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The ordinary accounts of this vortex
in no way prepared me for what I saw.

Edgar Allan Poe

The “Kida vortex,” a two-dimensional elliptical patch of constant vorticity em-
bedded in a uniform quadratic background shear flow, has recently been the subject
of a number of studies (Kida 1981, Dritschel 1989a, Meacham et al. 1989). These
have concentrated mostly on understanding the linear stability of this solution and
its nonlinear evolution under perturbations. In this paper we report on a new and
surprisingly interesting aspect of the Kida vortex: chaotic advection is induced by
the vortex in the surrounding fluid over regions much larger than the vortex itself,
even for relatively small values of the background shear.

We start by presenting the Kida solution and describing the possible behaviors.
We then proceed to derive the equations of motion for a passive tracer advected by
the velocity field of the Kida vortex, and present some Poincare sections. The growth
of the chaotic regions is studied by applying simple resonance overlap ideas. We con-
clude with a discussion of the implications of this finding for our understanding of
two-dimensional turbulent fields.

1. THE KIDA VORTEX

The flow induced by an elliptical region of constant vorticity embedded in a
quadratic shear flow is an exact time-dependent nonlinear solution of the Euler equa-
tions in two dimensions (Kida 1981). The quadratic form of the background is inter-
esting because it can be thought of as the beginning of a local Taylor series expansion
of the complicated velocity field in which the vortex is located. Since a shear flow
can be decomposed as the sum of a rotation w and a strain s, the streamfunction
associated with the background field can be written:

Up =(1/4) (w+s) 2* + (1/4) (w=9) V", (1)

where (z,y) are inertial Cartesian coordinates; w and s may be functions of time.
The result of Kida (1981) is that an elliptical vortex patch embedded in (1) remains
elliptical for all times. The flow field is then entirely determined by the aspect ratio A
of the ellipse (we have chosen the convention 0 < A < 1) and its orientation, specified
by the angle ¢ between the x-axis and the major axis of the ellipse. The evolution of
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A and { is governed by the folldwing system:

%:QK-}-%[Q) + s A cos2yp) and %:—s)\ sin 2¢p , (2)
where Qx = A/(1 4+ \)? is the angular velocity of an elliptical vortex patch in the
absence of shear (a Kirchhoff vortex), and A = (1 +A%)/(1 — AZ). All variables
in (1) and (2) are non-dimensional, with time and length scales chosen so that the
patch Has vorticity 1 and area 7.~ Although ¢ and ) are not canonically conjugate
variables, (2) can be shown to be a Hamiltonian system, and trajectories in (@, )
space are integrable. Despite their apparent simplicity, (2) give rise to a rich variety
of behaviors, even for the case of constant w and s to which we hereinafter restrict
our discussion. An example is illustrated in Figure 1, where the (¢, A) orbits for the
w = —.2 and s = 0.1 are plotted. Depending on their aspect ratio vortices either
rotate or “librate” around stationary solutions.

Figure 1: The (¢,A) orbits for
Kida vortices at w = —0.2 and
s = 0.1, in region D of Figure 2.

Following Meacham et al., it is simplest to classify the Kida solutions by dividing
the (s,w) parameter space into different regions, depending on the number of station-
ary solutions of (2); the latter were originally determined by Moore & Saffman (1971).
Note first that (2) is invariant under the transformation s — —s and ¢ — p+7%; thus
only the s > 0 half-plane need be considered.

The whole phenomenology of the Kida solutions, synthesized in Figure 2, is phys-
ically understood as follows. For a given rotation w, if the strain s is sufficiently large
vortices of all aspect ratios will be sheared away: this is region C, where the only
stationary solutions of (2) are for A = 0. Conversely, for a given s all vortices will
survive the straining provided the rotation is large enough, in either sense (these are
regions A and E). In region B the rapidly rotating vortices (i.e. the more circular
ones, c.f. the expression for {lx above) survive the straining although the background
streamlines are hyperbolic, while the slow elongated vortices are sheared away. The
richest behavior is found in region D, of which an example is given in Figure 1.
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Figure 2: Phenomenology
of the Kida solutions in the
(w, s) plane. The letters des-
ignate the regions described
in the text.

The linear stability of the Kida solutions to two-dimensional normal mode pertur-
bations has recently received much attention (Dritschel 1989a, Meacham et al. 1989).
The essential result is the following: in addition to a Love-type instability similar to
the one of the Kirchhoff vortex, resonance between the frequency of the (, A) motion
and the frequency of the disturbances on the elliptical boundary leads to a Mathieu-
like parametric instability. However, the unstable bands become vanishingly thin and
are associated with extremely small growth rates in the limit s — 0. Moreover, the
relevance of this linear analysis to the fully nonlinear evolution is unclear, since the
instability often manifests itself only through the emergence of very! thin filaments
while the vortex retains its elliptical shape for long times. All results presented in
this paper are for cases that are linearly stable.

2. CHAOTIC ADVECTION AROUND KIDA VORTICES

Having reviewed the Kida solutions from an Eulerian viewpoint, we now present
new results regarding the Lagrangian motion of passive tracer advected by a Kida
vortex. The total streamfunction ¥r(z,y,t) = ¥p(z,y) + Yv(z,y,t), is the sum of
the quadratic background flow (1) and the streamfunction ¥y of a Kirchhoff vortex
of aspect ratio A(t) and inclination ¢(t). In Cartesian coordinates, the position (m v)
of a particle evolves according to:

dz 0\I/T ssd dy B\IIT

&= oy &%= oz ®)
These are Hamilton’s equations. The Hamiltonian ¥7 contains explicit periodic time
dependence, which suggests the presence of chaotic advection. Inside the vortex,
however, ¥y is merely quadratic in z and y (Lamb 1945), so that (3) is linear with
periodic coefficients; thus motion in the interior of the vortex is integrable.

To integrate (3) for the exterior field, we have found it easier to work in elliptical
coordinates (p, ) rotating and stretching with the vortex, since the analytical expres-
sion for ¥y is known in terms of p and ¥, and there is no simple way of expressing
(p,Y) in terms of (z,y). The conversion between the two coordinate systems, the
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combination of an elliptical transformation and a rotation, is given by:

z = c coshp cosd cosep — ¢ sinhp sind sinep

y = c coshp cosd singp + c sinhp sind cos, (4)

where c2 = (1 — A?)/\ depends on time through A. Substitution of (4) into (3) yields,
after some algebra, the evolution equations for p and 6:

T ov 1
% = (C2 ) [— (QK sin2d + 2c'26—19v) + 3 sf(p,ﬂ,go)]

—

dd c2h? . 0¥y 1
-~ = ( 8 )[—(QK sxr'1h2p — 2c Tp—) + Es

(cosh2p sin 29 cos2¢ + sinh2p cos 29 sin 2¢)
— A (cos2¢p sin29 + sinh 2p sin 2¢)

(sinh2p cos2y cos2p — cosh2p sin 29 sin2yp)
+ A (sin2p sin29 —sinh2p cos2¢),

and .
ch? = (costh — cos® 19)

We have used a Bulirsch-Stoer algorithm to numerically integrate the autonomous
2-degree of freedom Hamiltonian problém constituted by (2) and (5), instead of solv-
ing (3) directly. Notice from (2) that for s = 0 the ellipse rotates at constant angular
velocity with constant aspect ratio; in this case the Lagrangian fluid motion is inte-
grable and, in the corotating frame, the streamlines are time-independent and appear
as illustrated in Figure 3. It is important to note the presence of two saddle points S;
and S as well as two centers (usually referred to as ‘ghost vortices’). For the weakly
perturbed system, the chaotic zones are found to appear surrounding the separatrices
(represented by the dotted lines in Figure 3), as is expected for weakly perturbed
Hamiltonian systems.

Figure 3: The Kirchhoff vor-
tex streamfunction in the corotating
frame. The solid lines are particles tra-
jectories, the dashed lines are the sep-
aratrices, S; and S; the saddle points
and C; and C, the ‘ghosts’.
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The important result of this study is that for small values of s and w remark-
ably large chaotic zones are found surrounding the entire vortex. We show a typical
example in Figure 4, were the surface of section for a Kida vortex at w = —0.2
and s = 0.1 is presented. The aspect ratio for this ellipse oscillates in the range
0.377431... < A < 0.9. The figure is obtained by plotting a dot corresponding to the
position of a single particle every period of the (¢, ) motion, when ¢ = 0. In this
and subsequent figures, the ellipse inside the chaotic zone coincides with the bound-
ary of the vortex. We have found that chaotic zones are often very close to the vortex
boundary. In view of this, it is not surprising that the behavior of vorticity filaments
surrounding Kida vortices has been found to be extremely complicated (Dritschel
1989a). The presence of chaotic zones surrouding elliptical vortices may also provide
an efficient mechanism for vortex stripping.

Another instance of great interest is the case |w| = |s|, for which the backround
flow is a pure shear (an unbounded Couette flow) . The case w = —s = 0.5 is
presented in Figure 5, for a vortex of aspect ratio A = 0.8 at ¢ = 0. The chaotic zone
appears to extend to arbitrarily large values of z, and is confined in y around the
vortex. These results suggest that the elliptical vortices formed in unstable mixing
layers may actually play a very important role in the mixing process.

To understand how the large chaotic regions emerge as the strength of the per- 'v

turbing strain is increased, we have applied some simple ideas from the theory of
overlapping resonances problem and found two main types of overlap that lead to
large chaotic zones. The purpose of this analysis is by no means a detailed investi-
gation of all the resonance overlaps in the Kida problem, but a simple approach that
would account for the existence of large chaotic zones at small values of s and w.
For case w < 0, one of the main resonances is associated with the ‘ghost’ of the
exterior unperturbed Kirchhoff flow ¥y (see Figure 3), for which the period of the
Lagrangian trajectory is identical to the period of the (¢, A) motion; we designate this
the ‘Kirchhoff resonance’. The other main resonance is associated with the streamline
pattern due to the superposition of the background quadratic shear with the equiva-
lent monopolar velocity field of the vortex. We then consider the streamfunction ¥,
obtained by the superposition of a point vortex of strength 7 and the background flow
(1), i.e. U,y = (1/2)Inr + Up, where r is the radial distance from the origin. Such
a streamfunction has an associated streamline pattern geometrically identical to the
one shown in Figure 3, with the exception that it is rotated by =/2. The resonance
of interest is the one associated with the ‘ghost’ vortex of ¥,,. It is a simple matter
to find the radial distances r,, and rx of the resonances associated with ¥, and Uy
(Polvani et al. 1989), and the respective half-widths Ar,, and Arg, although the
computation has to be performed numerically since transcendental equations need to
be solved. According to the simple resonance overlap criterion we expect to observe
large chaotic regions if
= Arp, + Arg > Tpy —TK . (6)

As an illustration, the case w = —0.1 and A = 0.9 is presented in Figure 6,
where four surfaces of section are shown for increasing values of the perturbation
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Figure 4: Surface of
section for the Kida vortex
atw=-0.2,5s=0.1and
A=0.9 at ¢ =0. The figure
was obtained with a single
initial condition; 70,000
points are plotted. The
aspect ratio varies in the
interval 0.377431 < 1 < 0.9.

Figure 5: Surface of
section for the Kida vortex
atw=05,5s=-0.5and
A=0.8at p=0. The
background field is a
simple shear flow of the
formu = (1/2)y. The
chaotic region appears to
extend to arbitrarily large
values of x . The aspect
ratio for this vortex varies
within 0.384535 <A <0.9.
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Figqre 6: Surfaces of section at increasing values of the strain parameter s for Kida
vortices at @ =—-0.10and A =09 at ¢ =0. (a) s = 0.015, (b) s = 0.03, (c) s = 0.05
and (d) s = 0.09. Each figure contains between 50,000 and 100,000 points.
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parameter s. Resonance overlap occurs at s = 0.0276. At s = 0.015 (Fig. 6a) the
two chaotic regions associated with the above mentioned resonances appear to be
well separated. They have merged into a single chaotic zone at s = 0.03 (Fig. 6b).
The transition compares favourably with the resonance overlap prediction (6). As
increased the chaotic regions become larger. The section at s = 0.05 is shown in
Figure 6¢c. It should be noted that the aspect ratio for this vortex varies in the range
0.696 < A < 0.90. This shows that even rather circular vortices may possess very large
chaotic regions in the presence of extremely small straining fields. As the background
approaches a pure shear (i.e. close to the line |w| = |s|), the chaotic zone becomes
truly enormous (see Fig. 6d for the case s = 0.09), and are elongated in the direction
of the shear.

When w > 0 the resonance associated with ¥,, cannot exist, and the large chaotic
zones are produced by the overlap of resonances of the full Hamiltonian. Since the
actual expansion of U7 as a sum of resonances is rather complicated, we have preferred
a simple numerical approach to determine both the location and width of the primary
resonances. To the nth resonance, associated with the orbit that has a period T, =
nT,» (where T, is the period of the (¢, \) motion obtained from (2)), corresponds
the frequency w, = wy,y/n. To locate the resonances in the (z,y) plane we have
used a Nelder-Mead scheme that minimizes the return distance on the section after
n T, periods. The frequency half-width Aw, associated with the nth resonance
is determined by relating it to the frequency a, of small oscillations around that
resonance, which we compute by means of Floquet multipliers. Since the Kida vortex
has a 4-fold symmetry, the nth resonance can be associated with a pendulum-like
Hamiltonian of the form H, = 1Ap® — Bcos(2nd — 2w,zt), where p is canonically
conjugate to the elliptical angle ¥ and zero at the resonance center. The actual values
of A and B are immaterial. It is simple to show that for H, the half-width Awy, is
related to o, by the identity Aw, = o, /n. Again we expect overlap when the simple
criterion (Awp, + Awp,) > (wn, — wy,) is satisfied.

An example of this type of resonance overlap is given in Figure 7, where the sur-
faces of section for w = 0 and A = 0.5 (at ¢ = 0) are shown at four values of s. At
s = 0.002 (Fig. Ta) the chaotic regions associated with the Kirchhoff (n = 1) and
n = 2 resonances are shown (50,000 points are plotted for each), and are not joined.
The resonance overlap criterion predicts a value of 0.01 < s < 0.015 for overlap. We
find the n = 1 and n = 2 chaotic zones merge for s between 0.05 and 0.10; the latter
case is shown in Figure 7b. The agreement with the resonance overlap prediction
is satisfactory. In Figure Tc we have computed the chaotic regions for the first 7
primary resonances at s = 0.02; most of them are rather thin, and only the first two
have merged (the figure contains approximately 300,000 points). Finally, the surface
of section section for s = 0.03 (Fig. 7d) shows that most of them have by then fused
into a single chaotic region; it is quite remarkable that the variations in aspect ratio
and angular velocity for this vortex are very small, with 0.43525148... < A < 0.5
and the a period differing from the Kirchhoff value by less than a half of one percent.
Also of great interest is the fact that the chaotic zone is actually open (see the top of
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Figure 7: Surfaces of section at increasing values of the strain parameter s for Kida
vortices at @ =0and A =0.5at 9 =0. (a) s = 0.002, (b) s = 0.01, (c) s = 0.02 and (d)
s = 0.03. Notice that in (d) the particle actually escapes (see top of the figure) from
the vicinity of the vortex.
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Figure 7d), and the particle eventually escapes in the direction of the straining flow.
In general we have found that for open chaotic zones, which exist only in region B of
Figure 2, escapes occur very quickly (in a few T\ periods) unless |w| is very close to

|s]-

3. IMPLICATIONS FOR TWO-DIMENSIONAL TURBULENCE

Beyond their intrinsic value asthe only presently known analytic nonlinear time-
dependent solution of the Euler equations in two dimensions, Kida vortices are of great
interest as the simplest model for the evolution of a vortex embedded in a complicated
velocity field. This situation is encountered in high-Reynolds-number numerical sim-
ulations of two-dimensional turbulence, where strong isolated coherent vortices are
known to emerge spontaneously from initially turbulent fields (McWilliams 1984).
Recent results at very high resolution (Dritschel, 1989a) indicate that the vortices
of 2D turbulence not only retain their ellipticity but are progressively stripped of
the outer (lower) layers of vorticity, yielding elliptical structures with large vorticity
gradients, for which a vortex patch is a reasonable first approximation.

In as much as the influence of the many distant vortices present in the field can be
approximated by a uniform and constant quadratic shear, the discovery of very large
chaotic zones surrounding Kida vortices suggests that the coherent structures of 2D
turbulence may in fact be the mixers of the low levels of vorticity — which have been
shown to behave not unlike a passive tracer (Babiano et al., 1986). In particular,
the results presented here for the Kida problem seem to provide a rationale for the
recent observations of Benzi et al. (1988), who have discovered, in high-resolution
spectral simulations of 2D turbulence, that the largest local exponential divergence
of Lagrangian trajectories is found predominantly in the regions surrounding the
coherent structures, while the motion in their interior is very stable.

Since the mixing we have described here is directly attributable to the dynamics
of the homoclinic tangle (see, for instance, Rom-kedar et al. 1989) arising from the
presence of hyperbolic points in the flow field surrounding the vortex, there is every
reason to believe that similar behavior is generic to any two-dimensional vortex with
a non-axisymmetric and time-dependent streamfunction. Among the many applica-
tions of interest, we would like to draw attention the stratospheric polar vortex, for
which the advection of chemical tracers is a question of great current interest.
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