Supporting Information for "Non-monotonic Response of the Climate System to Abrupt CO_2 Forcing"

Ivan Mitevski¹, Clara Orbe², Rei Chemke¹, Larissa Nazarenko^{2,4}, Lorenzo M.

Polvani^{1,3}

¹Department of Applied Physics and Applied Mathematics, Columbia University

²NASA Goddard Institute for Space Studies, New York, NY

³Lamont-Doherty Earth Observatory, Columbia University

 $^4\mathrm{CCSR},$ Columbia University, New York, NY

Contents of this file

Figures S1-S5.

Figure S1. Radiative forcing calculation comparison of the y-intercept from the Gregory regressions (black), the logarithmic approximation (green), and 30 year fixed SST experiments (red) for a) GISS-E2.1-G and b) CESM-LE.

Figure S2. Gregory regression plots for a,b) fully coupled (FOM) and c,d) slab-ocean (SOM) runs using annual averages for both GISS-E2.1-G (left) and CESM-LE (right). Intercepts are shown with larger black dots.

Figure S3. Time evolution of the Atlantic Meridional Overturning Circulation (AMOC) in a,b) abrupt CO_2 forcings in fully coupled (FOM) GISS-E2.1-G and CESM-LE; c,d) abrupt $4 \times CO_2$ runs in CMIP5 and CMIP6 models. Time series are smoothed with a 5 year running mean.

Figure S4. As in Fig. 4 except shown here using output from the slab-ocean runs.

Figure S5. NH subtropics response to abrupt CO₂ forcing. Edge of dry zones (ϕ_{P-E} , red) and specific humidity (q, light blue) for a) GISS-E2.1-G and b) CESM-LE fully coupled (FOM) models. q is averaged over 30⁰N to 45⁰N. Error bars denote 95% confidence intervals calculated using Student's *t*-distribution.