseline configurations as illustrated in Table 2. WACCM6 features one of
the chemistry packages (TSMLT, TS, MA, and MAD) described in section 2.4. The baseline is TSMLT: full
chemistry from the troposphere through the lower thermosphere. WACCM6 configurations with specified
historical sea surface temperatures (SSTs) and ice area simulations are often termed Atmospheric Model
Intercomparison Project (AMIP) simulations (component set FWHIST). WACCM6 can also be run fully
coupled to active ocean and sea ice model components (Marsh et al., 2013). Coupled simulations can be
configured for specific years with annually repeating boundary conditions, such as the coupled year 1850
preindustrial configuration (component set BW1850), or using time-dependent boundary conditions for
greenhouse gas concentrations, aerosols, volcanic eruptions, and solar variability (component set BWHIST).
Coupled simulations are termed CESM2-WACCM6. WACCM6 always runs with an interactive land surface

GETTELMAN ET AL. WACCM6 12,385



Journal of Geophysical Research: Atmospheres 10.1029/2019JD030943

Figure 1. WACCM6 (Atmospheric Model Intercomparison Project) simulation zonal wind for (a) December, January,
February (DJF) and (b) June, July, August (JJA). Contour interval of 10 m/s. Differences between WACCM and
MERRA2 Reanalysis for (c) DJF and (d) JJA. Variable contour interval of ±2.5,5,10,20,40 m/s.

model (the Community Land Model version 5, or CLM5). The coupled preindustrial control (BW1850),
coupled historical (BWHIST), and historical fixed SST or AMIP simulations (FWHIST) are simulations in
support of the CMIP6 core (“DECK”) experiments.

WACCM6 can also be run in a nudged, or specified dynamics (SD) configuration (WACCM6-SD). For
WACCM6-SD simulations (component set FWSD), winds and temperatures are relaxed to a specified set of
data, typically another model or a reanalysis system. Commonly, the NASA Goddard Earth Observation Sys-
tem (GEOS) model analyses, Modern-Era Retrospective analysis for Research and Applications (MERRA)
(Rienecker et al., 2011) or MERRA2 Molod et al. (2015) are used. This SD version is effective for reducing
climate noise, reducing biases in winds and/or temperatures, and reproducing the chemical response to spe-
cific events or for specific times, such as comparison to specific field programs or individual observations.
WACCM6-SD configurations typically use a vertical level structure taken from the source nudging data.

As described in Smith et al. (2014), WACCM can also be run with specified chemistry (SC), or WACCM6-SC.
In WACCM6-SC simulations (compset FWscHIST), radiatively active chemical species (like ozone)
are prescribed, typically from a WACCM6 run with interactive chemistry, while all other CAM6 and
WACCM6 parameterizations for clouds are interactive. The aerosol model is also reduced in complexity for
WACCM6-SC, using CAM6 aerosols (simplified SOA and prescribed stratospheric aerosols). WACCM6-SC
is an efficient model useful for dynamical studies. An example of the use of WACCM6-SC for understanding
dynamical and chemical effects are provided in section 6.
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Figure 2. WACCM6 (Atmospheric Model Intercomparison Project) simulation temperatures for (a) December, January,
February (DJF) and (b) June, July, August (JJA). Contour interval of 10 K. Differences between WACCM and MERRA2
Reanalysis for (c) DJF and (d) JJA. Variable contour interval of ±2.5,5,10,20 K.

For comparison, we also perform CAM6 AMIP simulations with specified SST and ice (component set
FHIST). CAM6 has the same physical parameterization suite as WACCM6 minus the frontal and con-
vective gravity wave drag schemes, with a lower top, loss of several upper atmosphere processes, fewer
levels, and no chemistry. CAM6 is essentially WACCM6-SC with a lower lid (and without the convective
and frontal gravity waves). Comparisons between WACCM6, WACCM6-SC, and CAM6 can illustrate the
impact of chemistry-climate coupling (WACCM6 vs. WACCM6-SC), the impact of the broader vertical range
(WACCM6-SC vs. CAM6) or both (WACCM6 vs. CAM6).

Table 2 also shows the model cost. Coupled simulations are more expensive, and WACCM6-SC reduces the
cost by a factor of 4 due to removal of the TSMLT chemistry. WACCM-CCMI or WACCM4 costs about 2,500
CPU-hr/sim-year, due to lower resolution (2◦), simpler chemistry (MA), and simpler physics (CAM4 vs.
CAM6).

WACCM6 now has the option to run with a more complete thermosphere and ionosphere, with a lid near
500km. This extended version, or WACCM-X, currently is coupled to WACCM4 physics and is described in
a companion paper by Liu et al. (2018).

4. Simulation Description
Results documented below (section 5) are based on the simulations with WACCM6 listed in Table 2. All
are at 0.9◦ × 1.25◦ horizontal resolution and 70 vertical levels, with TSMLT chemistry, and all are cou-
pled actively to the CLM5 land model. Fully coupled CESM2-WACCM6 is run first for a long control run
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Figure 3. WACCM6 (Atmospheric Model Intercomparison Project) simulation (a) Climatological (1980–2010)
Southern Hemisphere Polar Cap (90–59◦S) temperature evolution. Contour interval of 10 K. (b) Difference versus
MERRA2 reanalysis. Shaded differences are not significant at the 95% level based on a t test. Contour interval of 2 K.

representing preindustrial (1850) conditions and starting from a 200 year control simulation with
CESM2-CAM6. Then three coupled simulations with transient forcing from the Coupled Model Intercom-
parison Project round 6 (CMIP6) (Eyring et al., 2016) from 1850–2014 are initialized from year 56, 61, and 70
of this CESM2-WACCM6 run. WACCM6 is also run with prescribed SST and sea ice distribution and CMIP6
forcing for greenhouse gases and aerosols over the period from 1950–2014, initialized with land and atmo-
spheric initial conditions from coupled simulations. A WACCM6-SD simulation is forced with MERRA2
analysis over the more recent period when comprehensive satellite data are available (1980 to 2014) to
examine chemistry with dynamic variability prescribed from the historical atmosphere (as conditioned by
a reanalysis system). WACCM6-SC is run with specified SSTs and chemical fields from the WACCM6 AMIP
simulations.

5. Results
Here we present key results from WACCM6, focusing on the stratosphere. The overall WACCM6 tropo-
spheric climatology and climate are described in section 6 with a comparison to CAM6.

5.1. Climatology/Annual Cycle
WACCM6 is able to effectively simulate the zonal winds from the surface through the mesosphere. Figure 1
illustrates the December, January, February (DJF) and June, July, August (JJA) WACCM6 climatological
zonal wind, and compares it to MERRA2 reanalysis (Rienecker et al., 2011). Note that MERRA2 only goes
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Figure 4. (a) Tape recorder velocity (mm/s) averaged over 2005–2014 from MLS satellite observations (black), specified
dynamics WACCM-SD (red), specified SST WACCM6 (AMIP-blue), and coupled WACCM6 run (COUPLED-green).
WACCM6 solid lines, WACCM4 dashed lines. (b) Composite MLS water vapor annual cycle showing the “tape
recorder” of low and high water vapor being advected in the vertical circulation of the stratosphere. (c–e) Composite
water vapor annual cycles (contour shading) with MLS annual cycle (white contours). (c) Specified dynamics WACCM6
(SD), (d) free running specified SST WACCM6 (AMIP) and (e) coupled CESM2-WACCM6 historical run (COUPLED).

up to 80 km, so there are no comparisons above that. Also note the 50–80 km region is very model depen-
dent, and MERRA2 may not be the “truth.” There are ∼5 m/s biases in Southern Hemisphere winter zonal
wind in the lower stratosphere, but, in general, the mean wind speeds compare well to reanalyses. Biases
would be expected to become larger with altitude as the wind speed increases, and also because there are
fewer observational constraints on reanalysis at high latitudes, and it is just a WACCM6 to reanalysis model
(MERRA2) comparison. WACCM6 is able to simulate the seasonal variation of the stratospheric polar jets.

WACCM6 is also able to effectively simulate the temperature structure from the surface through the meso-
sphere. Figure 2 illustrates DJF and JJA WACCM6 climatological temperature compared to MERRA2
(Rienecker et al., 2011). Seasonal mean tropical tropopause temperatures are within ±2 K of the reanalysis.
There are winter time biases in the Southern Hemisphere temperature in the lower stratosphere, consis-
tent with the zonal wind biases (Figure 1). WACCM6 also has a cold summer mesopause at ∼85km with
temperatures close to 140 K, similar to observations.

The winter (JJA) seasonal temperature biases over the South Pole in Figure 2d increase and propagate down-
ward in spring, as illustrated in Figure 3. These biases result from remnants of the winter jet in the lower
stratosphere persisting too late. The biases occur late enough in the spring that they do not impact lower
stratosphere southern polar springtime ozone depletion (see below). This bias reflects a delayed breakdown
of the Southern Hemisphere polar vortex relative to observations (Butchart et al., 2011).

The annual cycle of tropical stratospheric water vapor is illustrated in Figure 4, with a representation of the
water vapor “tape-recorder” (Mote et al., 1996). WACCM6 is compared to an observational climatology from
the AURA Microwave Limb Sounder (MLS, Read et al., 2007; Waters et al., 2006), illustrated in Figure 4b.
The tape recorder vertical propagation speed based on tracer contour advection is slightly faster and shifted
slightly upward relative to observations (Figure 4a). The amplitude of the tape recorder is well represented,
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Figure 5. Northern Hemisphere winter stratospheric sudden warmings frequency by month for (a) coupled and (b) Atmospheric Model Intercomparison
Project fixed sea surface temperature WACCM6 simulations (gray shading = ensembles, black = mean), and MERRA reanalyses (red).

with a 0.25–0.5 ppm high (moist) bias in WACCM6. Specified Dynamics (SD) simulations (Figure 4c) have
a slightly lower velocity but higher bias than either fixed SST (AMIP, Figure 4d) or coupled (COUPLED,
Figure 4e) simulations. Free running coupled simulations (Figure 4e) have small biases in value or amplitude
relative to MLS. We will discuss differences between WACCM6 (solid lines in Figure 4a) and WACCM4
(dashed lines in Figure 4a) in section 6.

WACCM6 also does a good job at reproducing the distribution of ozone in the stratosphere. This will be
discussed in more detail in the analysis of the evolution of stratospheric ozone over the late twentieth century
in section 5.3.

5.2. Variability
One of the major features of intraseasonal variability in the stratosphere is Northern Hemisphere (NH)
Stratospheric Sudden Warmings (SSWs) which can have impacts all the way down to the surface (Baldwin
& Dunkerton, 2001). In this case we define an SSW by a wind reversal (McTurf, 1978), specifically a period
when the 10 hPa zonal mean zonal wind at 60◦N is <0 m/s (i.e., eastward) following Charlton and Polvani
[2007]. Specifics of the SSW frequency might vary with metric, but we diagnose model and reanalysis in the
same way, so we would not expect this to impact model biases. Figure 5 indicates that the coupled (Figure 5a)
and historical fixed SST or AMIP (Figure 5b) WACCM6 ensembles are able to capture the frequency of SSWs
averaged over 30 years (1980–2010). The ensemble mean frequency (black bars) is close to observations.
While Ayarzagüena et al. (2019) have noted that there are differences in the timing and frequency distribu-
tion of SSWs in “observations” (different reanalyses), this does not affect the conclusions here. Results are
the same with NCEP reanalyses over the satellite era. The AMIP simulations have too few SSWs in February
and too many in March (Figure 5b) while coupled cases (Figure 5a) also have too few SSWs in January and
February. The high March frequency may be a result of a late bias in the spring polar vortex breakup, but it
is also clear from the spread among WACCM ensemble members that the observed record is likely subject
to considerable sampling uncertainty. The total winter frequency is 0.58 warmings per year in MERRA, 0.60
with NCEP, with 0.72 per year for the historical SST, and 0.52 per year for the coupled model, bracketing
the observations. The interannual standard deviation in SSW frequency is 0.7 per year, based on counting
events each year. de la Torre et al. (2012) used a different method and found that the 5–95 percentile spread
in WACCM4 SSW frequency in any month was ±0.1 per year. For WACCM4, the frequency of occurrence of
SSWs was 0.46 per year with a range across ensembles of 0.33 to 0.53 per year (Marsh et al., 2013).

WACCM6 is also able to simulate, albeit imperfectly, the quasi-biennial oscillation (QBO; Figure 6), the
equatorial zonal wind propagation, which in observations has an average period of ∼28 months. Similar to
WACCM5 (Mills et al., 2017), WACCM6 simulates a reasonable QBO with 70 levels in a free running config-
uration. The average QBO period calculated using Fourier analysis is 29 months for WACCM6 (fixed SST),
27 months for WACCM6 (coupled ocean) compared to 28 months for ERAI reanalysis. But the QBO ampli-
tude is too weak in the lower stratosphere and the QBO does not extend low enough in the stratosphere
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Figure 6. Monthly average zonal wind from 10◦S–10◦N in (a) European Center Reanalysis (ERAI), (b) WACCM6
historical simulation with historical SSTs, and (c) fully coupled WACCM6 historical simulation illustrating the
quasi-biennial oscillation.

(Figures 6b and 6c) compared to observations (Figure 6a). This deficiency is due to the relatively coarse verti-
cal resolution in the lower stratosphere in this version of the model likely impacting equatorial gravity wave
momentum deposition. More realistic downward propagation of the QBO can be obtained in WACCM with
increased vertical resolution (Garcia & Richter, 2018). The QBO deficiencies might impact QBO telecon-
nections to high latitudes, but the problem is likely that wave-mean flow interactions with parameterized
equatorial gravity waves require high vertical resolution.

WACCM6 does not perform as well in reproducing the semi-annual oscillation (SAO) in stratospheric and
lower mesospheric zonal wind at higher altitudes except at the stratopause, as illustrated in Figure 7, which
compares model winds at the equator with winds derived from SABER satellite data (Smith et al., 2017).
The timing of the SAO minimum winds at solstices in the upper stratosphere is early by less than a month
and has a similar shift with pressure to that determined from stratospheric observations. The SAO near
the stratopause is driven primarily by horizontal advection of zonal mean momentum that varies with sea-
sonal changes in the Brewer-Dobson circulation. However, wind variations in the mesosphere simulated by
WACCM6 are overall much weaker than those deduced from observations, and the timing of the oscillation
in the mesosphere is out of phase with observations. This may be due to a deficiency in forcing by tropical
waves and could also be a result of coarse vertical resolution. There is not currently an observational base
to determine whether the waves driving winds in the tropical upper stratosphere and lower mesosphere are
small-scale gravity waves or larger-scale waves, such as equatorially trapped Kelvin waves.
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Figure 7. Monthly average zonal wind from 10◦S–10◦N in (a) SABER satellite observations, (b) WACCM6 (AMIP), and
(c) fully coupled WACCM6 historical simulation illustrating the semi-annual oscillation (SAO). The black dashed lines
show the SAO phase and the red dotted lines on (b) and (c) show the phase from (a) for comparison.

WACCM6 represents impacts of both large (e.g., Pinatubo, 1991) and many small-to-moderate (e.g.,
2005–2014) eruptions. Figure 8 shows simulated and observed stratospheric aerosol optical depth
(SAOD) from 1980–2015 at different locations corresponding to ground-based lidar observations using a
backscatter-to-extinction ratio of 50. WACCM6 with prognostic stratospheric sulfur is able to produce the
correct SAOD from volcanic eruptions over most latitudes. There are some differences in the tropics (Mauna
Loa) during the volcanically quiescent period of 1997–2004, and in the Southern Hemisphere (Lauder)
during the recent period of small-to-moderate eruptions.

5.3. Trends
WACCM6 is able to reproduce the evolution of the ozone layer, including the Southern Hemisphere polar
ozone hole (World Meteorological Organization, 2011), as illustrated in Figure 9. The observations lie within
the range of variability spanned by the coupled and fixed SST (AMIP) simulations. WACCM-SD simulations
with imposed variability (purple in Figure 9) are able to reproduce the interannual variability seen in obser-
vations (black in Figure 9). Variability at both poles (Figures 9a and 9b) is reproduced, including low ozone
events in the NH (Figure 9b). There are some biases in midlatitudes in free running simulations (Figures 9c
and 9d), which are not seen in SD simulations. Larger biases occur in the tropics (Figure 9e).

The reason for the tropical differences is related to tropical upwelling, illustrated in Figure 10, and consistent
with Figure 4. In the 20◦S–20◦N region, the vertical velocity is larger for pressures greater than 50 hPa for
the coupled case and the AMIP case than the SD case. SD is similar to a direct calculation from MERRA2
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Figure 8. Five-day averaged stratospheric aerosol optical depth (SAOD; above model tropopause) from coupled (blue)
and AMIP (red) ensembles compared to lidar observations (green, black, yellow). (a) Ny Alesund (78.9◦N, 11.9◦W)
above 10 km (black, Ridley et al., 2014). (b) Tomsk (56.5◦N, 85.0◦E) 15–30 km 10-day averages from Jan 1986 to Dec
2014 (black, Zuev et al., 2017), and 12–30 km 10-day averages from Jan 2006 to Dec 2013 (green). (c) Geesthacht
(53.4◦N, 10.4◦E) above the tropopause (black with 1-𝜎 error bars, Ansmann et al., 1997). (d) Tsukuba (36.1◦N, 140.1◦E)
15–30 km monthly averages from Apr 1982 to Dec 2014 (yellow circles), above the tropopause monthly averages from
Nov 1988 to Dec 2014 (black, Sakai et al., 2016), and above the tropopause daily from Jan 2008 to Jul 2013 (green). (e)
Mauna Loa (19.5◦N, 155.6◦W) above the tropopause (black), Hofmann et al. (2009). (f) Lauder (45.0◦S, 169.7◦E)
monthly averages from Nov 1992 to Dec 2014, 16.5–33 km (yellow) and above the tropopause (black) Sakai et al. (2016).

output. Since the lower stratospheric ozone field is dynamically controlled, the vertical velocity will impact
the total column ozone. The larger vertical velocities in the lower stratosphere are expected to be associated
with reduced ozone due to vertical advection of ozone poor air from the troposphere. The difference in
vertical velocity would result in more O3 in the SD case than free running for pressures greater than 50 hPa.
The opposite is the case for pressures between 50 and 10 hPa, broadly consistent with the representation
of tropical upwelling between the two cases. Tropical anomalies (Figure 9e) will affect the midlatitudes
(Figures 9C and 9d) as well as the near-global (60◦S–60◦N) total column ozone (Figure 9f).

Globally averaged surface temperature in the CESM2-WACCM6 fully coupled simulations for the histor-
ical period (1850–2014) are compared to observations and CESM2-CAM6 simulations in Figure 11. Both
CESM2-WACCM6 and CESM2-CAM6 are able to reproduce the observed historical evolution of global mean
surface temperature anomalies. Notably, CESM2-WACCM6 global mean surface temperature does not have
a different mean (not shown) or global variability than CESM2-CAM6 simulations. Note how in the first
80 years of this record from 1850–1930 or so, when radiative forcing was dominated by volcanic eruptions,
both CESM2-CAM6 and CESM2-WACCM6 track much of the observed decadal variability, indicating that
it was likely forced variability and associated with volcanoes. Also note that there is a spread of variation
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Figure 9. Total column ozone (in Dobson Units: DU) from WACCM6 coupled simulations (COUPLED: blue), specified
SST (AMIP) simulations (green), specified dynamics simulation (SD-MERRA2: purple), and observations (SBUV-MOD:
black). Individual points are symbols, mean across ensembles solid line. (a) October 90–60◦S, (b) March 60–90◦N, (c)
annual 65–35◦S, (d) annual 35–60◦N, (e) annual 20◦S–20◦N, and (f) annual 60◦S–60◦N.

of volcanic response in CESM2-WACCM6 to large volcanoes such as Krakatoa in 1883. Volcanic SAOD is
shown on the top of Figure 11. The CESM2 historical ensemble used volcanic forcing equal to the average
of the three coupled CESM2-WACCM ensemble members.

Figure 12 illustrates stratospheric temperature trends from WACCM6 historical AMIP simulations com-
pared to stratospheric sounding unit (SSU) and the advanced microwave sounding unit (MSU) temperatures
(Randel et al., 2017). As with WACCM4 Randel et al. (2017, Figure 1), WACCM6 is able to capture
stratospheric temperature trends from 1980–2014. WACCM6 has a slightly better representation of the
temperature response to the 1991 Mount Pinatubo eruption. As noted by Randel et al. (2017), tempera-
ture trends are a combination of effects from ozone depletion and recovery and increasing greenhouse
gases, which WACCM6 captures well. Variability is forced from volcanic eruptions and the tropospheric El
Niño–Southern Oscillation, which is imposed on the WACCM6 AMIP simulations with observed SSTs.
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Figure 10. Tropical (20◦S–20◦N) averaged upwelling (W*: TEM residual vertical velocity in mm/s). WACCM6 coupled
simulations (blue), specified SST AMIP simulations (green), specified dynamics simulation with MERRA2 winds and
temperatures (SD, purple). The w* is calculated directly from MERRA-2 purple dash.

6. Difference Between WACCM Versions and Configurations
Figure 11 illustrates transient differences in global mean temperature anomalies between CESM2-CAM6
and CESM2-WACCM6 simulations. Table 3 illustrates differences in global mean climate metrics between
different configurations for the historical period (2000–2014) as well as overlapping observations. The
observational uncertainty on the radiative flux products is about ±2 W/m2, based on the bias errors from
Loeb et al. (2009), Table 2. For global mean cloud fractions, the two standard deviation interannual vari-
ance is 0.3%. Here we compare both CESM2-CAM6 and CESM2-WACCM6, and the previous version of
WACCM, WACCM4-CCMI. Table 3 also shows preindustrial (PI, from B1850 simulations) values from
CESM2-WACCM6, CESM2-CAM6, and CESM1-WACCM4. With respect to many of the radiative fluxes,
WACCM6 and CAM6 fall within the range of uncertainty. WACCM4 is significantly different for all but clear
sky longwave radiation (FLNTC). WACCM6 is thus demonstrably improved in most respects for cloud and
radiative budgets.

6.1. WACCM6 Versus CAM6
WACCM6 and CAM6 have very similar climates defined by their top of atmosphere energy budget and cloud
radiative effects. WACCM6 of course provides significantly more fidelity in the stratosphere as it represents
the meridional overturning circulation of the stratosphere fully, as well as full tropospheric and stratospheric
chemistry, with interactive oxidants and ozone. Differences between WACCM6 and CAM6 are thus a com-
bination of differences due to the different lid and upper atmospheric processes with the differences in
chemistry and aerosols. The tropospheric physical processes are the same between WACCM6 and CAM6.
We discuss these differences below and also refer to a WACCM-SC (Specified Chemistry) simulation where
appropriate to help distinguish dynamical from chemical and aerosol processes.

There are several climate differences between CAM6 and WACCM6. In the clear sky, there is a −2 W/m2

top of model difference in both the SW net flux (FSNTC) and LW net flux (FLNTC) in WACCM6 versus
CAM6. This is likely due to absorption of radiation occurring above the model top of CAM, despite an effort
to parameterize this absorption in CAM.
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Figure 11. Global mean surface temperature anomalies with respect to the 1920–1980 average with 5 year smoothing.
Blue: mean of 10-member CESM2 historical ensemble (blue shading shows the ensemble spread). Three coupled
CESM2-WACCM historical ensemble members are red (001), orange (002), and green (003) curves. Observed
temperatures from Hadley Centre-Climatic Research Unit Version 4 (HadCRUT4) infilled with kriging (Cowtan & Way,
2014) (black solid). Goddard Institute for Space Studies (GISS) Surface Temperature Analysis (Hansen et al., 2010)
(black dashed). Top curves are a stratospheric aerosol optical depth index (1.15–2 × global average) for each coupled
CESM2-WACCM ensemble member.

Table 3 also indicates a 1 W/m2 magnitude increase in SW (negative) and LW (positive) cloud forcing
(SWCRE and LWCRE) in WACCM. This comes from high clouds in the tropics, where there is an increase
in high cloudiness (CLDHGH) at the edges of the tropics, and an increase in ice water path (IWP) and over-
all ice crystal number. This would appear to be a result of an increase in accumulation mode sulfate in the
tropics causing increased homogeneous nucleation of cirrus ice crystals. The increased sulfate is from (a)
DMS (dimethylsulfide) sources and (b) stratospheric volcanic sulfate in WACCM6 which are not present in
CAM6. CAM6 takes in prescribed surface area densities of sulfate from WACCM6, but not the actual sulfate
which can impact tropospheric clouds.

There are also small increases in high-latitude NH shortwave cloud forcing (SWCRE) in WACCM6 over
CAM6, due to increases in cloud droplet number from increased East Asian aerosol burdens which extend
into the Arctic. Aerosol lifetimes also differ in the tropics in WACCM6 due to differences in tropospheric
chemistry and removal of oxygenated organics.

CESM2-CAM6 and CESM2-WACCM6 have similar preindustrial (1850) annual mean sea ice extent (SIE),
but the SIE is much less than WACCM4 (Table 3). The main difference in SIE between CESM2-CAM6
and CESM2-WACCM6 is in summer when the CESM2-WACCM6 simulations have much less melt, but the
annual mean SIE is not very different. As a result, there are larger differences between CESM2-CAM6 and
CESM2-WACCM6 in preindustrial sea ice volume (SIV) in Table 3. Less melt means sea ice remains around
for the subsequent winter and thus the ice is thicker.

In coupled CESM2-WACCM6 simulations, the recent twentieth century warming makes these differences
more apparent (Figure 13). CESM2-WACCM6 has higher September NH SIE than CESM2-CAM6, in better
agreement with observations (Figure 13a). CESM2-WACCM6 and CESM2-CAM6 NH SIE are close in March
(the month of maximum sea ice, Figure 13a). CESM2-WACCM6 annual NH sea ice volume (Figure 13b) is
dropping slightly faster than observations, while CESM2-CAM6 has lower ice volume, but a decline rate
is similar to observed. CESM2-WACCM6 is a bit colder than CAM in the 1960–1980 period, and warming
up faster. Analysis (not shown) indicates that in 2000–2014, there is less downward surface SW and LW in
CESM2-WACCM6, and that this happens because of slightly higher LWP (in winter around the ice edge, in
summer over the ice). Higher LWP in CESM2-WACCM6 than CESM2-CAM6 results from higher aerosol
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Figure 12. (a) MSU and SSU weighting functions from Randel et al. (2017). (b) Global average temperature time series
from three WACCM6 specified SST (AMIP) ensembles convolved with SSU or MSU weigthing functions (red). SSU or
MSU observations (black).

number. The higher aerosol number increases cloud condensation nuclei and cloud drop number, resulting
in smaller drops that do not precipitate as readily. Thus, the tropospheric aerosol chemistry impacts Arctic
sea ice.

CESM2-WACCM6 and CESM2-CAM6 climate variability metrics are also very similar, with very few sta-
tistical differences. CESM2-WACCM6 however does have better high-latitude surface pressure variability,
as illustrated in Figure 14. Other ensemble members are similar. CESM2-WACCM6 has improved NH
high-latitude surface variability by this metric compared to CESM2-CAM6, despite the same vertical res-
olution in the troposphere. Area-weighted pattern correlations and root-mean-square differences for the
standard deviation of sea level pressure were calculated between observations (ERA Interim and twentieth
century reanalyses) and three ensemble members for CESM2-WACCM6 and CESM2-CAM6 coupled experi-
ments. December–February pattern correlations are as high for CESM2-WACCM6 (0.96) as for other reanal-
yses (0.95–0.96) and higher than for CESM2-CAM6 (0.93–0.95). Root-mean-square differences are 0.10–0.12
for other reanalyses relative to ERA, 0.11–0.12 for CESM2-WACCM6, and 0.12–0.14 for CESM2-CAM6
ensemble members. This variability improvement is present across three CESM2-WACCM6 twentieth cen-
tury ensemble members compared to nine CESM2-CAM6 ensemble members. The difference is likely
related to slight changes in the Northern Annular Mode (NAM) pattern in the stratosphere and indicates
the importance of resolving stratospheric variability. WACCM6 AMIP experiments are similar. Experiments
with WACCM-SC (no chemistry) look similar to CESM2-WACCM6, indicating that chemical-climate inter-
actions and aerosol differences are not the cause. However, in a WACCM6 experiment without convective
gravity waves, high-latitude variability looks more like CESM2-CAM6, indicating that momentum forcing
of the stratosphere is likely important.

Improvements in tropospheric variability can also be seen in a metric of atmospheric blocking. Figure 15
illustrates a longitudinal index of blocking defined as the frequency of the meridional gradient of 500-hPa
geopotential height below a threshold (−5 m/degree) (D’Andrea et al., 1998). Figure 15 illustrates the block-
ing frequency from CESM1 (LENS, 35 simulations), CESM2-CAM (5 simulations), and CESM2-WACCM (3
simulations), all coupled to an active ocean. CESM2 is better at many locations than CESM1. March–May
(MAM) is better than December–February (DJF) for all versions. In common with many CMIP5 models
(Dunn-Sigouin & Son, 2013), CESM2 still has a DJF bias over the Atlantic, but there are significant improve-
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Table 3
WACCM and CAM Simulation Global Averages Compared to Observations From Historical (AMIP) Simulations

Variable Unit WACCM6 WACCM4-CCMI CAM6 Obs
AMIP Simulations FLNT

W/m2 237.4 233.3 236.6 239.7
FSNT W/m2 241.0 235.0 239.7 240.5
FLNTC W/m2 262.1 264.0 260.3 265.7
FSNTC W/m2 289.3 291.5 287.4 287.6
SWCRE W/m2 −48.4 −56.5 −47.7 −47.1
LWCRE W/m2 24.6 30.8 23.7 26.1
CLDTOT % 69.5 55.4 69.1 66.8
CLDHGH % 44.1 33.0 43.6 40.3
CLDLOW % 40.9 35.4 40.8 43.1
LWP gm−2 66.5 132.3 66.7
IWP gm−2 13.4 16.3 12.8
1850 Coupled Simulations

CESM2-WACCM6 CESM1-WACCM4 CESM2-CAM6
Ts K 288.0 287.6 288.2
Precip mm/day 2.93 2.92 2.83
Global SIE 106 km2 25.9 30.4 25.4
NH SIE 106 km2 11.5 14.0 11.2
Global SIV 103 km3 41.2 36.5
NH SIV 103 km3 26.2 21.8

Note. Observations: CLDTOT (total cloud cover), CLDHGH (cloud cover for p < 400 hPa), CLDLOW (cloud cover for
p > 700 hPa) from CLOUDSAT+CALIPSO joint data product. Fluxes are compared to CERES EBAF 2.4 (Loeb et al.,
2009) for shortwave/longwave net at top of atmosphere for all sky (FSNT, FLNT) and clear sky (FSNTC, FNTC). Cloud
radiative effects are the difference (LWCRE = FLNT − FLNTC and SWCRE = FSNT − FSNTC). Liquid and ice water
path (LWP, IWP) do not have well constrained satellite estimates. For preindustrial (PI) 1,850 control simulations,
variables are surface temperature (Ts), preciptiation rate (Precip), sea ice extent (SIE) and sea ice volume (SIV). Bold
values are within the range of uncertainty of the observed values.

ments (outside of the ensemble spread from CESM1) in CESM2 near the Greenland blocking “bump” at
30◦W in March–May, particularly in CESM2-WACCM6. CESM2-WACCM6 is also significantly better (out-
side of the ensemble spread) than CESM2-CAM6 in the Pacific sector during DJF. Note that the North Pacific
is subject to much larger interannual variable than the Atlantic, because of stationary wave activity from the
tropics.

Figure 13. (a) Arctic sea ice extent in March (dashed) and September (solid). (b) Arctic annual mean sea ice volume. CESM2-WACCM6 (black), CESM2-CAM6
(gray). National Snow and Ice Data Center (NSIDC) ice extent satellite observations (red) (Fetterer et al., 2017) for (a) and Pan-Arctic Ice Ocean Modeling and
Assimilation System (PIOMAS) ice volume estimate (red) (Schweiger et al., 2011) for (b).
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Figure 14. Interannual standard deviation of December–February averaged sea level pressure (hPa) from (a) ERA twentieth century reanalysis,
(b) CESM2-WACCM6 coupled historical simulation ensemble member, and (c) CESM2-CAM6 coupled historical simulation ensemble member.

6.2. WACCM6 Versus WACCM4
Table 3 highlights several important differences in the climate of WACCM6 versus WACCM4. The tropo-
spheric cloud radiative forcing (SWCRE and LWCRE) is lower and closer to observations (CERES-EBAF).
WACCM6 has higher cloud fraction (closer to obs) with reduced LWP, which is also more in line with obser-
vations where available (global values are not available). These results are consistent with improvements in
CAM6 over CAM4.

For preindustrial (1850) control climates, CESM2-WACCM6 has higher global mean precipitation, but very
similar surface temperature (Table 3). The global sea ice extent in WACCM4 (Marsh et al., 2013) is 20%
higher than CESM2-WACCM6 or CESM2-CAM6.

WACCM6 and WACCM4 do a good job of reproducing tropical tropopause temperatures, but WACCM6
has a warmer summer tropopause temperature and increased annual cycle amplitude, in better agreement
with observations. WACCM4 (dashed lines in Figure 4a) has a faster tape recorder propagation speed in the
midstratosphere for free running simulations than WACCM6 (solid lines in Figure 4a). WACCM6 does a
good job of reproducing the speed of the tape recorder compared to observations, with some vertical shifts.
However, WACCM6 has a 0.5 ppm positive bias in summer, depending on the simulation (a coupled case
looks better than the fixed SST case in Figure 4).

As noted in discussion of Figure 5, WACCM6 has slightly higher frequency of occurrence of SSWs than
WACCM4, due to more late winter (March) warmings when compared to Marsh et al. (2013), Figure3.

Figure 15. Northern Hemisphere blocking frequency defined following D’Andrea et al. (1998). Observations (black),
CESM1 (blue), CESM2-CAM (red), and CESM2-WACCM (green) for (a) December–February (DJF) and (b)
March–May (MAM). Averages are 1979–2005 from daily data and the shading is the full range of each ensemble set.
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Finally, WACCM4 did not have an internally generated QBO, but it was forced to observations, while
WACCM6 has an internally generated QBO (Figure 6).

7. Summary and Conclusions
WACCM6 represents the state of the art in simulation of the middle atmosphere up through the mesosphere.
WACCM6 is available in several different configurations and can be run fully coupled in CESM2, with fixed
SSTs (AMIP), or even with specified dynamics to produce observed dynamical variability. WACCM6 can
also be run without full chemistry if just dynamical interactions are desired. WACCM-X (Liu et al., 2018)
is a variant of WACCM that goes all the way to 500 km and represents additional thermosphere and iono-
spheric processes, with physical parameterizations for the lower atmosphere lagging one generation behind
WACCM6.

WACCM6 is able to reproduce the observed climatology of temperatures, winds and trace constituents such
as water vapor and ozone in the middle atmosphere. WACCM6 is able to reproduce stratospheric variability
from SSWs, the response to volcanic eruptions, the QBO and long-term secular trends in the middle atmo-
sphere. Biases in temperatures, winds, and water vapor are small, and smaller than previous versions of
WACCM. Volcanic emissions are fully prognostic from gas phase through stratospheric aerosol, improving
temperature response to volcanic eruptions. Despite temperature biases in spring and early summer in the
Southern Hemisphere polar stratosphere, WACCM6 is able to reproduce the evolution of the 20th and 21st
century ozone. There are some biases in the tropics likely due to the speed of tropical upwelling.

WACCM6 features exactly the same lower atmosphere physical parameterizations and horizontal resolu-
tion as CAM6, making it very useful for comparable studies of the model top, as well as the impact of
chemistry/aerosols in the troposphere and stratosphere. CAM6 uses specified stratospheric aerosol from
WACCM6, as it was found that without interactive oxidants (OH), the lifetime of stratospheric SO2 under
high loading was different (and not correct). The present day climate of WACCM6 is nearly identical to
CAM6 global mean variables, with similar trends over the twentieth century in surface temperature. There
are some differences due to absorption and scattering above the CAM6 top in WACCM6, and due to differ-
ent evolution of tropospheric aerosols with the full tropospheric chemistry of WACCM6, that alters aerosol
lifetime, particularly for organic aerosols. This can impact regional climate as well as sea ice. Thus, tropo-
spheric chemistry and aerosols can significantly impact Arctic climate, improving sea ice extent and volume
in CESM2-WACCM6 over CESM2-CAM6.

Finally, there are some indications that the stratosphere can improve climate variability, even at the sur-
face. High-latitude variability in CESM2-WACCM6, in particular, the standard deviation of winter sea level
pressure, is lower in CESM2-WACCM6 than in CESM2-CAM6, in better agreement with observations.
This extends to WACCM-SC without chemistry and seems to be related to gravity wave momentum in
CESM2-WACCM6. Blocking frequency is also closer to observed in CESM2-WACCM6 than CESM2-CAM6.
This indicates that stratospheric dynamical processes are important for high-latitude tropospheric climate
variability. Thus, stratospheric dynamics should be considered and resolved in studies of high-latitude
climate variability.
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