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A test case for the inviscid shallow-water equations on the sphere
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A numerically converged solution to the inviscid global shallow-water equations for a
predefined time interval is documented to provide a convenient benchmark for model
validation. The solution is based on the same initial conditions as a previously documented
solution for the viscous equations. The solution is computed using two independent
numerical schemes, one a pseudospectral scheme based on an expansion in spherical
harmonics and the other a finite-volume scheme on a cubed-sphere grid. Flow fields and
various integral norms are documented to facilitate model comparison and validation.
Attention is drawn to the utility of the potential vorticity supremum as a convenient and
sensitive test of numerical convergence, in which the exact value is known a priori over the
entire time interval.
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1. Introduction

The development of accurate and efficient numerical schemes
for solving the equations of motion that govern fundamental
atmospheric dynamics underpins our capability for accurate
numerical weather forecasting and climate prediction. Such
development is a hierarchical process, involving many stages
from theoretical numerical analysis to the implementation of
general circulation models on specific computer architectures.
Once a particular numerical scheme has been implemented, the
next important stage of the development process involves the
testing and validation of the scheme against known solutions of
the equations of motion. This stage has two distinct objectives: at
the first level, the objective is to ensure that the numerical scheme
can be integrated stably and converges to the correct solution;
thereafter it is desirable to assess the accuracy and efficiency
of the scheme against alternatives. To the extent to which it is
possible, such tests should be carried out using solutions that are
representative of the actual flows encountered in the atmosphere,
flows that typically involve strong nonlinearity, chaotic time
evolution and the rapid generation of small scales, in particular
fronts and other strong gradients in the dynamical variables.

An important aspect of any atmospheric general circulation
model is the formulation of the horizontal discretization, in par-
ticular the nonlinear horizontal advection. This may frequently
be considered independently of vertical discretization and con-
sequently the implementation of the shallow-water equations is
typically an important intermediate step in model development.
A standard suite of reference solutions to the shallow-water equa-
tions, which continues to provide a useful means of validation
of new numerical schemes, was suggested by Williamson et al.

(1992). The analytic nature of some of those solutions provides
the obvious benefit that the dynamical fields are exactly knowable
at all times. The solutions are limited, however, in that they do
not possess the desirable nonlinearity and complexity of typical
atmospheric flows. The need for a more realistic benchmark flow
prompted Galewsky et al. (2004) and Polvani et al. (2004) to seek
a complex but numerically converged solution to the equations
that might complement the analytic test cases of Williamson
et al. The approach taken was that numerical resolution may be
increased systematically until the point at which the numerically
generated flow evolution over a fixed time interval has converged
to within a predefined tolerance, in the sense that further increases
in resolution do not result in changes to the flow of greater
magnitude than that tolerance, in some suitably defined measure.
Because the solution thus obtained may be considered as an exact
solution to the equations (to within the specified tolerance), it is
thus independent of the numerical scheme: any correct numerical
implementation of the same equations must converge to the
same solution.

To facilitate numerical convergence at moderate resolution,
the benchmark solutions of Galewsky et al. (2004) and Polvani
et al. (2004) included an explicit diffusion term in the equations of
motion, of fixed strength, which limited the generation of small-
scale motions to a fixed diffusive length-scale, independent of
resolution. In that case, numerical convergence was obtained
relatively easily as soon as the numerical discretization was
sufficiently fine to represent the diffusive length-scale accurately.
There are, however, two main drawbacks of that approach. The
first is that the scales represented by these solutions are restricted
to ones that are significantly greater than many important scales
occurring in typical atmospheric motions, such as the formation
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of fronts or tropopause folds: the flow features of the Galewsky et
al. and Polvani et al. solutions were limited to those that may be
represented with a grid spacing of around 0.4◦. A more stringent
test of any numerical scheme lies in the accurate representation of
much smaller-scale features and these should therefore be present
in a good benchmark solution.

The second drawback of the above solutions lies in the need
for explicit diffusion. For many numerical schemes, for example
finite-volume or semi-Lagrangian schemes (Lin and Rood, 1997),
diffusion of small-scale features is implicit in the scheme: the
inherent diffusion due to interpolation errors is often sufficient to
prevent the build-up of enstrophy at small scales and to stabilize
the numerical evolution. To compute the benchmark solutions of
Galewsky et al. and Polvani et al., such numerical schemes would
be required to add an additional explicit diffusion term to the
underlying equations of motion, inconsistent with the underlying
model philosophy and complicating the validation of the desired
operational scheme. Indeed, this difficulty has led various groups
to compute the Galewsky et al. solution without introducing
explicit diffusion (e.g. Chen et al., 2013; Salehipour et al., 2013;
Ullrich et al., 2014, among many others). While this is convenient
numerically and may give a crude indication that the numerical
scheme is performing more or less correctly, it prevents the test
case from being used as a precise check of the numerical imple-
mentation and its accuracy. Thus, while the community clearly
recognizes the importance for a refinement to the Galewsky et
al. solution, so far none has been presented with a sufficient
degree of rigour to enable accurate model validation (beyond
being able to say that one’s model is doing approximately the
right thing).

In many commonly used numerical schemes, diffusion is linked
to the grid scale and decreases as numerical resolution increases;
the diffusive length-scale thus also decreases and the numerical
solution approaches what is in essence a solution to the inviscid
equations of motion. In this case, the extent to which numerical
convergence is possible is limited by the nature of the solution.
If the solution to the inviscid equations is such that a shock or
infinite gradient in a particular field develops in a finite time (so
that the solution is only valid in the appropriate weak sense),
numerical convergence will not typically be achievable at any
finite resolution. In situations of relevance to atmospheric flows,
where gradients may be increasing exponentially in time, the
issue of numerical convergence will now involve the specification
of a fixed time interval over which convergence may be sought.
Over this time interval, solutions to the inviscid equations should
be regular to the extent that all fields are representable by the
numerical scheme at some achievable resolution.

In view of the above, it has become clear that an important
addition to the Galewsky et al. (2004) and Polvani et al. (2004)
benchmark solutions should consist of a numerical converged
solution to the inviscid equations of motion in an appropriately
defined time interval, over which sufficient nonlinearity and
small-scale flow features develop but over which solutions also
remain sufficiently regular that a numerically converged inviscid
solution may be obtained. Because of the tendency for rapid
intensification of flow gradients in typical nonlinear flow fields,
satisfying these two constraints turns out to be challenging,
requiring computation at significantly higher resolutions than for
the case of explicit diffusion. In the shallow-water system, which
will form the focus of this article, sufficient resolution may be
reached with relative ease on current computers. The primitive
equation case appears significantly more demanding, both on
account of the need to increase both horizontal and vertical
resolution simultaneously and because small-scale development
is considerably more active, by virtue of the nature of the dynamics
at the horizontal boundaries (e.g. Juckes, 1995; Scott, 2011).

The aim of the present short article is thus to present a reference
solution to the inviscid shallow-water equations, which will be
of potential use in the validation of the horizontal discretization
component of new numerical schemes or implementations. It

represents a small but nonetheless important advance on the
viscous solution of Galewsky et al. (2004). The article identifies
a time interval over which the initial conditions (the same as
those used in Galewsky et al. (2004)) generate a regular flow with
features that may be captured at resolutions readily achievable
on present-day computers. We present numerical converged
solutions obtained using two separate numerical methods: a
standard pseudospectral method (Hack and Jakob, 1992; Rivier
et al., 2002; Scott et al., 2004) and a finite-volume method
discretized on a cubed-sphere grid (Putman and Lin, 2007;
Harris and Lin, 2013). We emphasize that the solution obtained
is independent of the numerical scheme and, furthermore,
independent of any small-scale dissipation or filtering. Any
numerical scheme solving the inviscid shallow-water equations
should converge to this same solution, provided only that any
artificial diffusion continually diminishes with increasing spatial
resolution.

The remainder of this article is organized as follows. In section 2,
we review the initial conditions; these are the same as those used
in Galewsky et al. (2004) but are included here for completeness.
In section 3, we provide a brief description of the two numerical
schemes used. In section 4, we present solutions to the inviscid
shallow-water equations computed using the pseudospectral
method, defining an appropriate time interval over which
convergence is obtained at the resolutions considered, and present
various diagnostic quantities that may be used to quantify the
convergence. In section 5, we show the degree to which the
solutions obtained are independent of the numerical scheme and
present details of the rate of convergence in each case; these rates
will in general vary from one numerical scheme to another.

2. Problem specification

We consider the equations for rotating shallow water on a sphere
of radius a = 6.37122 × 106 m:

ut + u · ∇u + f k̂ × u = −g∇h, (1a)

ht + ∇ · (uh) = 0, (1b)

where u = (u, v, 0) is the horizontal velocity, k̂ is the unit
vector in the vertical, h is the fluid depth, g = 9.80616 m s−1

is gravity and f = 2� sin φ is the Coriolis parameter, where
� = 7.292 × 10−5 s−1 and φ is latitude.

Equations (1a) and (1b) are solved by integrating from specified
initial conditions for u and h. These comprise a barotropically
unstable jet as defined in Galewsky et al. (2004), with zonally
symmetric zonal velocity field u = u0(φ) given by

u0 = umax

en
exp[(φ − φ0)(φ − φ1)]−1 for φ0 < φ < φ1,

(2)

with u = 0 for φ ≤ φ0 and φ ≥ φ1. The functional form for u0 has
the advantage of being compact yet infinitely differentiable. The
parameter values are umax = 80 m s−1, φ0 = π/7, φ1 = π/2 − φ0

and en = exp [−4(φ1 − φ0)−2], for which the jet maximum is
located at π/4 = 45◦N. The initial height field h0 is defined from
u0 through gradient wind balance, i.e. the v component of Eq. (1a)
for steady, axisymmetric flow, with the requirement that the global
mean layer depth of the axisymmetric flow is H = 104 m. An
important initial test of any numerical scheme is that this balanced
and axisymmetric flow remain axisymmetric and steady in
time. This is particularly important when considering numerical
schemes that do not have an underlying zonal symmetry, such as
those based on cubed-sphere or icosahedral grids.

To the axisymmetric flow we add a perturbation to the height
field of the form:

h′(λ, φ) = ĥ cos φ e−(λ/α)2
e−[(φ−φ2)/β]2

, (3)
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Figure 1. Snapshots of the flow evolution: potential vorticity, ζa/h, for the highest resolution case at (a) t = 4 days, (b) t = 5 days, and (c) t = 6 days. Contours are
integer multiples of 0.2�/H.

where −π < λ ≤ π is longitude, φ2 = π/4, α = 1/3, β = 1/15
and ĥ = 120 m. (This has the effect that the mean layer depth of
the total initial condition is modified very slightly to 10 000.3 m.)
The reader is referred to figure 1 of Galewsky et al. (2004)
for a graphical rendering of the initial basic state u0, h0 and
perturbation h′.

3. Numerical schemes

We use two independently developed numerical schemes to verify
the accuracy of the solution. The first is the Built on Beowolf
(BOB) pseudospectral scheme (Rivier et al., 2002), which solves
the shallow-water equations in vorticity-divergence form, with
prognostic variables absolute vorticity ζa = 2� sin φ + k · ∇ × u,
divergence δ = ∇ · u and height perturbation η = h − H. A small
hyperdiffusive term D = −ν∇4ξ is included in the equation for
each prognostic variable ξ , purely as a means to prevent enstrophy
build-up at small scales. We note again the fundamental difference
from Galewsky et al. (2004), where the coefficient ν was held fixed
as resolution was increased. Here, in contrast, ν decreases with
increasing resolution such that the diffusive time-scale on the
highest resolved wave number is constant across resolution. Thus,
ν = ν∗[a2/N(N + 1)]2, where N is the maximum total wave
number at a particular resolution and ν∗ is the diffusion rate at the
smallest scale. It is fixed here at a value that is sufficient to control
enstrophy over the time interval considered. We emphasize that
the particular value of ν∗ is unimportant and we purposefully
omit giving its value here; in fact, the form of the diffusion

operator ∇2n may also be varied with essentially the same results.
Neither do we consider here the question of how the diffusion
should be chosen optimally. The important point is that the diffu-
sion coefficient ν should tend to 0 as resolution is increased. The
solutions thus obtained may be considered to be solutions to the
inviscid equations over the time interval over which they remain
regular.

The second numerical scheme is the Geophysical Fluid
Dynamics Laboratory (GFDL) finite-volume cubed-sphere
dynamical core (FV3), described in Putman and Lin (2007)
and Harris and Lin (2013). FV3 is a finite-volume scheme on the
equidistant gnomonic cubed-sphere grid (Putman and Lin, 2007)
following the Lin and Rood (1997) shallow-water algorithm in
the horizontal, which discretizes the vector-invariant (vorticity-
kinetic energy form) shallow-water equations on the D grid
using a forward–backward time integration and computes the
pressure gradient force through the algorithm of Lin (1997).
Fluxes for mass, absolute vorticity and kinetic energy are
computed using a modification by Putman and Lin (2007)
of the piecewise parabolic method (Colella and Woodward,
1984). In the results presented below, the model was run in
a configuration similar to that used in comprehensive climate
simulations, in particular, including a monotonicity constraint
and a standard scale-selective, fourth-order divergence damping.
We emphasize again that these details are unimportant. Indeed,
the model was run separately with no monotonicity constraint
and divergence damping at half the conventional rate; in both
cases the model converges to the same solution presented
below.
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Figure 2. Potential vorticity at t = 6 days at the following resolutions: (a) T85, (b) T170, (c) T341, (d) T682, (e) T1365 and (f) T2730. The domain shown corresponds
to the boxed region of Figure 1(c). Contours are integer multiples of 0.2�/H.

4. Inviscid solution

In this section we present results from the pseudospectral scheme
only; we demonstrate in section 5 that the solutions obtained with
the finite-volume scheme converge to the same flow.

Figure 1 shows snapshots of the evolution of the flow at three
times, obtained from the numerical integration of Eqs (1)–(3)
at the highest resolution considered. It illustrates eddy growth
characteristic of barotropic instability, in which the spatially
localized perturbation does not favour the growth of a particular
wave number. The development is similar to that of Galewsky
et al. (2004), but the higher effective Reynolds number here results
in much more energetic generation of small-scale features, steep
vorticity gradients and frontal regions. We take this to be our ref-
erence solution and it remains to establish over what time interval
the solution can be considered to be numerically converged.

Figure 2 shows a magnification of the field at t = 6 days
for a series of integrations at different numerical resolutions,
from T85, corresponding to a grid of about 1.4◦ at the Equator
and comparable to the resolution used in many models of
Climate Model Intercomparison Project (CMIP5), to T2730,

corresponding to a grid of about 0.044◦ at the Equator (or
about 5 km). Differences between successive panels decrease as
resolution is increased. Panels (e) and (f) are almost identical
in terms of the position and shape of features such as the large
cut-off low (a region of high potential vorticity) centred on
265◦W, 30◦N, or the undulation of the original jet. Even at these
high resolutions, however, small differences between panels (e)
and (f) may be detected in details such as the ridge of potential
vorticity connecting the cut-off low to the jet undulation
(265–275◦W, 20◦N), or the degree to which potential vorticity
gradients at the jet edge have been intensified (e.g. 292◦W, 38◦N).

Differences in the representation of the flow at different
resolutions may be quantified by consideration of appropriate
norms. The globally averaged eddy kinetic energy, shown in
Figure 3(a), illustrates the usual exponential growth of the
perturbation from the zonal mean. Although it is a common
measure of unstable development, it is a poor indicator of
numerical convergence, being relatively insensitive to resolution,
even for resolutions at which a casual inspection of the fields
shown in Figure 2 immediately reveals significant differences.
Based on consideration of the total eddy kinetic energy alone,
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Figure 3. Diagnostic quantities as a function of time (in days): (a) globally averaged eddy kinetic energy (units m2 s−2), (b) rms relative vorticity (units s−1),
(c) maximum relative vorticity (units s−1) and (d) relative error of the maximum potential vorticity based on the initial potential vorticity q0.

one would conclude that the sequence of calculations had already
converged at a resolution of T170; on the other hand, Figure 2
shows that many small-scale features are poorly represented at
this resolution. To a similar extent, the same can be said of the l2
norm of the relative vorticity (Figure 3(b)). The global averaging
involved in the computation of these quantities obscures most of
the differences clearly present in the fields themselves.

A more precise indicator of convergence is given by the l∞
norms of quantities such as relative vorticity or potential vorticity,
shown in Figure 3(c) and (d). The relative vorticity immediately
reveals differences between even the two highest resolution
integrations, T1365 and T2730, at t = 6 days. Extrapolation of
the sequence of integrations suggests that this quantity would be
accurately represented at t = 6 perhaps only with a resolution of
around T10 000, which is impractical on present-day computers.
On the other hand, the values of ‖ζ‖∞ for the two highest
resolutions remain indistinguishable on the plot up until around
t = 5 days: the relative error at t = 5 between T1365 and T2730
(where the error is normalized by the highest resolution value) is
approximately 0.0002. Based on the relative vorticity maximum
and an error tolerance of 0.0002, we could thus claim that the
sequence has converged numerically at t = 5 days at a resolution
of T2730. In fact, for practical purposes it turns out that a
relative error tolerance of 0.005 or 0.5% is a good indication
of convergence for this particular flow and this is the criterion
that we adopt in the remainder of the article. We note that other
choices of time interval and error tolerance result in convergence
at different resolutions. Our choice is motivated simply by the
desire to have a test that may be implemented without the
need for excessive computational requirements, while retaining a
reasonable level of complexity in the flow field.

Different quantities yield different convergence properties.
Some, such as the maximum vorticity gradient, are extremely
sensitive and may indicate a relatively poor level of convergence,
even at the resolutions considered here. A refinement of the vor-
ticity maximum is to consider the potential vorticity maximum.

(Potential vorticity has also been used as a convenient diagnostic
in the evaluation of tracer schemes (Whitehead et al., 2015).) We
may take advantage of the fact that potential vorticity is conserved
exactly on fluid parcels in the inviscid system and hence we know
a priori that ‖q‖∞ = constant for the true inviscid solution, even
without the explicit calculation of such a solution. Departures
of the numerically generated solution from the true inviscid
solution, associated with either numerical errors or processes
associated with the small-scale dissipation, will in general
be reflected in departures of ‖q‖∞ from this constant initial
value, ‖q0‖∞. Figure 3(d) shows that ‖q‖∞ is constant at early
times, before significant enstrophy has cascaded to the smallest
resolved scales. Departures from the inviscid solution appear at
progressively later times as resolution is increased. At the highest
resolution considered here, a departure from the inviscid value
is visible in the plot as early as t = 4.6 days, just before the target
time established above, although the relative error remains small,
just below the 0.005 tolerance level at t = 5 days.

Our convergence criterion based on a relative error of ‖ζ‖∞
or ‖q‖∞ below 0.005 is consistent with a visual comparison of
the potential vorticity fields at the level of magnification used
previously. Figure 4 shows the same magnification of the same
region as was considered Figure 2, but for the two cases T1365 and
T2730 at the time t = 5 days. The fields are very nearly identical,
aside from a single contour level that follows the extension of the
potential vorticity ridge along the lower boundary of the jet core, a
feature highly sensitive to numerical dissipation. Because the two-
dimensional fields contain more information than the normed
quantities, it is desirable that the criterion for convergence is
based on both.

5. Robustness of the solution

Computation of the same solution with the alternative numerical
scheme FV3 was carried out both to validate the pseudospectral
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Figure 4. Potential vorticity at t = 5 days at resolutions (a) T1365 and (b) T2730. Contours are integer multiples of 0.2�/H.
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Figure 5. Diagnostic quantities as a function of time from the finite-volume integration: (a) maximum relative vorticity and (b) relative error of the maximum
potential vorticity.

solution and to investigate the extent to which the rate of
convergence depends on the particular scheme.

Figure 5 shows ‖ζ‖∞ and ‖q‖∞ for the FV3 scheme for
resolutions c80, corresponding to a grid resolution of 1.125◦
at the Equator, to c2560, corresponding to a grid resolution of
0.035◦. This range is comparable to the range of resolutions
used for the pseudospectral integrations. The relative vorticity
indicates a similar rate of convergence of the FV3 scheme to that
of the pseudospectral scheme. The relative errors compared with
the c2560 solution at t = 5 days are 0.02 for c640 and 0.004 for
c1280. In contrast, the potential vorticity maximum shows better
behaviour than that of the pseudospectral case, remaining very
nearly constant over the entire six-day interval at resolutions
c640 and higher. This may be expected from consideration of
the way potential vorticity is treated numerically. In FV3 it is
transported as a passive tracer with an advection scheme (Lin
and Rood, 1997) that prevents oscillatory errors. We note that,
in separate integrations of the same numerical scheme in which
the monotonicity constraints are removed, the convergence of
the potential vorticity maximum (not shown) looks similar to
that found in the pseudospectral scheme, with departures from
zero error appearing at progressively later times with increasing
resolution, as in Figure 3(d). The results indicate that convergence
characteristics, in the sense that one scheme may show better
convergence in one norm than another, may vary from scheme
to scheme, or even for a given scheme run with different means of
numerical regularization. For example, the FV3 scheme without
monotonicity constraint shows slightly better convergence in
‖ζ‖∞ but worse convergence in ‖q‖∞ than the same scheme
with monotonicity constraint included. While these details affect
the rate of convergence, they do not affect the converged solution
itself. Notwithstanding these subtleties, it is clear that at t = 5 days
FV3 is converged at c2560 (with either choice of small-scale

damping), according to the criterion put forward in the previous
section.

Figure 6(a) shows the potential vorticity field q(x, y) at
t = 5 days at the highest FV3 resolution (thick dotted lines),
plotted on top of the same field at the highest pseudospectral
resolution (thin solid lines; red in online color version). The
degree of agreement between the two calculations is exact in
the visual comparison. This should not be surprising: both
calculations converge at this resolution to the unique solution of
the equations with the prescribed initial condition. Discrepancies
between the two solutions would imply either that one or other
numerical scheme had not converged or else a failure in one of
the numerical schemes to converge to the correct solution.

We noted previously that the solutions obtained with each
scheme are not fully converged at the later time of t = 6 days, in
the sense that the two highest resolution fields of each numerical
scheme (T1365 and T2730 for pseudospectral, c1280 and c2560
for FV3) are not identical. Nonetheless, it is interesting to observe
that at the very highest resolution the two schemes agree with
each other to a remarkable extent, as shown in Figure 6(b). While
we are unable to compare these fields with ones at an even higher
resolution, the fact that the two independent numerical schemes
agree to such a close extent is highly suggestive that the flow given
in the figure is an accurate representation of the true solution at
t = 6 days. The same conclusion was obtained from the results
of FV3 with no monotonicity constraint and weaker divergence
damping.

Finally, Figure 7 shows the pointwise relative errors at different
resolutions of the solutions calculated with both schemes, where
the ‘true’ solution is taken to be the highest resolution solution in
each case. At each resolution, the error is computed by interpo-
lating the low-resolution velocity fields on to the high-resolution
grid, taking the difference between the low- and high-resolution
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Figure 6. Potential vorticity from the finite-volume integration at (a) t = 5 days and (b) t = 6 days at resolution c2160 (dotted), superposed on the same field from
the pseudospectral integration at resolution T2730 (thin lines; red in online color version).
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velocity fields and then computing the eddy kinetic energy of this
difference. Errors are computed in this way at both t = 5 days
(solid) and t = 6 days (dashed), with larger errors occurring at
the later time as expected. Both pseudospectral and FV3 schemes
show an algebraic decrease in error with increasing resolution,
with slightly faster decrease for the pseudospectral scheme. FV3

has less error at the lowest c80 resolution, because it has a
well-developed breaking wave on days 5 and 6, as opposed to
the pseudospectral solution at T85 (see Figure 2); it has higher
errors at the highest resolutions, mostly likely due to edge
and corner effects in the cubed-sphere grid. Again, the relative
rates of convergence of the two schemes will depend on the
particular norms used to quantify them. However, as we are less
interested in the relative merits of one numerical scheme over
another than in simply ensuring that the solutions converge at
some reasonable resolution, we do not analyze these differences
further.

6. Summary

In this article we have presented a numerically converged solution
of the rotating shallow-water equations (1a) and (1b) and initial
conditions (2) and (3) in the limit of vanishing viscosity. The
solution is established over a time interval of 5 days, by which
time small-scale features representative of atmospheric flows
have developed. The intention is that the solution will be
a useful tool against which new numerical schemes may be
validated.

The first step in the validation procedure is the integration
of the equations from the initial conditions to t = 5 days at

progressively higher resolutions and decreasing dissipation,
whether explicit or implicit to the numerical scheme, until
such a point that the sequence of solutions thus generated has
converged. Again, we emphasize that the details of the numerical
or explicit diffusion are unimportant, provided only that they
yield a stable solution. Here, the sequence of solutions may be
considered converged when the l∞ norm of the relative vorticity
gives a relative error, based on the difference between the two
highest resolution solutions, of less than 0.005. As an alternative
or additional measure, it may be required that the l∞ norm of the
potential vorticity also gives a relative error less than 0.005, where
here the relative error is based on the difference between the high-
est resolution solution and the maximum potential vorticity at
t = 0. Because the norms are single-value quantities, it is further
recommended that the two-dimensional potential vorticity fields
of the two highest resolution solutions are compared at a mag-
nification similar to that of Figure 4. Differences in the positions
of the contours should be minimal. It should be borne in mind
that the resolution at which convergence occurs will in general
vary from scheme to scheme and may differ from those reported
here.

Once it has been established that the sequence of solutions has
converged by the above criteria, the highest resolution solution
should be compared with the field shown in Figure 6.∗ The
solutions should match to the level of agreement shown in that
figure; in particular, there should be no discernible difference
in the contour positions at this level of magnification. As a

∗To facilitate this comparison, we have included datasets of potential vorticity
at days 5 and 6 as Files S1 and S2, respectively.
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Figure 8. Potential vorticity at t = 5 days of the correct solution (thin lines; red in
online color version) and a solution obtained from an integration with a defined
erroneously as 6.39 × 106 m (black dotted lines). Both solutions were obtained
with the pseudospectral scheme at T2730.

further quantitative measure, we provide the following values at
t = 5 days:

eddy kinetic energy : 81.14 ± 0.05 m2 s−2,

‖ζ‖2 : 2.67251 ± 0.0006 × 10−5 s−1,

‖ζ‖∞ : 1.51175 ± 0.0003 × 10−4 s−1,

‖q‖∞ : 2.42909 ± 0.01 × 10−8 m−1 s−1,

where the error bounds have been taken (conservatively) from
the difference between the values obtained at the two highest
resolution pseudospectral solutions.

Finally, pointwise relative errors may be computed to indicate
the rate of convergence of the particular numerical scheme
and may be compared against those of the pseudospectral and
FV3 schemes shown in Figure 7. We emphasize that rates of
convergence will in general vary from one scheme to another and,
moreover, may depend on the particular norm used to define
convergence.

We close by providing a brief indication of the magnitude
of errors that may be expected from errors in the numerical
implementation of the governing equations (1a) and (1b).
For simplicity, we consider the effect of errors introduced in
the physical parameters �, a and g. Of these, it was found
that the solution was most sensitive to errors in � and a.
As an example, when the value of a was set erroneously to
6.39 × 106 m, an error of approximately 0.25%, the converged
solution changed by an amount shown in Figure 8, where the
correct solution is contoured in thin lines (red in online color
version) and the wrong solution is contoured in black dotted
lines. The values of the quantities in the above list are as
follows: eddy kinetic energy, 79.9 m2 s−2; ‖ζ‖2, 2.66 × 10−5 s−1;
‖ζ‖∞, 1.50 × 10−4 s−1; ‖q‖∞, 2.44 × 10−8 m−1 s−1; all of these
lie outside the error bounds indicated. Consideration of either

the field shown in Figure 8 or the normed quantities listed here
would thus correctly lead to the rejection of this solution and
point to an error in the numerical implementation.
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File S1. Data required to reproduce the solution at t=5 days as
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File S2. As S1, but for the solution at t=6 days, as shown in
figure 6b.
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