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A NOTE ON RECENT EXPERIMENTS
WITH ROSSBY WAVES ON EASTWARD JETS

L.M. POLVANI* AND JIHAD TOUMAT

Abstract. Sommeria, Meyers and Swinney (1989) have recently conducted experiments with
Rossby waves on eastward jets in a rotating annular tank. Exploiting the simplicity of the observed
potential vorticty field, we construct here a simple model that captures the basic dynamics of these
waves, and discuss the occurance of chaotic mixing this flow.

1. Introduction. In a series of recent experiments Sommeria, Meyers and Swin-
ney (1989, hereafter SMS) have studied the behavior of eastward jets in rotating
flows. A layer of constant density fluid is spun up in a rotating annular tank whose
bottom is conical in shape (to simulate the 3-effect). An array of sinks and sources at
the bottom of the tank are then activated to generate an azimuthal jet in the middle
of the annular region. The instability of the initial velocity profile generates large
amplitude waves that are observed propagating along the jet. Die injected in the flow
is observed to mix rapidly on either side of the jet, but little exchange takes place
across the jet.

Motivated by the surprisingly simple structure of the potential vorticity field ob-
served in the experiments, we construct a simple model that captures the essential
dynamics of Rossby waves on eastward jets in the annular geometry. The simplicity
of the model allows us to solve the dynamical equations for the flow and derive both
a solution for the jet satisfying the appropriate boundary conditions (§2), and the
dispersion relation for Rossby waves on the jet (§3). From these linear results, we
discuss the chaotic mixing induced by the waves and suggest nonlinear extensions of

this model (§4).

2. A simple model for the fjet. The starting point of our analysis is the
observation that, in the experiments of SMS, the potential vorticity ¢ assumes a
remarkably simple configuration once the jet and the waves are fully developed. The
gradients of potential vorticity are found to be concentrated in a narrow band near
the jet, and ¢ is very nearly homogeneous on either side of the jet (cf. Fig. 1c of
SMS). This suggests that the essential physics of this problem can be captured by
the dynamics of a single interface of potential vorticity.

In polar coordinates (r,), we therefore consider the following distribution of
potential vorticity (illustrated in Fig. 1):

& if r<r<rje(d)
(1) 1= { @ if ra(d)<r<r

where ¢; and ¢, are constants, r; and 7, are the inner and outer boundaries of the
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Figure 1: A sketch of the distribution of potential vorticity ¢ in our simple model
for the eastward jet. The value of ¢ is taken to be constant and uniform inside and
outside the jet. Contrast this figure with Fig. 1c of SMS.

annulus, and rj; () defines the position of the potential vorticity interface, i.e. the
jet. For later reference, we designate by D; (i = 1, 2) the region where ¢ = ¢;. Notice
that this is only the simplest model, and complexity can be added by considering
several nested interfaces delimiting undulating annular regions of uniform potential
vorticity.

As described in SMS, the flow is quasigeostrophic and essentially inviscid, and
the potential vorticity is very nearly conserved. Except near the side walls and the
bottom of the tank where we expect thin boundary layers to exist (the Ekman number
is typically of the order of 107® in these experiments), a streamfunction v can be
used to describe the two-dimensional flow. The dynamics is governed by the material
conservation of potential vorticity: V

D
@ 570 = 0+ T, g =0
where ¢ is given by:

®) q=V*+pr.

There are two components to the potential vorticity. The first is due to the vorticity
of the flow relative to the rotating tank. The second is due to the vortex stretching

g
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caused by the sloping bottom, the familiar S-effect. Here 3 is defined by:

) 2ws
4 =
(4 p=2e
where w is the angular velocity of the rotating tank, s is the slope of the bottom and
ho is the average height of the fluid column. The radial and azimuthal velocities (u
and v respectively) are obtained from the streamfunction via:
10y

(5) u=—=—— and v=—

r 09 or

The first task is to determine the structure of the jet in the absence of waves. This
means solving (2) for the streamfunction ¢ with ¢ given by (1) with rje;(9) = ro. Since
for the undisturbed jet % is only a function of radius (2) is immediately satisfied, and
we are left with the inversion of (3). This is easily accomplished and yields:

1
(6) ; = —%ﬂrs + Zq,-r2 +cilogr in D;,

where ¢ = 1, 2 for the inner and outer regions, respectively. The constants ¢; are
chosen to satisfy the no-slip boundary condition at r = r;, and are found to be:

(7) ¢ = [%ﬂri = -;-q,-] rZ.

Finally we must require that the velocity be continuous at r = ry. This condition
yields a constraint between ¢;, ¢, and ro. Thus, given ¢; and g, the position of the
jet is uniquely determined by a dynamical equilibrium, and is given by:

. [2_((;1_—&)}1/2

Q1 — Q2

(8)

As an example, for the typical Talues ry = 10.8cm, 7, = 43.2cm, ¢ = —2s71, g5 =
—8s7!, w =18.85"! and ho = 18.7cm (giving B = —0.2cm~'s™!), constraint (8) gives
ro = 26cm, which puts the jet essentially in the middle of the annulus (cf. Fig. 1c of
SMS).

For these same values the velocity profile for the jet is shown in Fig. 2. The
velocity maximum has a value around 20cm s='. It should be pointed out that this
profile is the result of the cancellation between two large contributions, an eastward
velocity due to B — the first term in (6) — and a strong westward flow due to the
negative values q. Hence there is a strong sensitivity of the velocity profile to the
values of the parameters.

3. Rossby waves on the jet. We next consider the question of perturbations
on this jet profile. Since the g profile is monotonic with radius, we expect that all
perturbations will be stable. In the usual fashion, we consider perturbations that
merely displace the potential vorticity interface. Our analysis closely follows the
classic one of Lord Kelvin for perturbations of the Rankine vortex (Lamb, 1932). Let
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Figure 2: A typical velocity profile for the eastward jet from our simple model. The
parameter values here are: r; = 10.8cm, r, = 43.2cm, ¢ = —257}, ¢ = —8s71,
w=18.8s71.
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; be the streamfunction associated with the perturbation in D;. Since ¢; satisfies
Laplace’s equation, we can immediately write:

9) i =€ (Ar™ + Bir™™) cos(md — Ot)
The position of the perturbed boundary is given by:
(10) r=ro+n(Y,t) =ro [l + € cos(md — Nt)]

where ¢ is a nondimensional number representing the amplitude of the perturbation.
A number of appropriate boundary conditions need to be applied. These are (in
linearized form): continuity of radial velocity at the potential vorticity interface,

(11) Ogpr =Ogpa  at r=ro,
continuity of tangential velocity at the potential vorticity interface,
(12) Orpy +n0%hy = D00 + 0%y at T =ro,
no radial velocity at the inner boundary of the annulus,

(13) Ogp1=0 at r=ry,

no radial velocity at the outer boundary of the annulus,

(14) Oppa=0 at r=ry,

and a kinematic condition insuring that the radial velocity of the fluid at the interface
is identical to that of the interface itself:

D

(15) i

=[a+1@0]n=—00 at r=r.

It is not possible to impose that the azimuthal velocity associated with the pertur-
bation vanish at the walls of the tark, and thus the no-slip boundary condition is
not satisfied by the perturbation velocity fields. In practice, however, the azimuthal
velocities induced by the perturbation are extremely small at the walls, especially for
the higher wavenumbers (see below).

Substitution of (9) and (10) into the above constraints, yields, after some simple

algebra, the dispersion relation for these waves:
Q Vo 1
1 — = ———A m )

(16) m ro 2m ¢ Fm(r1,72,10)
where vy = —(1/3)Br2+(1/2)qiro+c1/7o is the undisturbed azimuthal velocity on the
vorticity interface, Aq = q; — g2 is the jump in potential vorticity across the interface,
and

(17) fm(T‘l,Tz,T‘o) =

(3 = gy = vim)

g™ (

)

is a nondimensional function related to the annular geometry of the tank.
Note first that the S-effect enters only through vy, and thus the presence of a

conical bottom leads to a simple Doppler shift in the frequency of these waves. Also,
it is easily seen that F — 1 in the limit r; — 0,7 — 00, so that (16) reduces to the
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Figure 3: The angular velocity for Rosshy waves on the jet as a function of wavenum-
ber, for the parameter values that give the jet shown in Fig 2.

familiar result for waves on the Rankine vortex (Lamb, 1932). Finally, notice that,
since F > 0, the phase speed in a frame that rotates with angular velocity vo/ro is
always negative (for Ag > 0); this is a clear signature that these waves are indeed
Rossby waves, since their phase propagation is always westward for an observer that
is advected by the jet.

For the values of potential vorticity used to obtain the jet shown in Fig. 2, the
dispersion relation is shown graphically in Fig. 3. Notice that the low wavenumbers
have negative values of §2/m; this has profound consequences on the question of
chaotic mixing, as will be explained in the next section.

To complete the linear analysis of these Rossby waves, we find that the amplitudes
of the perturbation streamfunction are given by:

1
18 A, B)=——A iy b;
(18) (A0 B) = 5 Aq (asb)
with: " 5
(19) a; = %2—"; and bi=—ri"q
2 1

From these expressions, one can compute the value of the azimuthal velocity at
the annular boundary due to the Rossby waves on the jet. As already mentioned,
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these velocities are extremely small for parameter values relevant to the experiments
of SMS and, moreover, they decay exponentially with m. For the parameter values
of Fig. 2, the values v; and v, of the azimuthal velocities induced by a single wave at
r = ry and r, respectively are given in Table 1.

Table 1. The azimuthal velocities v; and v, induced by a Rossby wave of
amplitude € = 0.1 at the inner and outer annular walls respectively. The
values decrease exponentially with m.

m | v [cms™] vy [cms™]
27| 12431073 | —3.281 102
3| 7.34910°¢ | —2.262 10—3
4| 42691078 | —1.472 10~
512472 1071° | —9.381 10~°
6(1.431 10712 | —5.934 10~7
718.282 107 [ —3.743 108
8479210777 | —2.35910~°
92773 107*° | —1.486 10~1°

10 | 1.605 1072 | —9.364 1012

4. Chaotic mixing. In the experiments of SMS, one usually observes a single
dominant wave on which several other waves of smaller amplitude are superimposed.
It is natural then to change to a frame of reference that rotates with the angular ve-
locity of the dominant wave. As is well known, it is the analysis of the streamfunction
in that frame that yields insight into the integrability of passive particle trajectories.
In the presence of a single wave, the corotating streamfunction ¢ is defined by:

(20) YE(r0') = i(r) + <A™ + Ba~™)cos(?) — 2 (1)

where 1; is given in (6) and ¥’ =9 — (Q/m)t is the azimuthal angle in the frame ro-
tating with the angular velocity of the wave. Since the time dependence is eliminated
from the streamfunction by moving into the corotating frame, it is obvious that no
chaotic mixing can occur if only a single wave is present. The addition of a second
wave is necessary to produce a time modulation. This is not, however a sufficient
condition for chaotic mixing. It is also necessary that the corotating streamfunction
(20) possess saddle stagnation points. The presence of these is determined by solving:

(21) 0 pi(re,9.) =0 and  9ppi(re,9.) =0.
for r. and ¥’. To lowest order in € these give 9. = nw/m, n =0,1,...,(2m —1) and:
(22) w(r) = Br) = (1) v

1 c) — TV c) — m c

i.e. the stagnation points are the locations where the velocity of the undisturbed jet
equals the velocity of the wave. Since the jet is eastward (i.e. v; > 0), (22) has no
solution when (£2/m) < 0. This typically occurs for the low wavenumbers (m < 4
for the parameter values used in Fig. 2). We expect that when no resonances occur
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in the corotating streamfunctions associated with the dominant wave chaotic mixing
(usually occurring as the smaller amplitude waves perturb the dominant one) should
be highly suppressed.

For (©/m) > 0 there are two values of r. that solve (22), one on each side of the jet,
yielding a streamfunction pattern sketched in Fig. 4. A single wave with sufficiently
large azimuthal wavenumber m will generate 2m stagnation points on each side of the
jet; m of these are saddle points and m are the centers of as many “ghost” vortices.
Typically, as m increases the stagnation points approach the edge of the jet, while at
low m they are closer to the annular walls. For the parameter values that give the
jet in Fig. 3, the location of the stagnation points obtained by solving (22) is given
in Table 2. In the presence of a second wave, the pattern in Fig. 4 is perturbed and

becomes time dependent. Chaotic mixing is then expected to occur on either side

of the jet, but, as long as the waves don’t break particles cannot cross the potential
vorticity boundary.

Table 2. The radial positions r; and r; of the inner and outer stagnation
points as a function of wavenumber for the parameter values on Fig. 3.
The undisturbed jet is located at rq = 26.2 cm.

m | v [cm] | 7o [cm]
4 12.9 34.4
5 16.1 31.6
6 17.8 30.3
7 19.1 29.5
8 20.1 29.5
9 20.7 28.6

10 21.3 28.3

One could at his point use a linear superposition of a small number of linear waves
and advect passive tracer particles with the velocity field induced by the waves. One
such study has been carried out by Behringer et al. (1991) using linear waves derived
phenomenologically from the experimental data; the presence of large zones of chaotic
mixing in this flow has been confirmed. The next step ought to take into account the
nonlinear dynamical interaction between the waves.

Such a nonlinear study is beyond the scope of this brief note. We suggest that
extending the methods of Contour Dynamics and Countour Surgery (Dritschel 1989)
to the annular geometry of this problem offers an attractive possibility. Since these
methods are Lagrangian, they are ideally suited to study chaotic mixing, as well as
the nonlinear dynamics of the waves.
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Figure 4: A sketch of the geometry 6f the corotating streamfunction associated with
an m = 4 wave on the potential vorticity interface. The grey dots are the centers of
the “ghost” vortices. The black dots are the saddle points. The solid lines are the
separatrices, while the thick line shows the position of the potential vorticity interface.
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