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ABSTRACT: Weather regimes defined through cluster analysis concisely categorize the anomalous regional circulation
pattern on any given day. Owing to their persistence and low dimensionality, regimes are increasingly used in subseasonal-
to-seasonal prediction and in analysis of climate variability and change. However, a limitation of existing regime classifica-
tions for North America is their seasonal dependence, with most existing studies defining regimes for winter only. Here, we
normalize the seasonal cycle in daily geopotential height variance and use empirical orthogonal function analysis combined
with k-means clustering to define a new set of year-round North American weather regimes: the Pacific Trough, Pacific
Ridge, Alaskan Ridge, and Greenland High regimes. We additionally define a “No Regime” state to represent conditions
close to climatology. To demonstrate the robustness of the classification, a thorough assessment of the sensitivity of the
clustering solution to various methodological choices is provided. The median persistence of all four regimes, obtained
without imposing a persistence criterion, is found to be one week, approximately 3 times longer than the median persis-
tence of the No Regime state. Regime-associated temperature and precipitation anomalies are reported, together with the
relationship between the regimes and modes of climate variability. We also quantify historical trends in the frequency of
the regimes since 1979, finding a decrease in the annual frequency of the Pacific Trough regime and an increase in the
summertime frequency of the Greenland High regime. This study serves as a foundation for the future use of these regimes
in a variety of weather and climate applications.

SIGNIFICANCE STATEMENT: Weather regimes provide a simple way of classifying daily large-scale regional
weather patterns into a few predefined types. Existing methods usually define regimes for a specific season (typically
winter), which limits their use, or provides only a minimal assessment of their robustness. In this study, we objectively
quantify four weather regimes for use year-round over North America, while we classify near-normal conditions as No
Regime. The four regimes represent persistent large-scale weather types that last for about a week and occasionally
much longer. Our new classification can be applied to subseasonal-to-seasonal forecasts and climate model output to
diagnose recurrent weather types across the North American continent.
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1. Introduction

The fundamental concept of weather regimes, also termed
circulation regimes (Straus et al. 2007), is that a small number
of recurrent patterns can describe much of the midlatitude at-
mospheric variability at temporal and spatial scales larger
than those of individual weather systems (e.g., Hannachi et al.
2017). At its simplest, the regimes framework classifies the
anomalous flow pattern on a given day into one ofN predefined
patterns. Efforts to classify regimes stem back to the mid-
twentieth century (Levick 1949, 1950; Lamb 1950; Rex 1951),
followed by the diagnosis of regimes using empirical orthogonal
functions (EOFs; Vautard 1990; Kimoto and Ghil 1993), and
subsequently more complex approaches involving objective
clustering methods (Cheng andWallace 1993; Michelangeli et al.
1995; Cassou et al. 2004) and self-organizing maps (SOMs;
Reusch et al. 2007; Bao and Wallace 2015; Francis et al. 2018;
Rousi et al. 2021).

At a deeper level, the regimes paradigm aims to capture re-
current, persistent, and quasi-stationary states (Michelangeli

et al. 1995; Hannachi et al. 2017). Regimes may represent dy-
namically stable equilibria (Charney and DeVore 1979;
Hochman et al. 2021), although not necessarily (Stephenson
et al. 2004; Christiansen 2007; Fereday 2017). Either way, a
small number of recurrent anomalous flow states can help
“bridge the gap” between the synoptic focus of medium-range
prediction and the large-scale climate focus of seasonal pre-
diction. This aspect of “regime thinking” can be contrasted
with that of weather “types” (Sheridan 2002; Fereday et al.
2008; Neal et al. 2016), which typically incorporate a larger
number of patterns and thus resolve higher-frequency syn-
optic variability. As a result, regimes-based methods have
gained prominence in subseasonal prediction (Grams et al.
2020; White et al. 2021). Owing to their persistence, regimes are
well-suited to the weekly time scales typical in subseasonal fore-
casting, where they can diagnose “windows of opportunity”
when extended-range predictability is unusually high (Mariotti
et al. 2020).

Despite an increasing number of studies that have analyzed
North American weather regimes, they have not been widely
adopted, unlike regimes over the North Atlantic–European
(NAE) sector. We contend that this primarily arises due to
the joint influence of both the Pacific and Atlantic stormCorresponding author: Simon H. Lee, shl2180@columbia.edu

DOI: 10.1175/JCLI-D-23-0214.1

Ó 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding
reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

L E E E T A L . 709115 OCTOBER 2023

Brought to you by Columbia University | Unauthenticated | Downloaded 11/20/23 06:33 PM UTC

https://orcid.org/0000-0003-0986-0093
https://orcid.org/0000-0002-7790-5364
https://orcid.org/0000-0003-4775-8110
https://orcid.org/0000-0003-0986-0093
https://orcid.org/0000-0002-7790-5364
https://orcid.org/0000-0003-4775-8110
mailto:shl2180@columbia.edu
http://www.ametsoc.org/PUBSReuseLicenses


tracks on the North American continent, in contrast to solely
the Atlantic storm track influence on Europe. As a result, the
foundational work of Michelangeli et al. (1995) defined win-
tertime regimes in the two basins separately. However, doing
so yields a complicated description of the flow over North
America with two sets of regimes, which undermines the sim-
plicity of the regimes framework.

Following Straus et al. (2007), there is now good agreement
among many studies (Vigaud et al. 2018; S. H. Lee et al. 2019;
Robertson et al. 2020; Molina et al. 2023) as to the existence
of four distinct wintertime regimes centered on North America
which capture relevant Pacific andAtlantic variability. A notable
feature of these classifications is the detection of a regime that re-
sembles the negative North Atlantic Oscillation (NAO), which is
otherwise not detected by classifications focusing on upstream
Pacific variability (e.g., Fabiano et al. 2021). The inclusion of
NAO variability is important given its significant influence on
the weather and climate of eastern North America (e.g., Hurrell
and Deser 2010).

However, almost all existing analyses of North American
weather regimes have focused on the extended winter season,
when midlatitude dynamic variability is largest. A few studies
have investigated weather regimes in other seasons, but often
for targeted, reduced-domain analyses. For example, Zhang
and Villarini (2019) defined five year-round weather types
over a restricted contiguous United States (CONUS) domain
to analyze precipitation extremes in the U.S. Midwest, but did
not provide a detailed assessment of the choice of five clusters
nor the effect of clustering across multiple seasons. In the con-
text of extended-range prediction of tornado activity over the
United States, Miller et al. (2020) used five CONUS-focused
regimes for May only. Coe et al. (2021) defined seven weather
types over the northeastern United States during autumn and
linked these to meteorological impacts and the seasonal transi-
tion. More generally, Nabizadeh et al. (2022) defined four
summertime regimes over the Pacific–North American (PNA)
domain (i.e., excluding Greenland); these showed substantial
similarity with the aforementioned wintertime regimes, despite
the exclusion of the eastern North Atlantic.

Yet the need to define different regimes for different times of
the year (especially during seasonal transition periods) is awk-
ward, and increases uncertainty in the classification given the
sensitivity of clustering solutions to methodological choices. To
address this issue with the NAE regimes, Grams et al. (2017) de-
veloped a set of year-round weather regimes by first removing
the seasonal cycle in geopotential height variability prior to
EOF analysis and k-means clustering. Grams et al. (2017) then
applied the regimes to meteorological impacts on European
renewable energy generation. Subsequently, the year-round clas-
sification has been used to quantify seasonal variation in subsea-
sonal model skill (Büeler et al. 2021), including the contribution
of season-specific sources of predictability (such as the strato-
spheric polar vortex). Other applications outside of winter in-
clude identifying circulation types associated with heatwaves in
summer (Spensberger et al. 2020) and atmospheric rivers in au-
tumn (Pasquier et al. 2019). It would therefore be advantageous
to apply a similar method to the flow over North America, and

rigorously define a new set of year-round regimes for the
continent.

This is the goal of the present study. We here define a set of
daily, year-round weather regimes in a domain centered on
North America. We systematically test the sensitivity of the
results to various methodological choices to demonstrate both
the robustness of our classification and the reasons for the
choices we make. We then link each weather regime to key
meteorological variables and other modes of climate variabil-
ity, and quantify trends and variability in regime frequency
since 1979. The regimes defined herein provide a straight-
forward and reproducible framework, which can be applied
across all seasons in operational forecasting and research
for a wide variety of purposes.

The rest of the paper is laid out as follows. The datasets,
software, and significance testing are outlined in section 2. In
section 3, we provide details on the method used to define the
regimes. In section 4 we present the new regimes, their char-
acteristics and variability, and relate them to temperature and
precipitation anomalies. Our conclusions follow in section 5.

2. Datasets, software, and significance testing

Our analysis is based on the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA5 reanalysis
(Hersbach et al. 2020). We use daily mean quantities com-
puted from 6-hourly (0000, 0600, 1200, and 1800 UTC) data
(except for daily total precipitation, which is computed using
hourly data) over the period 1 January 1979–31 December
2022 on a 1.58 latitude–longitude grid. Daily total precipita-
tion and 2-m temperature anomalies are expressed relative to
a 60-day centered running mean climatology. We additionally
de-trend 2-m temperature anomalies by subtracting the linear
least squares fit to the data for each grid point and calendar
day, smoothed with a 60-day running mean. For the large-scale
geopotential height fields upon which the regime classification
is based, the sensitivity to the choice of modern reanalysis or
reasonable variation in grid resolution is likely to be minimal.
Time series of the daily NAO index, daily PNA index, and
monthly oceanic Niño index (ONI) are obtained from the
NOAA Climate Prediction Center website (https://www.cpc.
ncep.noaa.gov/products/precip/CWlink/daily_ao_index/teleco
nnections.shtml). The NAO and PNA indices are renor-
malized to zero mean and unit standard deviation for the
1979–2022 period under consideration here.

The regimes are computed by k-means clustering, using
the Python package scikit-learn (Pedregosa et al. 2011)
initialized with the k-means11 algorithm. The k-means
method is a widely used and well-established unsupervised
learning method for computing atmospheric circulation pat-
terns (e.g., Huth et al. 2008). The algorithm iteratively solves
for the set of k centroids that minimize the sum of squared
Euclidean distances between data points and their corre-
sponding (i.e., nearest) centroids. To minimize the sensitivity
of the final clustering solution to the initial seeds, 500 ran-
dom initializations are used. Convergence of the clustering is
declared with a tolerance of 0.0001.
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To assess significance of composite statistics associated with
the regimes, we account for the persistence of each regime state
(i.e., consecutive days with the same regime assignment) by em-
ploying block-bootstrapping tests. Each individual “block” of
consecutive days assigned to a regime is treated as one object,
and then synthetic composites are generated by random resam-
pling of the blocks with replacement 10 000 times. If zero lies
outside the 2.5th–97.5th (5th–95th) percentiles of this distribu-
tion, then the anomaly is deemed significant at the 95% (90%)
confidence level. Elsewhere, simple bootstrapping with replace-
ment is used.

3. Defining the regimes

a. Domain

The choice of a domain for “North America” is a key
source of differences among studies of weather regimes over
the continent. The domain should be large enough to cover
the region of interest, but not too large so as to include atmo-
spheric variability with no direct relevance. We here select
the same domain as in the wintertime analysis of S. H. Lee
et al. (2019), spanning 1808–308W, 208–808N, which covers al-
most all of North America from the Aleutian Islands to east-
ern Greenland, and from central Mexico to the Canadian
Arctic. Importantly, this domain includes parts of the eastern
North Atlantic so as to include variability associated with the
NAO. While analysis of the individual storm tracks may be
advantageous from a purely dynamical perspective (as in, e.g.,
Fabiano et al. 2021), this domain choice is motivated by the
relevance to societal impacts and the simplicity of a single re-
gime attribution for the continent. Overall, the regimes pre-
sented here are robust to small changes in the domain size
(6;208), following similar testing procedures as in Vigaud
et al. (2018) and with a consideration of what might reason-
ably be defined as “North America.”

b. Climatology and anomaly calculation

The regimes are based on 500-hPa geopotential height
(Z500) anomalies, which is a common choice for weather re-
gimes. The Z500 anomalies are computed in a three-step
procedure. First, we remove the seasonal cycle in the mean
state by subtracting a 60-day running mean climatology for
each day of the year over 1979–2022. A 10-day low-pass Fou-
rier filter is then applied to the anomalies to emphasize low-
frequency variability beyond synoptic time scales. However,
the impact of the low-pass filter on the clustering results is rel-
atively small (consistent with Robertson et al. 2020), with
79% of days sharing the same regime attribution if no low-
pass filtering is performed.

Next, we detrend the data to account for the increase in the
average Z500 owing to thermal expansion of the lower tropo-
sphere (Fig. 1a). The data are detrended by removing the lin-
ear trend in the daily area-averaged (cosine-latitude weighted)
Z500 in the regime domain (5.9 m decade21; Fig. 1b). We
adopt this approach, rather than simply detrending each grid
point, in order to retain trends (Fig. 1c) arising from changes
in the circulation which may project onto, or alternatively be

caused by, trends in regime frequency. Similar area-averaged
detrending methods have been used in previous studies
(Fabiano et al. 2021; Dorrington et al. 2022).

Finally, following a similar method to Grams et al. (2017),
we normalize by the seasonal cycle in the variance of the
Z500 anomalies. The standard deviation of Z500 anomalies
across 1979–2022 is computed for each day of the year at each
grid point in the regime domain, and then area-averaged with
a cosine-latitude weighting. Then, a 60-day centered running
mean is applied, and the Z500 anomalies are divided by this
scalar as a function of calendar day (Fig. 1d). We perform this
normalization to give equal weight to all days within the
k-means clustering algorithm; otherwise, the much smaller
summertime variance results in these days being weighted less
in the clustering solution, because k-means minimizes the sum
of within-cluster variances. Relative to other sources of uncer-
tainty, the clustering results are robust to the choice of smoothing
window used for the climatology and variance normalization:
;90% of days maintain the same regime attribution for smooth-
ing windows between 0 and 90 days.

c. Principal component analysis

We then perform principal component (PC) analysis on the
normalized, low-pass-filtered daily Z500 anomalies, retaining
the leading 12 PCs which explain 81% of the total variance.
The PCs are not standardized so as to preserve distances. The
k-means clustering is then performed in this 12-dimensional
PC space, which vastly reduces the dimensionality of the clus-
tering problem and further emphasizes larger-scale variability,
while ensuring input variables are uncorrelated. The choice of
the number of PCs to retain is arbitrary at this stage; typically,
the number of PCs that explain around 70%–80% of the vari-
ance are used (e.g., Cassou 2008; Grams et al. 2017), though
the clustering solution may not necessarily require all the re-
tained PCs (Lee et al. 2022a; Lembo et al. 2022). Although
the variance normalization is performed on the full Z500
anomalies, we also verify that there is no seasonal cycle in the
total variance of the 12 PCs used as the basis set for the clus-
tering (not shown).

d. Choosing k

A limitation of the k-means clustering method is the fact
that the user must specify the number of clusters, which is not
known a priori. The k number can be chosen subjectively by
aiming to strike a balance between low dimensionality (for
the benefit of predictability), and the representation of finer-
scale features that are more tightly linked to local surface
weather modulation. However, several objective, data-driven
methods exist for determining the best number of clusters,
and hence the number of regimes. Here, we offer four differ-
ent methods which all support the same choice of k5 4.

The simplest is to run the clustering algorithm to conver-
gence for a range of k, and find the largest k for which the
Pearson correlation between the centroid coordinates in PC
space is less than zero (i.e., the largest number of clusters for
which the patterns are all anticorrelated). This threshold max-
imizes the number of clusters while limiting feature repetition
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between clusters (motivated by seeking the smallest number
of clusters required to capture the dominant flow patterns).
Figure 2a shows that this method yields k5 4.

A second approach is the measure proposed by Davies and
Bouldin (1979), defined for k clusters following:

DB(k) 5 1
k
∑
k

i51
max
iÞj

si 1 sj
dij

( )
, (1)

where si is the average distance between members of cluster i
and the centroid of that cluster, and dij is the distance between
the centroids of cluster i and j. The DB index therefore repre-
sents the average similarity between one cluster and its most
similar cluster. Hence, the optimal choice of k is one which
minimizes the index, indicating the clusters are well separated.
Figure 2b shows that this method also clearly yields k 5 4 as
the best choice.

The third approach presented here (Fig. 2c) is the
“classifiability index” introduced by Michelangeli et al. (1995,
hereafter MVL95). The classifiability index tests both the ro-
bustness of the clustering solution to the initial seeds and the
extent to which the solution can be distinguished from syn-
thetic noise data. We follow a slightly modified version of the

method of MVL95, which we detail here in full. For the 12
PCs, for a given value of k, the k-means algorithm is initial-
ized 1000 times from 1000 different random seeds, to produce
1000 different partitions of the data. (The choice of 1000}20
times that of MVL95}is arbitrary, but was chosen to obtain
more stable classifiability statistics given the much longer da-
taset here.) Clusters are matched to each other between all
combinations of partitions by finding the maximum correla-
tion between the centroids. Then, the minimum correlation
between a cluster in one partition and its equivalent in an-
other partition is stored each time. These minima are aver-
aged to yield the classifiability c*(k). Similar to MVL95, we
also compare the results with a reference noise model, com-
puted as 12 first-order autoregressive [AR(1)] processes with
the same variance and lag-1 autocorrelation as each of the
12 PCs. One hundred such synthetic time series are created
and c*(k) is computed for each. The best choice of k for the
atmospheric data is therefore the smallest k that has both
high classifiability (i.e., low dependence on the initial seeds)
and higher classifiability than the noise data. Only k 5 3
(c* 5 0:98) and k 5 4 (c* 5 0:97) show high classifiability.
However, k 5 4 is much more classifiable than the equivalent
AR(1) data, with c* greater than 93% of the AR(1) time se-
ries (consistent with the one-sided 90% test used by MVL95)

FIG. 1. (a) Linear trend in daily Z500 anomalies at each grid point in the regime domain from 1 Jan 1979 to 31 Dec
2022. (b) Daily area-averaged Z500 anomalies in the regime domain (gray), a 365-day centered running mean (black),
and the linear trend (5.9 m decade21; red, dashed). (c) Residual trends in daily Z500 anomalies when the trend in
(b) is subtracted. (d) Area-averaged standard deviation of Z500 anomalies as a function of calendar day (gray), with a
60-day centered running mean (purple). Hatching in (a) and (c) denotes trends that are not significantly different
from zero at the 95% confidence level according to 10 000 bootstrap resamples with replacement.
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versus only 77% for k 5 3. Hence, the classifiability test also
indicates k5 4 is the best choice.

Finally, again followingMVL95, we compute a “reproducibility
index.” This index quantifies the extent to which the centroids are
dependent on the specific choice of input data length, by assessing
whether a similar clustering solution can be obtained from a
smaller subsample. Half the data (22 years, not necessarily consec-
utive) are randomly sampled without replacement, and k-means
clustering is computed for k ranging from 2 to 8. The centroids
from each subsample are matched to those computed from the
full dataset by finding the maximum correlation between the two
partitions. This is then averaged for each cluster across 1000 ran-
dom samples to yield the reproducibility index for each centroid
of a given k-cluster set (Fig. 2d). As noted by MVL95, the repro-
ducibility and classifiability indices give similar results, and here

we find k 5 4 is the largest k for which all clusters are highly
reproducible.

From this analysis, we conclude that k 5 4 is the most ap-
propriate number of regimes for use year-round in the North
American sector. Choosing a larger k results in clusters that
are less classifiable, less reproducible, and less distinct from
one another. We note that k 5 4 has also been previously
shown as optimal for use in winter [e.g., the classifiability in-
dex analysis in Vigaud et al. (2018)], which implies the same
number of preferred flow patterns over North America re-
gardless of season. Indeed, if the four wintertime regimes are
robust and not a statistical artifact, then it could be argued
that the number of year-round regimes should include these
and thus be at least four. However, in contrast to the seven
year-round NAE regimes of Grams et al. (2017), none of the

FIG. 2. For k ranging from 2 to 8: (a) the maximum correlation between cluster centroids; (b) the Davies–Bouldin
index (see main text for details); (c) the classifiability index c*(k) computed using the 12 PCs (red line) and boxplots
of c*(k) obtained from 100 sets of 12 AR(1) time series modeled on the PCs, with whiskers extending between the
10th and 90th percentiles; and (d) the reproducibility index for each cluster obtained from 1000 random draws of
22 years from the full dataset.
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four objective methods presented in Fig. 2 suggest more than
four year-round North American regimes can be reliably ob-
tained using k-means clustering.

4. The four year-round North American regimes

a. Regime assignment

Using k 5 4, each day is assigned to a cluster by the minimum
Euclidean distance to a cluster centroid. Naive clustering assigns
every day to a cluster, and thus every day into a regime}including
days where the anomalies are negligible and do not closely resem-
ble a cluster mean. Therefore, we define a fifth cluster centroid
with all PCs set to zero to represent the climatological state.
Then, any days which are closer to this new centroid than any of
the other four centroids (by Euclidean distance) are classified as
“No Regime.” This is an objective and straightforward classifica-
tion of a neutral state which operates in the same space as the na-
ive cluster assignment and does not depend on an arbitrary
threshold. Furthermore, rerunning the clustering without the No
Regime days yields the same four patterns and the same regime
assignment on 99.6% of days, confirming that the subsequent re-
classification would not otherwise influence the k-means solution.

b. Regime patterns

The cluster-mean normalized Z500 anomalies for the four
regimes are shown in Fig. 3; the mean anomalies during No

Regime are negligible, and thus not shown. (Nonnormalized,
seasonally varying Z500 anomalies are discussed later in
section 4g, but can be recovered for any day of the year here
by multiplying by the relevant scalar from Fig. 1d.) These four
regimes are very similar to the set of four previously identified
for the winter. Such similarity is perhaps surprising, but the
summertime North American regimes identified by Nabizadeh
et al. (2022) do not differ greatly from their winter counter-
parts. Moreover, a set of year-round regimes should at least in-
clude the wintertime regimes, and so if there are both four
wintertime regimes and four year-round regimes, then the pat-
terns should be extremely similar. We also found that four al-
most identical regimes can be obtained by using a 4 3 1 SOM
of the normalized Z500 anomalies without an EOF transform
(not shown), providing further evidence of the robustness of
the classification.

In the existing literature, the same regime patterns have
been given different names [compare, for example, Robertson
et al. (2020) with Straus et al. (2007)]. Here, we adopt a nam-
ing convention based on a combination of the location of the
largest-magnitude anomaly and some element of continuity
with names used in previous studies. We refrain from naming
any of the regimes by their similarity to modes of variability
(such as the PNA or NAO) to avoid potential confusion with
index time series. From most-to-least frequent overall, the re-
gimes are named the Pacific Trough (PT, occurring on 25% of

FIG. 3. Average normalized Z500 anomalies for all days assigned to the (a) Pacific Trough (PT), (b) Pacific Ridge
(PR), (c) Alaskan Ridge (AKR), and (d) Greenland High (GH) regimes. Percentages denote the overall frequency of
each regime during 1979–2022 (total 86%; remaining 14% classified as “No Regime”). Data are masked where not
significantly different from zero at the 95% confidence level according to a block bootstrap resampling test.
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days), the Pacific Ridge (PR, 22%), the Alaskan Ridge
(AKR, 20%), and the Greenland High (GH, 19%). No Re-
gime accounts for the remaining 14% of days. A graphical de-
piction of the daily regime classification over 1979–2022 is
shown in Fig. 4.

As these regimes patterns are broadly similar to season-
specific patterns described elsewhere, we only briefly summa-
rize their key characteristics here. The PT regime (Fig. 3a)
consists of an anomalous trough in the Gulf of Alaska, associ-
ated with an enhanced meridional Z500 gradient in the north-
east Pacific. An anomalous ridge, centered over Manitoba,
dominates the flow over the bulk of the United States and
Canada, while a modest cyclonic anomaly can be found over
central Greenland and the southeastern United States. The
PR regime (Fig. 3b) is characterized by almost equal-and-
opposite anomalies to the PT regime in the northeast Pacific,
with an anomalous ridge south of the Aleutian Islands. How-
ever, across the continent, the configuration is rather different:
the high latitudes from Alaska to Greenland are dominated by
a cyclonic anomaly which extends down the western half of
the continent, with an anomalous ridge downstream centered
on New York state. The AKR regime (Fig. 3c) consists of a
wave train extending from the Pacific to the Atlantic, with the
continent dominated by a dipole between the anomalous
ridge over Alaska and trough over the Hudson Bay, yielding
an anomalously meridional flow. The ridge–trough pattern
of the AKR regime constructively interferes with the mean
stationary wave present over North America, generally op-
posite to the broadly destructive interference by the PR

regime. Finally, the GH regime (Fig. 3d) consists of a large
negative NAO-like anticyclonic anomaly centered over the
Labrador Sea extending west with diminishing amplitude to
Alaska. Most of the United States lies under anomalously
low Z500, with the cyclonic anomalies maximizing to the
southeast of Atlantic Canada. The GH regime differs from
the other regimes by showing only minimal anomalies in the
northeast Pacific.

c. How many PCs?

As mentioned in section 3c, the choice of 12 PCs as the di-
mension of the clustering space was somewhat arbitrary, so
we now seek to quantify how many PCs are in fact necessary
to recover an equivalent cluster solution for k 5 4. Figure 5a
shows the coordinates of the cluster centroids in the leading
12 PCs of the normalized Z500 anomalies (cf. Lee et al.
2022a, their Fig. 2e, for an equivalent analysis of the winter-
time regimes). The coordinates are close to zero for all but the
leading three PCs, and thus only the leading three PCs contrib-
ute significantly to defining the regime centroids. To quantify
the impact of each additional retained PC to the clustering so-
lution, we recompute the four clusters using 1–12 PCs, and
compute the area-weighted pattern correlation between the
cluster-mean Z500 anomalies for each regime and the corre-
sponding 12-PC composites. Figure 5b shows that, for cluster-
ing solutions performed with at least the leading three PCs,
the pattern correlations all exceed 0.99. The third PC is pri-
marily required to obtain the PR and AKR regimes, while the
GH and PT cluster-mean anomalies are largely obtained with

FIG. 4. Daily year-round North American weather regime attribution from 1 Jan 1979 to 31 Dec 2022.

L E E E T A L . 709715 OCTOBER 2023

Brought to you by Columbia University | Unauthenticated | Downloaded 11/20/23 06:33 PM UTC



only two PCs. The minimal contribution of the third PC to the
GH and PT regimes can be verified by noting the comparably
small magnitude of their centroids in PC3 (Fig. 5a). As a re-
sult, a time series of the regimes computed by clustering only
the leading three PCs yields the same regime on 95% of days
as that based on 12 PCs.

Therefore, the regimes defined herein are effectively gov-
erned by only the leading three EOFs, which together explain
39% of the variance in the daily low-pass-filtered normalized
Z500 anomalies. Maps of the EOFs are shown in Figs. 5c–e:
these bear some similarities with established patterns of vari-
ability such as the PNA and NAO, but we caution the EOF
transform here is not performed with a view to represent such
physical modes. We also emphasize that, unlike EOFs, the re-
gimes do not have a positive and negative loading, and are
not orthogonal or uncorrelated. Nevertheless, at their sim-
plest, the regimes can be interpreted as a linear combination
of these EOFs.

d. Persistence and transitions

A key aspect of the regime framework is the persistence of
a single regime for time scales greater than individual, synoptic-
scale weather systems (Vautard 1990). The regimes identified
here are not obtained using an a priori minimum persistence
criterion: the only explicit temporal filtering is the 10-day

low-pass filter of the Z500 anomalies prior to clustering (al-
though the truncated PC basis acts as an implicit temporal filter).
Hence, the persistence of each regime reflects an intrinsic prop-
erty of the large-scale flow, and is not an arbitrary choice in the
construction.

The distribution of durations of all regime instances, de-
fined as the number of consecutive days with the same regime
assignment, is shown in Fig. 6a alongside an equivalent analy-
sis for No Regime. The median duration of all four regimes is
around one week (7 days for PT and GH, and 6 days for PR
and AKR), and the middle 50% of all regime instances persist
for 4–10 consecutive days. In contrast, the median duration of
No Regime is only 2 days, and 75% of such instances persist
for less than 5 consecutive days. Therefore, the regime classifi-
cation identifies more persistent states with a typical weekly
time scale. Extremely long-lived regimes}lasting for more
than 3 weeks}also occur, with an overall maximum of 44
consecutive days of the PR regime ending 14 December 1994.
We note that, if no low-pass filter is applied, the median dura-
tion of the four regimes decreases to 4 days, primarily due to
a greater frequency of regimes lasting for less than 5 days.
Hence, the 10-day filter is effective in its purpose at suppress-
ing the influence of synoptic-scale variability.

Next, for each regime R at lag d from regime onset, Fig. 6b
shows the probability of being in regime R on day d conditional

FIG. 5. (a) Coordinates of the k5 4 regime centroids in 12-dimensional PC space. (b) Sensitivity of the cluster solu-
tion (with k 5 4) to the number of retained PCs from 1 to 12, expressed as the area-weighted pattern correlation of
the cluster-mean Z500 anomalies with the cluster means obtained from 12 PCs. (c)–(e) Regression of the standardized
PC time series for EOFs 1–3 with the variance-normalized Z500 field, and the percent of the total variance explained
by each EOF.
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on being in regime R at d5 0, regardless of the regime attribu-
tion in between. In contrast with Fig. 6a, this analysis does not
require consecutive days of the same regime and incorporates
cases where regimes decay and subsequently recur. All four re-
gimes are significantly more likely than climatology for at least
10 days after the onset of a regime; the probability of the PR
and GH regimes remains elevated above climatology for
14 days (and decays thereafter). In contrast, the probability of
No Regime rapidly decays to climatology by 5 days (well ap-
proximated by an exponential function with an e-folding time
scale of 2.5 days).

We next quantify the frequency of regime transitions (a
53 5 matrix), shown in Fig. 7. We urge caution in interpreting
these results because the persistence of the regimes results in
very small sample sizes (widely ,100) for each individual
transition, and the seasonality of the regime frequencies likely
leads to seasonality in the transition probabilities which are
not captured here. Nevertheless, it is notable that transition-
ing into No Regime is clearly the most likely transition for all
four regimes. Hence, because of the definition of No Regime
used here, this means that regimes tend to terminate by de-
caying toward climatology, rather than transitioning directly
via a “mixed” state (in which different aspects of two regimes
are simultaneously amplified). This behavior is consistent with
our regime classification identifying large-scale quasi-stationary
states, rather than propagating synoptic-scale weather systems.
A lack of transition symmetry is also evident: for example, the
transition from GH to AKR (3.3%) is more than twice as likely
as the reverse (1.4%; the least likely of all transitions, having
only occurred 45 times in 44 years). The relatively higher
likelihood of the GH to AKR transition is consistent with

the westward propagation of a high-latitude anticyclone under
the weak zonal flow typical of the GH regime. Similarly, the
preference for transitions between the AKR regime and either
the PT or PR regimes is dynamically consistent with the propa-
gation of a Rossby wave train.

e. Relationship with the NAO, PNA, and ENSO

Having presented the new regimes and their persistence,
we now relate them to the widely known and well-established
NAO and PNA teleconnection indices by computing the fre-
quency of each regime conditional on the contemporaneous
sign of the NAO and PNA indices. We use a simple 60.5s
threshold to define the positive and negative phases of those
indices.

The GH regime exhibits the strongest relationship with the
NAO (Fig. 8a), with a probability of 51% given a negative
NAO index. All other regimes are much less likely during a
negative NAO than during either a neutral or positive NAO.
The PT, PR and AKR regimes are all equally likely during a
positive NAO (30%), while the GH regime is effectively ab-
sent (,1%). For the PNA (Fig. 8b), the PT and PR regimes
show almost equal-and-opposite behavior, with the PT most
likely given a positive PNA (43%) and the PR most likely
given a negative PNA (44%). There is only a weak relation-
ship between the PNA and the AKR regime (16% for a nega-
tive PNA and 21% for positive PNA), and there is no
relationship between the PNA and the GH regime. As might
be expected, No Regime is most frequent when the telecon-
nection indices are near neutral. Hence, aside from the strong
relationship between the GH regime and the negative NAO,
this analysis demonstrates the diversity of weather patterns

FIG. 6. (a) Boxplots of regime duration, defined as consecutive number of days with the same regime assignment.
White horizontal lines denote the medians and notches denote 95% confidence intervals obtained by bootstrapping.
Whiskers extend between the 2.5th and 97.5th percentiles, with open circles denoting outlier points. (b) Probability of
each regime as a function of lag from the first day assigned to each regime. Dashed horizontal lines denote the clima-
tological probability of each regime. Shading denotes 95% confidence intervals obtained by bootstrapping; lines are
thickened where the climatological frequency lies outside this interval.
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that can exist for a given PNA or NAO index. Indeed, as
noted by Grams et al. (2017) for the NAO, it could be mis-
leading to expect a particular weather pattern based solely on
a given PNA or NAO index (either alone or in combination),
or to equate indices and regimes: they are not equivalent, as
this analysis demonstrates.

Given the large role of ENSO in modulating North American
climate and prior work linking ENSO to extratropical weather
regimes (e.g., Molteni et al. 1993; Straus et al. 2007), we next
show in Fig. 8c the probability of each regime given the con-
current ENSO state. Since we are considering year-round
data but ENSO variability exhibits a pronounced seasonal-
ity, we classify El Niño and La Niña by the outer quartiles
of the ONI distribution for each overlapping 3-month pe-
riod (similar to Tippett and Barnston 2008). The PR regime
displays the strongest ENSO dependence; it is around 50%
more likely during La Niña versus El Niño, consistent with
its similarity with the negative PNA pattern, and is the least
likely of the four regimes during El Niño. The PT regime dem-
onstrates a weaker reverse relationship, being 20%more likely
during El Niño versus La Niña. There is also a weak suppres-
sion of the AKR regime during La Niña (during which it is the
least frequent regime), but no ENSO-dependent modulation
of the GH regime nor the No Regime state. While we do not
perform them here, similar analyses could also be performed
for other key modes of climatic variability and predictability,
such as the Madden–Julian oscillation (e.g., Cassou 2008;
R. W. Lee et al. 2019).

f. Seasonal variability

The construction of the regimes as year-round phenomena
does not preclude seasonal variability in their relative frequencies,

as shown in Fig. 9 for overlapping 3-month periods. The PT
regime is more frequent in the cold season, with a maximum
frequency in OND (30%) and a minimum in JJA (19%). The
AKR regime displays a similar seasonality, with a peak fre-
quency in NDJ and DJF (24%) and a minimum in MAM
(16%). The GH regime is most frequent in the late spring and
early summer (peak frequency in MAM of 24%) and least fre-
quent during the cold season (15% in OND). Unlike the other
three regimes, there is no notable seasonality to the frequency

FIG. 8. Probability of each regime subset by the state of the
(a) NAO, (b) PNA, and (c) ENSO. In (a) and (b), a simple 60.5s
threshold is used; in (c) the seasonally varying 25th and 75th ONI
percentiles are, respectively, used to define La Niña and El Niño.
Error bars indicate 95% confidence intervals obtained by block
bootstrapping. Note the different y axis in (c).

FIG. 7. Matrix showing the frequency of transitions (%) from
each regime (rows) to other regimes (columns). The self-transition
frequencies (i.e., lag-1 persistence frequencies) are shown in bold
white font on the main diagonal, while the most likely transition
for each regime is shown in bold black font.

J OURNAL OF CL IMATE VOLUME 367100

Brought to you by Columbia University | Unauthenticated | Downloaded 11/20/23 06:33 PM UTC



of the PR regime (overall range of only 4 percentage points).
We also assessed seasonal variability in persistence, but found
the differences to be generally small: for all regimes, the median
duration varies between seasons by no more than 61 day rela-
tive to the overall median. However, long-lasting PT and PR re-
gimes are more likely during winter, when the top 25% longest
regimes last for more than 2 weeks, versus 8–10 days in other
seasons.

The springtime peak in GH frequency is consistent with the
downward influence of final stratospheric warmings (Black
et al. 2006; Butler and Domeisen 2021), given the increased
likelihood of the similar wintertime regime during weak
stratospheric polar vortex conditions (S. H. Lee et al. 2019).
Seasonality in the magnitude of ENSO forcing may explain
the lower frequency of the PT regime in summer (given its
link to El Niño, Fig. 8c), but an equally simple argument can-
not be applied to the PR regime (given its link to La Niña)
since it displays no seasonality. The maximum in the fre-
quency of No Regime during early summer (20%; twice as
frequent as during winter), suggests that the summertime flow
is fundamentally less regime-like, which may be expected
from the weaker large-scale variability structures in summer
(Wallace et al. 1993). Importantly, the summertime No Re-
gime peak occurs despite the variance normalization of the
Z500 anomalies, which means that it is not the result of re-
duced variance. Otherwise, in the absence of variance normal-
ization, No Regime would account for almost 50% of summer
days and thus simply reflect the seasonality in Z500 anomaly
magnitude, rather than being a meaningful classification of
summertime variability. We also note that a proportionate

increase in the frequency of No Regime (albeit defined differ-
ently) occurs during summer in the year-round NAE regimes
of Grams et al. (2017), while Büeler et al. (2021) found that
No Regime states in the NAE region were associated with re-
duced forecast skill. Hence, the summertime peak in the fre-
quency of No Regime may contribute to the generally lower
summertime extratropical large-scale prediction skill (Son
et al. 2020; Büeler et al. 2021).

Despite the seasonality in their frequency, the spatial pat-
terns of the regimes do not markedly change (aside from the
seasonal cycle in the magnitude of the Z500 anomalies). For
each season and regime, Fig. 10 shows the nonnormalized
cluster mean and its median area-weighted pattern correlation
with the Z500 anomalies of the days assigned to that regime.
The year-round classification performs well in all seasons: the
seasonal-mean patterns do not differ substantially from the
year-round means (cf. Fig. 3; all pattern correlations . 0.93)
and the median correlations with the respective seasonal
means vary by no more than 0.13. We also note the good de-
gree of correspondence between the JJA patterns here and
the four extended summer (JJAS) regimes defined by Nabizadeh
et al. (2022), despite their more Pacific-centric domain.

To objectively verify that our year-round approach cap-
tures the same patterns that would appear by constructing re-
gimes for each season separately, we also computed k 5 4
seasonally dependent regimes (plus no regime, defined as for
the year-round set) using the leading 12 PCs of nonnormal-
ized, low-pass-filtered Z500 anomalies for each season. We
then compared these with the maps in Fig. 10, and confirmed
that the same four patterns are detected in each season: area-

FIG. 9. Seasonal variation in the frequency of the weather regimes, calculated over centered
3-month periods. Numbers in each bar segment denote the percent of days in each 3-month
period assigned to each regime.
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weighted pattern correlations exceed 0.90, except for PT dur-
ing MAM (r 5 0.86). The median pattern correlations for all
days assigned to each seasonally dependent regime are indis-
tinguishable from those shown in Fig. 10: they also exhibit the
same small seasonal cycle with a summertime minimum, con-
firming that this is likely an effect of less structured summer-
time variability. Therefore, since no other patterns appear
when constructing separate regimes for each season, we see
no benefit in a seasonally dependent classification. Indeed,
aside from simple continuity, the year-round method also
benefits from a larger sample size, which may yield greater
cluster stability (Michelangeli et al. 1995), and is not influ-
enced by the rapid changes in field variance during spring and
autumn.

g. Links to meteorological conditions

We now link the circulation anomalies in each regime to
relevant meteorological variables. Figures 11 and 12, respec-
tively, show the average anomalies of daily 2-m air tempera-
ture and precipitation for all days assigned to each regime in
each season. In general, since the circulation anomalies do
not markedly change season-to-season, neither do the accom-
panying temperature and precipitation anomaly patterns.

The PT regime is associated with the most widespread
above-average temperatures (Fig. 11a), centered in western
Canada. Only western Alaska typically experiences tempera-
tures substantially below normal during this regime. Precipita-
tion is well above normal along the west coast, particularly
from Oregon to southern Alaska (Fig. 12a), but generally be-
low normal across the central continent under the anomalous
ridge. The PT regime is the only regime associated with
widely above-normal west coast precipitation, which has been
previously linked to above-normal atmospheric river fre-
quency in winter (Amini and Straus 2019).

The PR regime is characterized by a northwest–southeast
dipole in temperature anomalies (Fig. 11b), with colder than
normal conditions along the West Coast, western Canada,
and Alaska, and warmer than normal conditions across the
eastern United States and Canada. Indeed, in the east/south-
east, the PR regime is on average the warmest, while it is on
average the coldest for the west/northwest. Precipitation is
slightly above normal in the interior of the continent, and gen-
erally near or below normal along the west coast (Fig. 12b).

The AKR regime is on average the coldest for the eastern
half of the continent (Fig. 11c), while the west coast and
Alaska (where the AKR regime is the warmest) experience

FIG. 10. (a)–(d) Seasonal variation (rows) in the average Z500 anomalies (shading; m) and mean Z500 (black contours; dam) associated
with the four regimes. In each panel, the median area-weighted pattern correlation (r̃) of all days assigned to each regime per season with
the seasonal mean is shown in the top left. Data are masked where not significantly different from zero at the 95% confidence level ac-
cording to a block bootstrap resampling test.

J OURNAL OF CL IMATE VOLUME 367102

Brought to you by Columbia University | Unauthenticated | Downloaded 11/20/23 06:33 PM UTC



above normal temperatures. The relationship between the
AKR regime and extreme cold in winter has been previously
reported (S. H. Lee et al. 2019; Millin et al. 2022; Messori et al.
2022). During summer, above-average temperatures during
the AKR regime are more extensive in the Pacific Northwest
compared to other seasons. The AKR regime is the driest re-
gime for the west coast and many interior parts of the conti-
nent, and nominally the wettest for the east coast (Fig. 12c).

During the GH regime, average temperature anomalies
(Fig. 11d) are substantially more pronounced during winter
when anomalously cold conditions dominate the United
States and southern Canada; these are comparatively minimal
during other seasons, especially summer. Aside from over the
Atlantic off the U.S. East Coast, the GH regime is on average
the coldest regime for only a small region of northwestern
Mexico extending up the Continental Divide to southern Wy-
oming, while it is the warmest regime for regions surrounding
the Labrador Sea. Large precipitation anomalies (Fig. 12d)
are mostly confined to the coast of British Columbia (BC),
which is significantly drier than average during the GH re-
gime. During winter and early spring, the GH regime is more
likely when the stratospheric polar vortex is weak (S. H. Lee
et al. 2019), and so the dry conditions along the BC coast are
consistent with the locally reduced atmospheric river fre-
quency during weak vortex conditions (Lee et al. 2022b).

h. Interannual-to-decadal variability

Finally, we assess variability and trends in the frequency of
the regimes since 1979. Changes to regime frequency, rather
than their structure, are an expected response of the climate
system to an external forcing (Palmer 1999). Here we report,
but do not attribute, the observed trends.

The annual frequency of each regime is shown in Figs. 13a–e.
The number of days assigned to the PT regime (Fig. 13a) has de-
creased since 1979 at a rate of 25.4 days decade21 (p 5 0.09),
with an average of 28 days fewer PT regime days per year in the
last 10 years compared with the first 10 years. The trend in the
frequency of the PT regime is consistent with the residual circu-
lation trend in the Z500 data (Fig. 1c), which resembles the in-
verse of the PT regime (cf. Fig. 3a). No other regime, nor the No
Regime state, shows significant annual trends. Hence, the de-
creasing frequency of the PT regime is not associated with a con-
comitant increase of one other regime, but rather a general
increase in the combined frequency of the four other classifica-
tions. When taken together, this is broadly consistent with the
“fewer troughs, not more ridges” conclusion of Zhang et al.
(2022) using five weather types over a smaller, CONUS-focused
domain.

The 10-yr moving averages in Figs. 13c and 13d also suggest
that the AKR and GH regimes exhibit pronounced multiannual

FIG. 11. (a)–(d) Seasonal variation (rows) in the average 2-m temperature anomalies associated with the four regimes. Data are masked
where not significantly different from zero at the 95% confidence level according to a block bootstrap resampling test.
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variability in approximate antiphase: GH frequency was
lower in the late 1980s–early 1990s and maximized in the
late 2000s–early 2010s, with the opposite variability for the
AKR regime. This is broadly consistent with observed vari-
ability in the NAO (and the closely related Arctic Oscilla-
tion) from a predominantly positive phase in the early 1990s
to a more negative phase by the late 2000s (Pinto and Raible
2012).

To assess whether the trends in annual frequency arise from
a specific season or are disguising competing trends between
seasons, we show the seasonal frequency trends in Fig. 13f. We
find that the large annual-scale decline in the frequency of the
PT regime has occurred due to a general decline in all seasons,
most robustly in spring (22.0 days decade21; p 5 0.09). There
has been a significant increase in AKR regime frequency during
spring (2.1 days decade21; p5 0.05), but this is effectively offset
by an equivalent decrease in summer (22.0 days decade21;
p 5 0.03). The largest trend is an increase in summertime GH
frequency of 3.9 days decade21 (p 5 0.01), equating to 21% of
the 1979–2022 average JJA frequency per decade. Such a trend
is consistent with the observed weakening of the midlatitude
summertime westerly flow (Coumou et al. 2015), but the appar-
ent multidecadal variability in GH frequency implies a large
role for internal variability as is typical of the NAO (e.g., Deser
et al. 2017).

5. Summary and conclusions

In this study, we have constructed a new set of four year-
round weather regimes for North America using k-means
clustering. A crucial step in their construction was the normal-
ization of the Z500 anomalies by the seasonal cycle in the
domain-average variance (Fig. 1), in order to give equal weight
to summer and winter variability in the clustering procedure.
The choice of k clusters was motivated by agreement between
four separate objective methods, which all supported four clus-
ters as the best choice (Fig. 2). Because naive k-means cluster-
ing assigns every day to a regime}and thus even days with
minimal circulation anomalies}we then applied an objective
No Regime criterion by defining a new centroid to represent
climatology, which accounts for 14% of days overall.

The Z500 anomaly patterns obtained for our four new re-
gimes closely resemble regimes previously defined for the
winter and summer seasons separately, indicating that the re-
gimes present over North America do not differ markedly be-
tween the warm and cold seasons. Such a conclusion has been
previously suggested (Nabizadeh et al. 2022) but has not been
explicitly demonstrated from a year-round perspective. In ad-
dition, while our new regimes were computed in the space
spanned by the leading 12 PCs (81% explained variance),
only the leading three (39% explained variance) were found
to play an important role (Fig. 5). Indeed, the four weather

FIG. 12. (a)–(d) Seasonal variation (rows) in the average daily total precipitation anomalies associated with the four regimes. Data are
masked where not significantly different from zero at the 95% confidence level according to a block bootstrap resampling test.
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regimes themselves explain a similar fraction of the total vari-
ance (43%; obtained by projecting the low-pass-filtered nor-
malized Z500 anomalies onto an orthogonal basis set created
with the Gram–Schmidt method). Hence, we caution that one
should not infer the amount of variance explained by the re-
gimes simply from the variance explained by the PCs used as
the basis set for the clustering. Rather, the dominance of only
three PCs indicates that regime behavior is likely to be ade-
quately described by this much-truncated set, while higher-
order PCs simply represent weather noise.

We found that the regimes were persistent, with a median
residence time of 6–7 days (Fig. 6), roughly three times more
persistent than No Regime. Such persistence was obtained
without imposing a subjective persistence criterion, indicating
that naturally persistent states are detected by the classifica-
tion. Instances of regimes persisting for more than two weeks
have occurred in all seasons, and individual regimes lasting
for more than four weeks have occurred in the record for all
but the AKR regime. The association between long-lived
regimes and windows of opportunity for extended-range pre-
diction is a potential avenue for further study, with our year-
round regimes providing a novel ability to do so in all seasons.
Additionally, because our regimes extend directly into the
North Atlantic, the potential exists for considering the link to
downstream impacts on the NAE regimes and European

weather. For example, a recent study by Riboldi et al. (2023)
linked two North American weather patterns that resemble
the GH and AKR regimes with cold spells over North America
and downstream European windstorms.

The linkage between long-lived regimes, extreme events and
their predictability is also noteworthy, as subseasonal forecasts
provide the requisite lead time to implement proactive mitigation
measures (e.g., Vitart and Robertson 2018). Here we present two
motivating examples. The longest-lasting PT regime (43 days
from 14 January to 25 February 1998; see Fig. 4) occurred during
an extreme El Niño winter (Wolter and Timlin 1998) and was as-
sociated with the warmest and wettest January–February on re-
cord for CONUS at the time (Ross et al. 1998). Given that the
PT regime is more likely during El Niño (Fig. 8) and is the only
regime associated with increased precipitation along the west
coast of North America (Fig. 12), then potential predictability of
such extremes may exist. More recently, the longest-lasting AKR
regime to begin in June (during its climatological minimum;
Fig. 9) was 10 consecutive days from 17 to 26 June 2021 inclusive,
immediately prior to the peak of the extreme Pacific Northwest
heatwave (26–29 June, during which the PT regime was present).
The warm and dry average conditions during the AKR regime
(Figs. 11c and 12c) are consistent with generating the precursor
soil moisture conditions which played a role in the extreme na-
ture of the heatwave (Schumacher et al. 2022).

FIG. 13. (a)–(e) Time series of the number of days per year (bars) assigned to each regime. Green lines show 10-yr centered running
means, and the black dashed lines denote the linear trends. The slope of the linear regression and the associated p value (obtained by
bootstrapping 10000 times with replacement) are also shown. (f) Linear trends (days decade21) in the frequency of each regime in each
season. Trends are shown in bold where p, 0.10.
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The association between the PT regime, El Niño and en-
hanced precipitation in western North America is notable
given its decreasing frequency (Fig. 13), particularly since
2010 (which has coincided with an increase in the typically dry
AKR regime). In a study of wintertime Pacific regimes in
CMIP6 models, Fabiano et al. (2021) found an increase in PT
frequency under future climate scenarios, potentially related
to an increased frequency of El Niño. While this projected
trend is in contrast to the observed trend, the models assessed
by Fabiano et al. (2021) did show a decreased PT frequency
in recent decades under historical forcing (their Fig. S10).
This is despite the discrepancy between trends in the Walker
circulation in models (strengthening) and observations (weak-
ening) in recent decades (Wills et al. 2022). Given the addi-
tional large increase in summertime GH frequency (Fig. 13f),
it would therefore be useful to extend the analysis of Fabiano
et al. (2021) to the year-round definition, and to better under-
stand the relative contributions of internal versus forced vari-
ability in the observed trends.

Regardless of whether these regimes represent true physical
modes of the climate system, they remain a useful statistical
tool for the characterization of large-scale, recurrent low-
frequency flow anomalies. Condensing the vast and ongoing
growth in subseasonal forecast data}such as the daily 101-
member forecasts from the cycle 48r1 upgrade to the ECMWF
prediction system (Vitart et al. 2022)}into a comprehensible
format poses a significant challenge. Regimes present perhaps
the simplest objective framework through which operational
forecasters and research scientists can easily understand the
distribution of all ensemble members, their run-to-run differ-
ences, and assess flow-dependent predictability (Matsueda and
Palmer 2018; Nabizadeh et al. 2022). Furthermore, much like
the success of the “atmospheric river” terminology in multidis-
ciplinary science and public communication (Ralph et al. 2020),
the comparable simplicity of the regimes framework may prove
similarly useful in communicating subseasonal forecasts and
large-scale climate variability with decision-makers and the
public alike.

In conclusion, we contend that the novel regimes classifica-
tion defined herein can be applied, in a straightforward
manner, to a variety of weather and climate problems. In par-
ticular, hazardous phenomena such as severe convective
weather that occur year-round}especially during the spring
and autumn, when regimes have as yet been ill-defined}seem
particularly well suited. We plan to address this in a subse-
quent study.
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