
APPH 6101 Plasma Physics I

Midterm Exam

Submit your solutions before noon, Monday, Oct. 31, 2005.
This is an open book, open note, open anything exam. I intend for the exam to be completed
in about 2 hours of work, but I suspect that some of you may take longer. (That’s ok,
but not required.) Since this is an open-book exam, full credit is given only if you show
your work and explain your reasoning. Please write clearly so that I can understand your
solutions. Each question counts for the same fraction of the total exam score. Please, on
your honor, do not speak with any other student, colleague, or scientist, either within or
outside Columbia University. You are on your honor to do this exam entirely by yourself.

Question 1

Describe trapped particle motion in large-aspect ratio tokamak geometry and show that
the particle motion is described by an orbit shaped like a “banana” when viewed on a
poloidal plane. Also give the ratios between the bounce and magnetic drift frequencies as
compared to the cyclotron frequency.

Background: This is a well-known problem in toroidal magnetic physics described in
textbooks about tokamaks. (You do not need to reference these other textbooks, but
it is allowed.) Your starting point must be a formulation of the magnetic field. In the
“large-aspect-ratio” limit, the magnetic field is nearly toroidal. There is a weak poloidal
field such that the magnetic field makes a helical trajectory as it goes around the plasma
torus. The geometry that we’ll use for the magnetic field is approximately cylindrical,
with (ρ, θ) representing the minor coordinates from the major radius of the torus. In this
coordinate system, the toroidal field must decrease with radius, and

Bt(ρ, θ) = B0
R0

R0 + ρ cos θ
=

B0

1 + ε cos θ

where ε ≡ ρ/R0 � 1. When θ = 0, the field line is on the “outside” of the torus, and
the toroidal field is relatively weak. When θ = π, the field line is on the “inside” of the
torus, and the toroidal field is stronger. This variation of the strong toroidal field causes
(1) particle trapping when v||/v⊥ is sufficiently small and (2) magnetic drifts. As ε → 0,
the poloidal field depends only upon ρ. If the plasma current density is a constant within
the plasma, then Bp(ρ) = µ0ρJ/2π. The “safety factor” is the ratio of the number of
times that the magnetic field line goes the “long-way” around the torus to the number of
times that the field line goes the “short-way” around the torus. The symbol q is used to
describe the safety factor, and it’s given by q(ρ) = ρB0/R0Bp(ρ). For a constant J , the
safety factor is constant, q = 2πB0/µ0J , and Bp(ρ) = εB0/q � B0. Therefore, the total

magnetic field is B = φ̂Bt + θ̂Bp, where φ̂ is the unit vector in the toroidal direction and

θ̂ is the unit vector in the poloidal direction.
With the magnetic field defined, you should consider the constants of particle motion.

Assume that the particle’s gyroradius is small compared with the size of of the tokamak
(or the drift orbit.) Then, the magnetic moment, µ, and particle energy, E, are conserved.
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Because the tokamak is axisymmetric, the total (canonical) angular momentum is also
conserved (as described in Section 3.7 of the textbook.) You need to know the component
of the vector potential in the direction of symmetry, i.e. the toroidal direction, Aφ = φ̂·A.
For the approximations used above,

Aφ ≈
ρ2

2

B0

R0q
.

Question 2

Describe the conditions when light can propagate through and be guided by a “channel”
through a plasma. In other words, imagine an infinite uniform plasma with a straight
channel of dimension a across it’s cross-section where the plasma density within the chan-
nel is different from the plasma density outside channel. When does the channel act like
an “optical fiber” and guide the light for long distances?

Question 3

Consider a uniformly magnetized and a fully-ionized plasma made from carbon. There
would be six times the density of electrons than of ions (but the plasma would still be
approximately charge-neutral.)

Describe the Alfvén wave, the electron whistler wave, and the ordinary wave in this
plasma. How do these waves (in a fully-ionized carbon plasma) compare to the same
waves in a plasma made from singly-ionized carbon having the same mass density (i.e.
the same density of carbon)?

Question 4

Part A. Write the equations for the first three moments of the particle distribution
function given by

f(x, v, t) = n δ(vx − V0)δ(vy)δ(vz)

where (x, v) are expressed in cartesian coordinates, V0 is a constant, and where you
should assume that there is no magnetic force field.

Part B. Assume that initially the ions are described by fi = nδ(vx)δ(vy)δ(vz) and the
electrons are described by the distribution function given in Part A. Describe the linear
electrostatic waves that exist in this plasma.
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