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Abstract

We study sequential bargaining between a proposer and a veto player. Both have

single-peaked preferences, but the proposer is uncertain about the veto player’s ideal

point. The proposer cannot commit to future proposals. When players are patient,

there can be equilibria with Coasian dynamics: the veto player’s private information

can largely nullify proposer’s bargaining power. Our main result, however, is that under

some conditions there also are equilibria in which the proposer obtains the high payoff

that he would with commitment power. The driving force is that the veto player’s

single-peaked preferences give the proposer an option to “leapfrog”, i.e., to secure

agreement from only low-surplus types early on to credibly extract surplus from high

types later. Methodologically, we exploit the connection between sequential bargaining

and static mechanism design.
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1. Introduction

“If the Congress returns the bill having appropriately addressed these concerns, I

will sign it. For now, I must veto the bill.”1

— President Barack Obama

An important feature of U.S. politics is that legislatures (e.g., the Congress or a State

Assembly) send bills to executives (e.g., the President or a Governor) who can veto them,

and conversely, executives must secure confirmation from legislatures for certain appoint-

ments (e.g., to the Supreme Court and the Federal Reserve Board). More broadly, there are

many contexts in which one party or group makes proposals and another decides whether

to approve them. For instance, search committees put forward candidates for approval by

their organizations, Boards of Directors may require sign-off from shareholders on certain

initiatives, and some public school districts require citizens to ratify the budget proposed by

their school boards.

In an influential paper, Romer and Rosenthal (1978) introduced a framework to study

veto bargaining, i.e., bargaining over a one-dimensional policy between two players who have

single-peaked preferences. Only one player, Proposer, has the power to make proposals;

the other player, Vetoer, decides whether to accept a proposal or reject it and preserve

the status quo. Romer and Rosenthal assumed complete information—specifically, Proposer

knows Vetoer’s preferences—and a single take-it-or-leave-it proposal. These are important

benchmarks, but for many applications both assumptions ought to be relaxed: Proposer may

be uncertain about Vetoer’s preferences, and, as illustrated in our epigraph, Proposer can

make sequential proposals.

Sequential veto bargaining with incomplete information presents rich possibilities for

learning and signaling. When a proposal is rejected, Proposer updates about Vetoer’s pref-

erences and might modify his proposal in response. Anticipating that, Vetoer has an incentive

to strategically reject proposals that she prefers over the status quo in order to extract pro-

posals she likes even more. (Consider our epigraph, again.) But then, to what extent does

Proposer actually benefit from making multiple proposals?

Existing work on these issues primarily undertakes only a two-period analysis (e.g.,

Cameron, 2000, pp. 110-116; Cameron and McCarty, 2004, Section 4).2 But there are

limitations to models with a short bargaining horizon. On the one hand, being able to make

1 Closing of Obama’s Veto Message when he vetoed H.R. 1777.
2 We discuss two exceptions, Romer and Rosenthal (1979) and Cameron and Elmes (1994), in Section 6.
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proposals repeatedly may allow Proposer to reap benefits from screening Vetoer’s type. On

the other hand, a short horizon confers significant commitment power to Proposer.

The implications of a long horizon have been studied in the neighboring arena of bargain-

ing between a seller and a buyer with privately-known valuation. There, following the classic

Coase Conjecture (Coase, 1972), it has been shown that if offers can be made indefinitely and

players are patient, then lack of commitment wipes out the seller’s bargaining power. The

outcome is (approximately) that the buyer only pays her lowest possible valuation so long

as it is common knowledge that there are gains from trade.3 Applying Coasian logic to veto

bargaining would suggest that because sequential rationality compels Proposer to repeatedly

moderate future proposals, an inability to commit would significantly hurt Proposer.

Accordingly, the goal of our paper is to study sequential veto bargaining with incomplete

information in an infinite-horizon model with patient players. Our main result is that,

contrary to a Coasian intuition, the lack of commitment need not harm Proposer. More

specifically, we establish that under certain conditions, if players are patient, Proposer can

achieve a payoff that is arbitrarily close to his payoff with commitment power (Theorem 1).

Central to this result is Proposer’s ability to leapfrog : he may initially propose a policy

that is far from his own interests, targeting acceptance by “low” Vetoer types whose ideal

points are further away from his and closer to the status quo. Upon rejection, Proposer

concludes that Vetoer’s ideal point is closer to his own preferred policy. He is then able to

extract surplus from these “high” types because it is then credible to only offer policies that

are even closer to his own ideal point. Put differently, by securing initial acceptance from

(only) low types, leapfrogging limits the implications of sequential rationality for subsequent

policy moderation, so much so that Proposer is not harmed by the lack of commitment.

Leapfrogging is viable in our model because Vetoer has single-peaked preferences: there

are policies that low types are willing to accept and high types are not, given suitable

subsequent policy proposals. By contrast, in the canonical model of seller-buyer bargaining,

all buyer types prefer low to high prices. Offering low prices early on to subsequently charge

high-value buyers a higher price would be futile; indeed, any equilibrium in seller-buyer

bargaining features decreasing prices with the so-called skimming property: the current

price is always accepted by an interval of the highest-value buyer types.

After presenting our model in Section 2, we use a two-type example in Section 3 to

3 This point has been established for the “gap case” and, subject to a “stationary equilibirum” qualifica-
tion, also for the “no gap case” (Fudenberg, Levine, and Tirole, 1985; Gul, Sonnenschein, and Wilson, 1986).
Ausubel and Deneckere (1989b) provide an important counterpoint in the no gap case with non-stationary
equilibria.

2



develop the logic of leapfrogging. We first show how the option to leapfrog implies that, if

an equilibrium exists, there is one that achieves a high Proposer payoff. Our option-based

argument is succinct, but leaves open whether and how leapfrogging can be supported in

an equilibrium. Accordingly, we also explicitly construct a high Proposer payoff equilibrium

that uses leapfrogging (Proposition 1).

We turn in Section 4 to a setting with a continuum of types and Vetoer preferences given

by a quadratic loss function. As is familiar in sequential bargaining, an upper bound on

Proposer’s payoff when he can commit to a strategy in the dynamic game is provided by

an auxiliary static mechanism design problem (Lemma 1). This static problem has been

studied recently by Kartik, Kleiner, and Van Weelden (2021); we assume that what they call

“interval delegation” is an optimal mechanism. Theorem 1 then establishes our main result:

the static mechanism design payoff can be (approximately) achieved in a sequential veto

bargaining equilibrium. Our argument is non-constructive, but crucially exploits Proposer’s

option to leapfrog in the dynamic game and certain properties of the optimal mechanism

(Lemma 3). Combining Lemma 1 and Theorem 1, we conclude that Proposer can achieve

(approximately) the same payoff in an equilibrium as he could by committing to a strategy

in the dynamic game.

In Section 5, we show that there can be multiple equilibrium outcomes. Section 5.1

constructs, under reasonable conditions, a “skimming equilibrium” that features Coasian

dynamics: Proposer starts with demanding proposals but compromises rapidly, so much

so that Vetoer (approximately) gets her ideal point unless it is sufficiently extreme. In

some cases this outcome is a lower bound on Proposer’s equilibrium payoff, and an upper

bound on Vetoer’s. In Section 5.2, we build on the skimming equilibrium to explicitly

describe the dynamics of a leapfrogging equilibrium that delivers (approximately) Proposer’s

commitment payoff. Proposer begins by leapfrogging with a low offer, and upon rejection

skims among the remaining high types. Although intuitive, this approach bootstraps on the

“bad” skimming equilibrium by using it as a punishment if Proposer deviates, reminiscent

of Ausubel and Deneckere (1989b). By contrast, our non-constructive proof of Theorem 1

does not presume existence of a low-payoff equilibrium. In Section 5.3, we establish that

leapfrogging is sometimes necessary to achieve Proposer’s commitment payoff.

As there can be a range of equilibrium payoffs, our analysis calls attention to the role of

“norms”—equilibrium selection—in veto bargaining. In particular, if the norm favors Pro-

poser, then the ability to make multiple proposals is always valuable to Proposer; however,

under an unfavorable norm, in some environments Proposer could be worse off than if he

could only make a single take-it-or-leave-it offer.
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Section 6 relates our work to the existing literature on veto and Coasian bargaining.

Section 7 concludes.

2. Model

Proposer (he) and Vetoer (she) jointly choose a policy or action a ∈ R. In each period

t = 0, 1, 2, . . ., so long as agreement has not already been reached, Proposer makes a proposal

at ∈ R that Vetoer can accept or reject. The game ends when Vetoer accepts a proposal.

Both players share a common discount factor δ ∈ [0, 1). If agreement is reached in some

period T on action aT , then Proposer’s payoff is δTu(aT ) and Vetoer’s is δTuV (aT , v); both

players’ payoffs are 0 if agreement is never reached. The variable v ∈ R in Vetoer’s payoff is

her private information, or type, drawn ex ante from some cumulative distribution F . We

interpret the players’ payoffs as arising from flow utilities u and uV when a status-quo policy 0

is implemented in every period from 0 to T − 1 and the agreement policy aT is implemented

forever starting from period T , with a normalization that both players’ utilities from the

status quo is 0. That is, a player’s utility from a policy is his/her gain from that policy

relative to the status quo. We assume both players have strictly single-peaked preferences,

with Proposer’s ideal point being 1 and Vetoer’s v. That is, u(a) is strictly increasing on

(−∞, 1] and strictly decreasing on [1,∞), and analogously for uV (a, v).4 Our main result

(Theorem 1 in Section 4) allows Proposer’s utility u to be any concave function but assumes

that uV is quadratic loss.

A history in this game is a sequence of proposals. A strategy for Proposer is a function

that assigns to every history a probability distribution over proposals, interpreted as the

(possibly random) proposal Proposer makes given that all proposals in the history have

been rejected. A strategy for Vetoer is a function that specifies for each history and each

type the probability of accepting the last proposal. Our equilibrium concept is a standard

version of Perfect Bayesian Equilibrium: both players play sequentially rationally and beliefs

are updated by Bayes rule whenever possible—upon rejection of a proposal at any history,

Proposer’s belief about Vetoer’s type is updated by Bayes rule if rejection has positive

probability given Proposer’s belief at that history. We also require, as usual, that Proposer’s

proposals do not (directly) affect his beliefs about Vetoer’s type.

Although our model formally has a single veto player, it can also be applied to settings

in which Proposer has to secure approval from a committee of voters; so long as Proposer

4 We adopt the convention that “increasing”, “larger than”, “prefers”, etc., should be understood in the
weak sense unless explicitly qualified by “strict”.
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observes only whether his proposal passes or not, Vetoer can be interpreted as the median

member of the committee. We elaborate in Section 4.4.

3. Two-Type Example

This section presents an example to illustrate the logic of leapfrogging and how it benefits

Proposer. The example has linear loss functions and a binary type distribution. Accordingly,

for this section take

u(a) = 1− |1− a| and uV (a, v) = v − |v − a|,

where the constants are determined by our normalization that both Proposer’s and Vetoer’s

payoffs from the status quo (action 0) are 0. For simplicity, assume in this section that

Proposer can only propose actions in [0, 1]. Suppose there are two Vetoer types, l and h,

and let µ0 be the prior probability of type h. We focus on the case where

0 < l < 1/2 < h < 2l < 1, (1)

as it best illustrates the strategic issues at the core of our analysis. Proposer’s first best—

i.e., his optimum under complete information subject to Vetoer’s approval—is action 1 from

type h and action 2l from type l. The assumption that h < 2l implies that Vetoer of type

h prefers 2l to 1 and so this first-best allocation cannot be implemented under incomplete

information.

A Static Benchmark: We begin our analysis with a useful benchmark. Consider a static

(one-period) problem in which Proposer selects a menu of actions from which Vetoer can

choose (if she opts to not exercise her veto); equivalently, Proposer offers a deterministic

mechanism or delegation set. In this problem, Proposer’s linear loss utility implies that he

either pools both types with the singleton menu {2l} or separates them using the menu

{a∗, 1}, where a∗ := 2h − 1 makes type h indifferent between action 1 and action a∗.5

Separation is optimal whenever µ0 > µ∗, where µ∗ is defined by

u(2l) = (1− µ∗)u(a∗) + µ∗u(1), (2)

5 To see why optimal separation is via {a∗, 1}, suppose separation is better than pooling and allocation
{al, ah} with al < ah is an optimal separating allocation. It must be that ah > 2l; otherwise, pooling on
2l would be strictly better for Proposer. Hence, al < h; otherwise, both types would strictly prefer al.
Consequently, each type i ∈ {l, h} receives ai. Incentive compatibility (IC) implies al ≤ 2h − ah; if this
inequality is strict, raising al a little preserves IC and is strictly profitable for Proposer. So al = 2h − ah,
and it follows that only ah = 1 (which implies al = a∗) maximizes Proposer’s payoff.
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and pooling is optimal otherwise. We refer to max{u(2l), (1−µ0)u(a∗)+µ0u(1)} as Proposer’s

delegation payoff.

It is straightforward that when players are patient, Proposer can achieve approximately

the delegation payoff in our sequential bargaining game if he could commit to a strategy.6

But can Proposer achieve (approximately) the delegation payoff without commitment power?

The Sequential Rationality Problem: The difficulty when separation is optimal is that

of Coasian dynamics, which suggest the impossibility of screening Vetoer types when players

are patient (e.g., Fudenberg, Levine, and Tirole, 1985; Gul, Sonnenschein, and Wilson, 1986),

given that type h prefers l’s allocation to her own. Specifically, if Proposer secures agreement

initially (even with only high probability) from type h on an action close to 1, sequential

rationality then impels him to offer 2l to reach an agreement immediately with type l.

But anticipating the offer of 2l, a patient type h would not accept the initial high action.

Indeed, it can be shown that in any equilibrium in which the on-path sequence of offers is

decreasing—which guarantees that agreement is first secured with type h—Proposer’s payoff

at the patient limit is no higher than from pooling both types on action 2l. This payoff is

strictly below, and possibly far from, the delegation payoff when separation is optimal.

The Leapfrogging Solution: Our key insight is that Coasian dynamics can be negated

by leapfrogging, i.e., making an offer that is accepted by the low type and rejected by the

high type. Specifically, Proposer can first propose an action close to a∗ that is accepted

only by type l. Upon rejection, Proposer credibly offers action 1 ever after. In other words,

leapfrogging uses a low action to first target the low type so that Proposer can subsequently

extract a high action from the high type; crucially, at the latter stage, Proposer is no longer

constrained by sequential rationality to moderate his offer if it is rejected. We highlight that

it is Vetoer’s single-peaked preferences that permit offers that type l is willing to accept but

type h is not.

We now make precise how Proposer can exploit leapfrogging with a succinct argument

that presumes equilibrium existence. We argue that if separation is optimal, there is an

equilibrium in which Proposer achieves approximately the delegation payoff, at least. (Here

and subsequently, we sometimes leave implicit that statements should be understood as

holding for large δ.) Let aδ := δa∗ = δ(2h − 1) be the action below h that makes type

6 Our analysis in Section 4 shows that under certain conditions, the delegation payoff is in fact an upper
bound on Proposer’s payoff in the dynamic game, even with commitment power. But those conditions ensure
that delegation—a deterministic mechanism—is optimal in the static problem among stochastic mechanisms,
which is not true in this example because of Vetoer’s linear loss utility and discrete types. See also footnote 10.
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h indifferent between obtaining action 1 in the next period and obtaining action aδ in the

current period. Assume we are given an equilibrium. Modify that equilibrium to obtain a

new equilibrium with strategy profile σ and beliefs µ as follows:

1. if Proposer offers aδ in the first period, type l accepts and type h rejects. After a

first-period rejection of aδ, Proposer’s belief assigns probability 1 to type h, and so he

proposes 1 in all future periods; in these periods, type h accepts any proposal in [aδ, 1]

and rejects all others, and type l accepts any proposal in [0, 2l] and rejects all others;

2. if Proposer offers a 6= aδ in the first period, continuation play follows the original

equilibrium;

3. in the first period, Proposer chooses a proposal that maximizes his expected payoff.7

Point 1 above implies that we have an equilibrium in the continuation game after a first-

period proposal of aδ is rejected. It follows from Points 2 and 3 that (σ, µ) is an equilibrium.

In this equilibrium, either Proposer leapfrogs by offering aδ in the first period which is

accepted by type l, followed by action 1 being accepted by type h in the second period, or

Proposer obtains an even higher payoff by proposing something different in the first period.

When δ is close to 1, aδ is close to a∗ and Proposer’s equilibrium payoff is close to the

delegation payoff or even higher.

When separation is optimal, this argument shows that the option to leapfrog yields

Proposer approximately his delegation payoff or higher. But it does not establish that

leapfrogging actually occurs, and it presumes equilibrium existence. We now turn to a full-

fledged equilibrium construction that features leapfrogging; the construction also describes

an equilibrium when pooling is optimal.

Proposition 1. When δ is large, for any µ0 there is an equilibrium in which Proposer’s

payoff is approximately his delegation payoff.8 In particular, there exist µδ and µ̄δ, with

0 < µ∗ < µδ < µ̄δ < 1, such that at (µ0, δ) there is an equilibrium with on-path behavior as

follows:

(a) (Skimming.) If µ0 < µδ, Proposer offers a finite sequence of actions that decreases to

2l. Each offer strictly higher than 2l is accepted with positive probability by type h and

rejected by l.

7 We can assume a maximizer exists: if one doesn’t, it must be that in the original equilibrium it is
optimal for Proposer to choose aδ in the first period, with a payoff larger than (1− µ0)u(aδ) + δµ0u(1); so
the original equilibrium itself yields at least approximately the delegation payoff.

8 More precisely: letting ud denote the delegation payoff, for all ε > 0 there is δ < 1 such that for any
δ > δ and for all µ0, there is an equilibrium in which Proposer’s payoff is at least ud − ε.
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(b) (Leapfrogging.) If µ0 ∈
(
µδ, µ̄δ

)
, Proposer offers action aδ in the first period, which

is accepted by type l and rejected by h; in the second period Proposer offers action 1,

which is accepted by type h.

(c) (Delayed Leapfrogging.) If µ0 > µ̄δ, Proposer offers action 1 in the first period, which is

accepted with positive probability by type h and rejected by l; in the second period Pro-

poser randomizes between skimming and leapfrogging (parts (a) and (b), respectively).

(All proofs of formal results are in the Appendices.)

Case (a) of Proposition 1 concerns low priors. Here we construct a skimming equilib-

rium in which Proposer begins with an offer exceeding 2l but compromises to lower actions

following rejections. As δ → 1, Proposer’s payoff converges to the pooling payoff, u(2l),

from the static benchmark; moreover, µδ also converges to µ∗, and so for all priors less than

µ∗, Proposer is obtaining approximately his delegation payoff. The skimming equilibrium

adapts a construction that is standard in seller-buyer bargaining (Hart, 1989; Fudenberg

and Tirole, 1991, pp. 409–10). However, there are novel considerations in deterring Pro-

poser from offering actions lower than 2l. In our construction, the most attractive deviation

is leapfrogging, wherein Proposer first offers aδ to secure acceptance from type l and then

extracts action 1 from type h. Such deviations are profitable when type h is sufficiently

likely, which explains why our construction is an equilibrium only for a low prior (whereas in

seller-buyer bargaining, the analogous equilibrium exists for all priors because no buyer type

would wait for a higher price). The threshold µδ is the (lowest) belief at which Proposer is

indifferent between skimming and leapfrogging.

Proposition 1(b) and (c) are the main cases of interest, because here the prior is such

that separation is optimal in the static benchmark. In Case (b), Proposer leapfrogs at the

outset, securing action aδ from type l in the first period and then action 1 from type h in

the second period. As δ → 1, aδ → a∗ and Proposer obtains his delegation payoff. The

challenge with supporting leapfrogging is ensuring that Proposer does not deviate to a high

offer in the first period. Such a deviation (if accepted with sufficient probability by type

h) would be profitable if the prior is too large. The precise threshold µ̄δ is determined

by Proposer’s indifference between leapfrogging and the most attractive deviation, which is

an offer of 1. In equilibrium this offer is accepted by type h only with some probability,

which brings Proposer’s belief upon rejection down to the threshold µδ described in the

previous paragraph, so that Proposer then randomizes between skimming and leapfrogging

in a manner that justifies h’s randomization. The full construction of the leapfrogging

equilibrium is fairly involved; Figure 1 summarizes, with details provided in the formal

proof.
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aδ h 2l āδ0 1

I II III IV

Figure 1: Proposer’s first-period incentives in the equilibrium for Proposition 1(b) and (c). Offers
in Region I (including aδ) are accepted only by type l; action 1 is then offered and accepted by
h. Offers in Region II are accepted by both types. Offers in Region III are accepted with some
probability by h and rejected by l; rejection leads to a belief lower than µδ, whereafter there is a
(suitably randomized) skimming equilibrium. Action āδ makes type h indifferent between accepting
āδ now and waiting one period to play Proposition 1(a)’s skimming equilibrium under belief µδ.
Offers in Region IV are accepted by h with some probability and rejected by l; rejection leads to
belief µδ, whereafter Proposer mixes between skimming and leapfrogging. For any prior µ0 > µδ,
Proposer’s optimal offer is either aδ or 1. Belief µ̄δ is defined by Proposer’s indifference between
these two offers. Hence µ0 ∈ (µδ, µ̄δ) leads to leapfrogging (Proposition 1(b)), whereas µ0 > µ̄δ

leads to a positive probability of delayed leapfrogging (Proposition 1(c)).

Finally, Proposition 1(c) concerns the case of high priors, where leapfrogging from the

outset cannot be sustained due to Proposer’s strong incentive to secure agreement in the first

period with the high type on a high action. Instead we have delayed and only probabilistic

leapfrogging. As foreshadowed in the previous paragraph, now Proposer actually offers

action 1 in the first period, which is accepted by type h with positive probability; upon

rejection, Proposer randomizes in the second period between skimming and leapfrogging.

Since Proposer is indifferent in the second period, his payoff is as if he always leapfrogs then,

and his payoff therefore converges to the delegation payoff as δ → 1.

It is worth noting that although Cases (b) and (c) of Proposition 1 yield Proposer

an identical payoff at the patient limit, both cases remain relevant even at that limit:

limδ→1 µ
δ < limδ→1 µ̄

δ < 1 (see footnote 34 in the appendix). Moreover, since Proposer’s

delegation payoff becomes arbitrarily close to his complete-information payoff as µ0 → 1,

Proposition 1 implies that there are equilibria in which Proposer’s payoff at the patient

limit is continuous in the prior even when the probability of type l vanishes.9 By contrast,

in seller-buyer bargaining, in any equilibrium (of the “gap case”), the uninformed seller’s

payoff in the patient limit drops discontinuously when he ascribes any positive probability

to the low-value buyer.

Limitations: Although this example conveys the logic of leapfrogging and how Proposer

can exploit it, there are two interrelated limitations. First, it is difficult to determine whether

there are equilibria that are even better (or worse) for Proposer than that identified in Propo-

9 More precisely: limµ0→1 limδ→1 U(µ0, δ) = u(1), where U(µ0, δ) denotes Proposer’s payoff in the equi-
librium constructed in Proposition 1 for the belief µ0 and discount factor δ.
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sition 1. Second, while the delegation payoff provides a high target for Proposer, a more

compelling benchmark is Proposer’s payoff if he can commit to his strategy in the sequential

bargaining game. Indeed, in this example dynamic commitments can achieve more than

the delegation payoff.10 The following section addresses these issues by identifying assump-

tions within our general model such that Proposer (approximately) achieves his dynamic

commitment payoff in an equilibrium.

4. General Analysis

We hereafter assume Proposer’s utility function u(a) is concave and Vetoer’s is

uV (a, v) = −(v − a)2 + v2,

which is the standard quadratic loss function with our normalization that Vetoer’s payoff

from the status quo is 0. We also assume Vetoer’s type is distributed according to a cu-

mulative distribution F ∈ F , where F is the set of distributions with interval support that

admit a density that is bounded away from both 0 and ∞ on the support. We denote the

support of F by [v, v]. For this section alone, we assume that v ≤ 1, i.e., Vetoer’s ideal

point is always lower than Proposer’s. We do not view this restriction as critical; indeed,

our equilibrium constructions in Section 5 dispense with it. Note that we allow for v ≤ 1/2,

which is tantamount to Proposer having monotonic preferences.

Vetoer’s quadratic loss function assures single-crossing expectational differences (SCED)

as defined by Kartik, Lee, and Rappoport (2022): for any two lotteries over time-stamped

actions—pairs (a, t) representing agreement on action a at time t, with t = ∞ capturing

no agreement—their expected utility difference is single crossing in Vetoer’s type v.11 This

single-crossing property will play an essential role because it guarantees “interval choice”

10 Let t be the earliest period such that type h prefers agreement on action 1 in the first period to agreement
on 2l in period t. If Proposer offers 1 up until period t−1 and offers 2l from period t on, then it is optimal for
type h to accept 1 in the first period and for type l to accept 2l in period t. For large δ, h is approximately
indifferent: 2h− 1 ≈ δt(2h− 2l), or equivalently, (2h− 1) l

h−l ≈ δ
t2l. It follows that Proposer’s payoff from

dynamic commitment is at least µ0u(1) + (1 − µ0)δtu(2l) ≈ µ0u(1) + (1 − µ0)u(2h − 1) l
h−l . This latter

expression is strictly larger than Proposer’s payoff from the menu {a∗, 1} because a∗ ≡ 2h− 1 and l
h−l > 1

(as 2l > h by assumption). That dynamic commitment strictly improves on the delegation payoff implies
that the optimal static mechanism in this example must be stochastic (see Lemma 1 below).

11 This is because the utility from any lottery over time-stamped actions is −E(a,t)[δ
ta2] + 2vE(a,t)[δ

ta],
which is linear in v. More generally, if uV (a, t) has SCED for non-time-stamped action lotteries (i.e., lotteries
over actions within single period), then SCED over time-stamped action lotteries is assured by Kartik, Lee,
and Rappoport (2022, Corollary 3). We assume quadratic loss because of some additional tractability,
but believe that our results would extend under SCED with weaker assumptions such as smoothness and
concavity around the ideal point.
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(Kartik, Lee, and Rappoport, 2022, Theorem 1): given any Proposer strategy, at every

history the set of types that find it optimal to accept the current offer is an interval.

4.1. A Static Problem

We define an auxiliary static mechanism design problem that will turn out to provide

a tight upper bound on payoffs in the dynamic game. In this auxiliary problem, a (direct,

stochastic) mechanism assigns each type a lottery over actions. Formally, a mechanism

m is a measurable function m : [v, v] → M0(R), where M0(R) is the set of probability

distributions on R with finite expectation and finite variance. For notational convenience

we write m(v) = a when m(v) puts probability 1 on action a and also extend the domain of

Proposer’s utility u to include lotteries: u(m(v)) := Em(v)[u(a)]. A mechanism m is incentive

compatible if every Vetoer type v prefers m(v) to m(v′) for all v′. It is individually rational

if every type v prefers m(v) to action 0. Let S denote the set of incentive compatible and

individually rational mechanisms.12 Proposer’s static problem is:

max
m∈S

∫
u(m(v))dF (v).

We denote Proposer’s maximum value by U(F ).

Any incentive compatible and individually rational mechanism that assigns every type

a deterministic action can be implemented as a delegation set : Proposer chooses a subset

A ⊆ R and Vetoer is allowed to pick any action in A∪{0}. We say that an interval delegation

set is optimal if a solution to the static problem can be implemented by delegating an interval

[c∗, 1] for some c∗ ∈ [0, 1]. Our analysis below assumes environments in which such simple

mechanisms are optimal. That is, we maintain hereafter:

Assumption 1. For some c∗ ∈ [0, 1], an interval delegation set [c∗, 1] solves Proposer’s

static problem.

The static problem has been studied by Kartik, Kleiner, and Van Weelden (2021). Among

other things, they motivate interval delegation and investigate when it is optimal. Their

Corollary 3 establishes that sufficient conditions for Assumption 1 are that Proposer’s utility

u is a linear or quadratic loss function (or a combination thereof) and Vetoer’s type density

f is logconcave.13 Many commonly used distributions have logconcave densities (Bagnoli

12 More precisely, any m ∈ S must also be such that v 7→ Em(v)[u(a)] is integrable.
13 While that paper maintains some assumptions on the type distribution that we don’t assume, those

assumptions are not needed for its sufficient conditions for optimality of interval delegation. We also note
that the logic of Corollary 1 in that paper implies that the interval delegation set [max{0, 2v}, 1] is an optimal
mechanism if f is decreasing on [max{0, v}, v], given only that u is concave.
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and Bergstrom, 2005).

4.2. An Upper Bound on the Commitment Payoff

In the static problem, Proposer screens different Vetoer types by exploiting their hetero-

geneous preferences over (distributions of) actions within a single period. In our dynamic

environment, delay is an additional screening instrument. Nevertheless, Proposer can do no

better in the dynamic game even if he could commit to his strategy :

Lemma 1. There is no Proposer strategy and Vetoer best response that yield Proposer a

payoff strictly higher than U(F ).

The idea behind this result is straightforward, and familiar in the seller-buyer bargaining

literature (e.g., Ausubel and Deneckere, 1989a): the outcome of any Proposer strategy and

Vetoer best response can be replicated by a mechanism in the static problem. To elaborate,

any Proposer strategy and Vetoer best response induce, for each Vetoer type, a probability

distribution over agreements on time-stamped actions. We can transform any such distri-

bution into a static lottery by mapping an agreement on action a in period t into a static

lottery that gives action a with probability δt and action 0 with remaining probability. This

transformation is payoff equivalent for Proposer and all Vetoer types. Therefore, the static

mechanism induced by transforming each type’s equilibrium distribution is incentive com-

patible and individually rational because Vetoer is playing a best response in the game, and

the mechanism delivers Proposer the same payoff as in the game.

We highlight that while it is crucial that the static problem allow for stochastic mecha-

nisms, the argument for Lemma 1 does not require any assumption on either player’s pref-

erences beyond discounted expected utility with a common discount factor. Furthermore,

the argument only uses the distribution of agreement times and actions for each type and

the requirement that Vetoer is best responding to Proposer, nothing more about the game

form. It follows that the static problem provides an upper bound on Proposer’s commit-

ment payoff in the dynamic game even if Proposer could, in any period, offer a menu of

(possibly stochastic) actions, allow Vetoer to send cheap-talk messages, or engage in other

complex protocols. Indeed, any incentive compatible and individually rational mechanism

that assigns each type a lottery over time-stamped actions yields Proposer a payoff at most

U(F ).

4.3. Obtaining the Commitment Payoff without Commitment

In light of Lemma 1, we say that Proposer can achieve approximately his commitment

payoff for a belief F ′ if given the belief F ′ (at some history), for every ε > 0 there is δ < 1
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such that for all δ > δ, there is a (continuation) equilibrium in which Proposer’s payoff is at

least U(F ′)−ε. For brevity, we say that Proposer can achieve approximately his commitment

payoff if he can approximately achieve his commitment payoff for the prior F .14 Our main

result, Theorem 1 below, presumes:

An equilibrium exists for all δ and all beliefs in F . (EqmExists)

We view this presumption as benign, and we provide reasonable sufficient conditions for

equilibrium existence in Section 5. In particular, it is sufficient that v ≤ 0, i.e., some Vetoer

types prefer the status quo to any action Proposer prefers.

Theorem 1. Suppose EqmExists. Proposer can achieve approximately his commitment pay-

off.

Together, Lemma 1 and Theorem 1 imply that, when players are patient, there are

equilibria in which Proposer suffers (almost) no loss from the inability to commit in the

dynamic game. In particular, Proposer is not harmed by the ability to make sequential

proposals; in fact, whenever the optimal delegation set has c∗ < 1, Proposer strictly benefits

from that ability, as the outcome from that delegation set cannot be replicated with a single

proposal. Moreover, Proposer’s gain from the ability to offer a menu of actions, rather than

a single action, in each period vanishes as δ → 1.

Theorem 1’s conclusion may be best appreciated when c∗ > max{0, 2v}, say 0 < 2v <

c∗. In that case the result contrasts with the negative conclusion from Coasian dynamics:

intuitively, if Proposer were to continually compromise starting from a high offer, sequential

rationality would drive offers all the way down to 2v; it would not be credible for Proposer

to stop at c∗.

An intuition one might proffer for Theorem 1 is that, when δ ≈ 1, Proposer can begin

with an offer of action 0—leapfrog—and then offer a decreasing sequence of actions along

a fine grid of [c∗, 1]. Vetoer’s best response would be to accept the offer of 0 if her type

is in [0, c∗/2], and otherwise accept an offer in [c∗, 1], resulting in approximately the same

outcome as the optimal delegation set [c∗, 1]. This intuition is incomplete because Proposer

must be incentivized to offer 0 initially, and even thereafter, it is not clear that he would be

willing to follow the decreasing sequence of offers. We are able to substantiate this intuition

in Section 5.2 under some conditions, by exploiting equilibrium payoff multiplicity to deter

14 To be clear: conceptually, by “commitment payoff” we have in mind Proposer’s payoff if he could commit
to a strategy in the dynamic game. But operationally, we refer to the static problem’s payoff U(F ) as the
commitment payoff because of Lemma 1, our focus on large δ, and Theorem 1 below.
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any Proposer deviations. Instead, we pursue a different approach to prove Theorem 1 that

does not rely on equilibrium payoff multiplicity and highlights the power of Proposer’s option

to leapfrog. It is this argument that we sketch in the remainder of this subsection.

Our first step is to derive a “conditional optimality” property of interval delegation: given

the assumption that delegation set [c∗, 1] is an optimal static mechanism for the prior type

distribution F , it is also optimal for certain conditional distributions. To state the result,

let F[v1,v2] denote the conditional distribution of F given v ∈ [v1, v2], for any v1, v2 ∈ [v, v]

with v1 ≤ v2.

Lemma 2. The delegation set [c∗, 1] solves Proposer’s static problem for any belief F[c,c′]

with c ≤ c∗/2 ≤ c∗ ≤ c′.

The lemma owes to SCED of Vetoer’s utility and the optimal static mechanism being

interval delegation, rather than just an arbitrary delegation set. The proof uses these prop-

erties to establish that if some mechanism outperforms delegation set [c∗, 1] for any of the

relevant truncated beliefs, then augmenting that mechanism by adding an interval of high

actions yields a mechanism that also outperforms [c∗, 1] for the original belief.

Lemma 2 says, in particular, that delegation set [c∗, 1] is an optimal mechanism for the

belief F[v,c∗] and that it remains optimal for the belief F[c∗/2,c∗] that is induced if Proposer

leapfrogs and obtains agreement from all types below c∗/2. We use these properties to next

establish Theorem 1 for the special case in which Proposer’s belief is F[v,c∗].

Lemma 3. Suppose EqmExists. Proposer can achieve approximately his commitment payoff

for belief F[v,c∗].

The proof deduces an equilibrium in which Proposer has an option to leapfrog that

guarantees him approximately the commitment payoff, analogous in spirit to the logic given

before Proposition 1. In the equilibrium, Proposer has the option to follow a path in which

he first proposes action 0, which will be accepted by all types below c∗/2, and then proposes

action c∗, which will be accepted by all types above c∗/2. When players are patient this path

yields Proposer approximately the same payoff as in the static problem because the delegation

set [c∗, 1] is outcome-equivalent to {c∗} under the belief F[v,c∗]. On this path, Proposer’s

sequential rationality in the second period with belief F[c∗/2,c∗] is assured by Lemma 1 and

Lemma 2. Sequential rationality for Vetoer after both the initial proposal of 0 and the

subsequent proposal c∗ is because a rejection of c∗ in the second period would lead Proposer

to put probability 1 on type c∗ and make subsequent proposals that are larger than c∗, and
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hence worse for Vetoer regardless of her type in [v, c∗].15

Lemma 3 serves as the base step for an inductive proof of Theorem 1. Specifically, we

show that if Proposer can achieve approximately his commitment payoff for belief F[v,c′] for

some c′ ≥ c∗, then there is a neighborhood of c′ such that for any c′′ in this neighborhood,

the commitment payoff can also be achieved approximately for belief F[v,c′′].
16

Here is the idea for the inductive step. Consider the action a′ > c′ that makes type c′

indifferent between accepting a′ in the current period and playing a putative continuation

equilibrium with belief F[v,c′] that gives Proposer approximately his commitment payoff under

that belief. Presuming this continuation if a′ is rejected, it is optimal for types below c′ to

reject a′ because SCED implies that they obtain a higher payoff from using the strategy

of type c′ in the continuation equilibrium. On the other hand, there is a neighborhood of

types above c′ within which it is optimal to accept a′ because (i) discounting implies that

types in a neighborhood of a′ prefer accepting a′ to receiving even their ideal action in the

next period, and (ii) SCED implies that the set of types willing to accept any proposal is an

interval. Now suppose Proposer’s belief is F[v,c′′] for c′′ strictly larger than but sufficiently

close to c′. It follows that the belief F[v,c′] and the continuation equilibrium we hypothesized

is self-fulfilling: anticipating this continuation leads to a′ being rejected by precisely the set

of types [v, c′]. Moreover, action a′ is an option that assures Proposer approximately his

commitment payoff: conditional on rejection by types less than c′, the continuation results

in approximately the commitment payoff given the conditional distribution, whereas every

type v ∈ (c′, c′′) accepts proposal a′ > c′′ which is larger than the action v that Proposer gets

from type v in the static problem for belief F[v,c′′] (by Lemma 2, given that c′′ > c′ ≥ c∗).

We highlight that our proof of Theorem 1 uses a leapfrogging option to deduce a high-

payoff equilibrium for Proposer without actually identifying his equilibrium strategy or the

equilibrium outcome (i.e., the mapping from Vetoer types to time-stamped action distribu-

tions).17 As explained above, the proof uses induction on beliefs of the form F[v,c], exploiting

the “conditional optimality” of the ex-ante optimal mechanism for such beliefs (Lemma 2).

However, in a leapfrogging equilibrium, Proposer’s beliefs need not take only that form. But

15 While it is weakly dominated for Vetoer to accept a proposal of 0, we use action 0 because of the
continuum action space. There are discretizations of the action space in which Proposer’s leapfrogging
option can be constructed using a strictly positive action instead of 0.

16 This explanation is heuristic; the formal proof ensures that for any ε > 0, for all large enough δ < 1,
the induction can traverse the set of types with Proposer obtaining a payoff at least U(F )− ε.

17 This is reminiscent of the approach used in the reputation literature (e.g., Fudenberg and Levine, 1989,
1992), among other places, although the logic here is distinct. Unlike in those classic papers, we have two
long-lived players, and there can also be equilibria in which Proposer obtains a low payoff (Proposition 2
below).
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that is compatible with conditionally optimality of the ex-ante optimal mechanism—indeed,

Lemma 2 assures that the interval [c∗, 1] remains an optimal mechanism so long as Proposer’s

belief is of the form F[c,c′] with c ≤ c∗/2 ≤ c∗ ≤ c′. We will see in Section 5.2 that, under

some conditions, there are leapfrogging equilibria in which Proposer’s beliefs always have

this form on the equilibrium path.

Moving beyond interval delegation, we do not know in general whether our proof strategy

for Theorem 1 can be used when the optimal mechanism is an arbitrary delegation set; what

would be important for our approach is that the delegation set be a conditionally optimal

mechanism for a suitable range of beliefs.

4.4. Committee of Voters

Our analysis with a single Vetoer can be extended to situations in which a committee

votes on Proposer’s offer. For some odd number N , consider a committee of N voters

that aggregates votes via simple majority rule. Each voter n ∈ {1, . . . , N} has the utility

function u(a, vn), where vn is her ideal point. Ideal points are drawn from some prior joint

distribution, which need not be independent across voters. Each voter observes the realized

vector (v1, . . . , vn), but Proposer does not. Crucially, Proposer also does not observe the

vote profile in any period, only whether his offer passes. It does not matter whether the

voters observe each others’ votes.

Let m := (N + 1)/2 and let F denote the distribution of the median (i.e., m-th highest)

ideal point. We claim that so long as u has SCED, every equilibrium of our Proposer-

Vetoer two-player game with type distribution F has an outcome-equivalent equilibrium of

the committee game. Specifically, the committee game’s equilibrium can be described as

follows: (i) Proposer behaves just like in the two-player game; (ii) the realized median voter

(i.e., the voter who realizes the m-th highest ideal point), say voter m, behaves just like

Vetoer with type vm; and (iii) at every history, every non-median voter votes for the current

proposal if and only if she prefers it to the distribution of future agreements (time-stamped

actions) induced in the two-player game if Vetoer has type vm and rejects at that history.

Note that all voters behave “sincerely” or “as if pivotal” in the sense of voting at every

history based on their comparison of the current offer with what will happen, in equilibrium,

if the offer does not pass.

Here is why the above strategies form an equilibrium of the committee game. Without

loss, assume the realized vector of ideal points has v1 ≤ · · · ≤ vn. The key observation

is that all voters share a common belief about the distribution of future agreements (since

vm is known to all voters), and so SCED assures that the set of voters who have the same
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preference as the median voter m to accept (or reject) the current offer includes either

{1, . . . ,m} or {m, . . . , N}. Hence, the median voter is always decisive, and all voters are

playing sequentially rationally if the median voter is. Since Proposer only observes whether

his offer was accepted or rejected, and the median voter behaves just like in the two-player

game, it follows that Proposer is behaving sequentially rationally. Finally, being decisive,

the median voter is clearly also playing sequentially rationally.

5. Equilibrium Constructions and Multiplicity

This section constructs two equilibria: a leapfrogging equilibrium that yields Proposer

approximately his commitment payoff, and a skimming equilibrium that can yield him a

significantly lower payoff. Both constructions require some (plausible) assumptions on the

support of the type distribution. Under those assumptions, they settle the equilibrium

existence presumed by Theorem 1. Moreover, we also establish a sense in which leapfrogging

is necessary to achieve the commitment payoff. Unlike in Section 4, we now permit the upper

bound of the type distribution, v, to be larger than 1.

5.1. A Skimming Equilibrium

We first construct a skimming equilibrium, which we define, following standard practice

(e.g., Fudenberg and Tirole, 1991, p. 407), as an equilibrium in which any on-path non-

negative offer is accepted by an upper set of Vetoer types.18 This skimming equilibrium

shows that a Coasian intuition does have some merit in our setting, which makes it more

striking that the commitment payoff can also be achieved. Furthermore, we establish that

Proposer’s payoff in our skimming equilibrium converges in the patient limit to that of full

delegation, i.e., of simply allowing Vetoer to choose her preferred action in [2v+, 1], where

v+ := max{0, v}.19 It follows that there can be a substantial multiplicity in bargaining

outcomes.

18 We qualify the upper-set acceptance to hold only for (i) non-negative offers and (ii) on-path offers.
Point (i) is needed because of Vetoer’s single-peaked preferences: if a strictly negative offer is accepted by
any remaining types, the acceptance set cannot be an upper set since high types prefer the status quo.
Regarding (ii), we could use the stronger definition that includes off-path offers—and our construction
in Proposition 2 satisfies that requirement—but restricting to on-path offers strengthens Proposition 4 in
Section 5.3 and its implication that leapfrogging is necessary for the commitment payoff.

19 In other words, full delegation is delegation of the interval [c, 1] where c = 0 if v ≤ 0 and c = 2v if
v ∈ (0, 1/2). Note that we ignore here, and in the rest of Section 5, the case of v > 1/2; it is uninteresting
because there is trivially a skimming equilibrium in which Proposer obtains his ideal point by offering 1 at
every history. Nonetheless, all our statements hold even if v > 1/2 so long as in that case one interprets the
notation 2v+ to mean 1.
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To state the result, define

U(F ) :=

∫ 2v+

v

u(2v+)dF (v) +

∫ 1

2v+
u(v)dF (v) +

∫ max{v,1}

1

u(1)dF (v)

as the static payoff from delegation set [2v+, 1]. In this mechanism all Vetoer types below

2v+ are pooled at action 2v+, all types in [2v+, 1] obtain their ideal points, and all higher

types are pooled at 1.

Proposition 2. If either v ≤ 0 or v ≤ 1/2, then there is a skimming equilibrium. As δ → 1,

Proposer’s payoff in this equilibrium sequence converges to U(F ).

For any δ, we construct a skimming equilibrium by adapting the approach used in seller-

buyer bargaining (e.g., Gul, Sonnenschein, and Wilson, 1986; Ausubel and Deneckere, 1989b).

Suppose that Proposer’s belief at any history is a right-truncation of his prior, i.e., the set of

remaining Vetoer types is [v, v] for some v. The highest remaining type can be used as a state

variable for dynamic programming to find Proposer’s optimal sequence of decreasing offers,

with a constraint that each subsequent state must be induced by Vetoer’s best response of

accepting an offer if and only if she prefers it to the discounted payoff from accepting the

subsequent offer. Definition 1 in Appendix B.2 makes this program precise. As we discuss

there, single-peaked Vetoer preferences introduce some differences in how we formulate and

tackle the program relative to seller-buyer bargaining.

A novel issue arises in verifying that there is an equilibrium corresponding to a solution

to the aforementioned program: what happens if v > 0 and Proposer deviates at some

history to an offer in [0, 2v)? The issue is salient because, unlike in seller-buyer bargaining,

leapfrogging could be attractive to Proposer. We use Proposition 2’s hypothesis that v ≤ 1/2

(given v > 0) to deter such deviations by stipulating that any such offer is accepted by all

Vetoer types, which makes it unattractive to Proposer. It is optimal for Vetoer to accept

these low offers because we specify Proposer’s belief after rejection to be degenerate on v,

and accordingly Proposer’s future offers to perpetually be 2v, which yields no surplus to any

Vetoer type.20 Both v ≤ 0 and v ≤ 1/2 are reasonable hypotheses: the former says that the

status quo may be Pareto efficient; the latter is tantamount to Proposer having monotonic

preferences over the set of actions that any Vetoer type would find acceptable.

20 Our solution concept of Perfect Bayesian equilibrium allows for arbitrary beliefs after a rejection that
has zero probability at that history. As such, even if v > 1/2 (and v > 0), strictly speaking one could assign
the degenerate belief on 0 after an unexpected rejection and have Proposer offer action 0 ever after, which
would also yield no surplus to all Vetoer types. We do not allow for such beliefs, instead requiring—as is
conventional, and in the spirit of Kreps and Wilson’s (1982) sequential equilibrium—that beliefs must always
be supported in the support of the prior, [v, v].
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Another distinction with seller-buyer bargaining is that, as δ → 1, Proposer’s payoff

in the skimming equilibrium converges to the full-delegation payoff U(F ), rather than the

payoff from all types accepting 2v+. On the one hand, our argument for why Proposer’s

payoff in the limit cannot be larger than U(F ) builds on ideas in that literature; roughly, a

type v > 2v+ would accept an offer strictly higher than v only if there is a significant delay

cost to waiting for a more attractive offer, but such a delay cost would make it attractive for

Proposer to deviate and hasten agreement. On the other hand, a new observation owing to

our setting is that Proposer’s payoff cannot be lower than U(F ) either: intuitively, because

of her single-peaked utility, for any δ < 1 Vetoer will accept any proposal close enough to

her ideal point; hence, as δ → 1, Proposer must do no worse in the skimming equilibrium

than by compromising with an arbitrarily fine sequence of offers that traverses [2v+, 1].

In general, Proposer’s payoff from the skimming equilibrium when players are patient,

U(F ), will be strictly less than his commitment payoff, U(F ); these payoffs coincide only

when full delegation is an optimal mechanism, i.e., the c∗ threshold in Assumption 1 is

precisely 2v+. Kartik, Kleiner, and Van Weelden (2021, Corollary 1) identify that full

delegation is in fact optimal if the type density is decreasing on [2v+, 1]. Observe that when

v ≤ 0, the skimming equilibrium’s payoff is a lower bound on Proposer’s payoff from any

equilibrium when players are patient; for, no equilibrium can yield Proposer a payoff strictly

lower than from delegating the [0, 1] interval. It follows that if full delegation is optimal

and v ≤ 0, then when players are patient all equilibria must yield Proposer the commitment

payoff.

Notwithstanding such cases, the general contrast in Proposer’s payoff between Theorem 1

and Proposition 2 indicates the importance of equilibrium selection, which we interpret as

norms, in veto bargaining. Which norm prevails in a given context may hold significant

implications for whether Proposer suffers from an inability to commit to future offers. More-

over, in some environments—e.g., when Proposer prefers a single take-it-or-leave-it offer to

full delegation—the norm can determine whether Proposer benefits from or is harmed by

the ability to make multiple proposals. But in other environments—e.g., when v ≤ 0 and

Proposer prefers full delegation to a single offer—the ability to make multiple proposals

benefits Proposer regardless of the norm. We highlight that both the sequential structure of

bargaining and incomplete information are necessary for norms to matter in veto bargain-

ing; in particular, Primo (2002) shows that there is a unique equilibrium outcome absent

incomplete information.21

21 In fact, under complete information, Primo (2002) shows that with a one-dimensional policy space and a
single veto player, Proposer’s payoff with sequential proposals is the same as with a single proposal. Duggan
and Ma (2023, Theorem 2) extend this to a committee of voters. As they and Ali, Bernheim, Bloedel, and
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5.2. A Commitment-Payoff Equilibrium

We now build on the previous subsection’s skimming equilibrium to construct a leapfrog-

ging equilibrium—one with leapfrogging on path—that delivers (approximately) Proposer’s

commitment payoff. The construction reveals how the dynamics of leapfrogging may play

out, subject to a reasonable assumption that either v ≤ 0 (i.e., the status quo may be Pareto

efficient) or v ≤ 1/2 (i.e., Proposer effectively has monotonic preferences), and that full

delegation is not optimal. Note that if full delegation is optimal, then skimming achieves

the commitment payoff (Proposition 2).

Proposition 3. Suppose that either v ≤ 0 or v ≤ 1/2, and that full delegation is not

optimal. There is a leapfrogging equilibrium in which Proposer achieves approximately his

commitment payoff. In this equilibrium, Proposer first offers 0, which is accepted if and only

if v ∈ (0, c∗/2); subsequently, Proposer offers a decreasing sequence of offers that culminates

in c∗, with each offer accepted by an upper interval of remaining types.

In the equilibrium identified by Proposition 3, Proposer begins by leapfrogging with an

offer of 0; if that offer is rejected, he knows that Vetoer’s type is either below 0 or above c∗/2.

Naturally, he is only concerned with the latter possibility. So, upon the rejection of offer

0, we are able to use essentially the same skimming construction as in Proposition 2, but

with the conditional distribution F[c∗/2,v]. For large δ, this implements a fine-grid sequence

of decreasing offers down to c∗. As δ → 1, the overall outcome thus converges to that of

Vetoer simply choosing (with no delay cost) her preferred action from the optimal delegation

set [c∗, 1], or exercising her veto.

Let us highlight a few points about the construction. First, for the reasons discussed after

Proposition 2, we use the hypothesis that either v ≤ 0 or v ≤ 1/2 to ensure validity of the

skimming construction after offer 0 has been rejected. Notably, then, Proposition 3 is valid

even when v > 1, so long as v ≤ 0. Second, the equilibrium must incentivize Proposer in the

first period to offer action 0 rather than some higher action. This is ensured by stipulating

that if Proposer deviates to action a > 0 in the first period, continuation play follows that

of the skimming equilibrium constructed in Proposition 2. Such a deviation yields Proposer

a payoff no more than (approximately) the payoff from full delegation, which is strictly less

than the commitment payoff that is approximately achieved on path.

Third, although we view the leapfrogging-followed-by-skimming dynamics in Proposi-

tion 3 to be intuitive, we do not rule out other dynamics that also deliver approximately

Console Battilana (2023, Theorem 7) show, the equivalence does not generally hold with multiple voters and
multiple dimensions, even when Proposer’s payoff in the dynamic game is unique.
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Proposer’s commitment payoff. In particular, it is plausible that one may use the same ap-

proach to construct equilibria in which Proposer begins with some skimming, then leapfrogs

with offer 0, and then continues skimming again. There may also be other dynamics. Fourth,

Proposition 3 crucially exploits equilibrium payoff multiplicity: we use a low-payoff skim-

ming equilibrium to construct a high-payoff equilibrium. This approach is reminiscent of the

“reputational equilibria” in Ausubel and Deneckere (1989b). By contrast, the logic we use

to prove our main result, Theorem 1, does not leverage equilibrium payoff multiplicity; it

would apply even if there is no skimming equilibrium and even if all equilibria yield Proposer

a high payoff.22

5.3. Is Leapfrogging Necessary?

We have highlighted leapfrogging as the driving force to achieve Proposer’s commitment

payoff, so long as full delegation is not optimal (in which case, by Section 5.1, skimming

suffices). In fact, leapfrogging is then more or less necessary:

Proposition 4. Suppose that the essentially unique solution to the static problem is an inter-

val delegation set that is not full delegation. Proposer’s payoff in any skimming equilibrium

is bounded away (across δ) from the commitment payoff.

We view the assumption that the static problem has a unique solution (essentially—i.e.,

up to a set of types of measure 0) as mild. That it is not full delegation is equivalent to

c∗ > 2v+. For instance, this inequality holds when v ≤ 0, u(·) is affine on [0, 1], and Vetoer’s

type density f is logconcave and attains a unique peak at some v > 0.23 Note that v ≤ 0

assures existence of both a skimming equilibrium (Proposition 2) and a commitment-payoff

equilibrium (Proposition 3).

The intuition for Proposition 4 is that for any large δ < 1, to achieve close to the

commitment payoff, the outcome must be approximately that (i) Proposer reaches agreement

with all types above c∗/2 on their preferred actions in [c∗, 1] without excessive delay, and

(ii) all types below c∗/2 obtain the status quo (or some other actions only after significant

delay). But if (i) happens in a skimming equilibrium, then eventually Proposer will be faced

with, approximately, the type distribution F[v,c∗/2], in which event he will not find it optimal

22 On the other hand, we noted at the end of Section 4.3 that it is not straightforward to extend the
approach used in proving Theorem 1 absent optimality of interval delegation (Assumption 1). But given
a low-payoff equilibrium, the logic underlying Proposition 3’s construction ought to support a high-payoff
equilibrium so long as some deterministic mechanism—even if not interval delegation—solves the static
problem.

23 An affine u and logconcave f ensure that interval delegation is optimal; f having a unique peak at v > 0
implies the interval’s threshold is c∗ > 0. See Kartik, Kleiner, and Van Weelden (2021).

21



to induce (ii); he could profitably deviate to a fine-grid sequence of offers in [0, c∗/2] that

are accepted by most remaining positive types with virtually no delay cost. Note that this

logic applies even if we are in the no-gap case (v ≤ 0).

Subject to its conditions, Proposition 4 implies that any equilibrium that achieves ap-

proximately the commitment payoff must, with positive probability, have a leapfrogging offer

a ≥ 0 that is accepted by some low type and yet rejected by some higher type. In such an

equilibrium, with positive probability, the sequence of on-path offers will not be decreasing:

for, an upper set of types would accept the current offer if future offers are certain to be

lower. Therefore, leapfrogging plays an indispensable role in yielding the commitment payoff.

6. Related Literature

We now relate our work to some prior literature.

Veto Bargaining with Incomplete Information: Existing work on sequential veto

bargaining with incomplete information focuses on short horizons, typically two periods,

and/or myopic Vetoer behavior (e.g., Romer and Rosenthal 1979, Dewatripont and Roland

1992, Chapter 4 of Cameron 2000, Rosenthal and Zame 2022, Chen 2022).24 These analyses

elucidate nicely some of the strategic forces, but either a short horizon or myopic Vetoer

behavior precludes the potency of Coasian dynamics. The only exception to these approaches

that we are aware of is the unpublished work of Cameron and Elmes (1994), who study a

long finite horizon with sophisticated players. All these authors, including Cameron and

Elmes, are interested in skimming equilibria. Our analysis shows that—unlike in seller-

buyer bargaining—it is important to account for the possibility of leapfrogging because

that can both invalidate a putative skimming equilibrium (recall the discussions of both

Proposition 1(a) and Proposition 2) and lead to qualitatively different equilibria with higher

Proposer payoff.

Recently, in a two-period model, Evdokimov (2022) has emphasized what he views to be

“non-Coasian” equilibria in veto bargaining. He studies committees in which voter prefer-

ences are determined by a binary state, analogous to our two-type example. Single-peaked

24 We highlight work that is most closely related to ours. But there have, of course, been studies on
other aspects of veto bargaining with incomplete information. For example, Matthews (1989) models veto
threats, whereby Vetoer sends a cheap-talk message prior to Proposer making a take-it-or-leave-it offer.
McCarty (1997) considers two-issue bargaining, wherein Vetoer may reject a proposal on one issue to influence
proposals on the second issue. Groseclose and McCarty’s (2001) model of blame-game politics shows that
in a three-player game, Proposer may make an offer that he knows Vetoer will reject in order to convince a
third party (e.g., voters) that Vetoer has extreme preferences.
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voter preferences are important to his analysis, as they are to ours; however, our papers focus

on distinct implications of single-peakedness, and the nature and import of our results are

markedly different. To see that, consider his setting when a single vote is enough to overturn

the status quo; it is effectively then as if Proposer faces a single vetoer. Here Evdokimov finds

a unique equilibrium, which has skimming. Leapfrogging does not arise because of the com-

bination of only two periods and his assumption that Proposer’s utility is globally increasing

in the action.25 Instead, what Evdokimov deems non-Coasian are equilibrium outcomes in

which, using our two-type notation from Section 3, Proposer obtains utility that exceeds

u(2l) as δ → 1. He notes that such outcomes arise if h > 2l. The reason is simply that type

h prefers some actions strictly above 2l to 2l, and hence Proposer can guarantee a utility

exceeding u(2l) by first offering h and then 2l. By contrast, we focused on arguably the

more interesting case of h < 2l, because that means separation cannot be achieved (when

players are patient) with both types getting actions above 2l. More generally, we do not

take a stance on what the Coase Conjecture ought to mean in veto bargaining. Instead, our

key contribution for two types and beyond is to unsheathe the leapfrogging implications of

single-peaked preferences, which yield equilibria that have non-skimming dynamics and high

Proposer payoffs. Furthermore, our main result (Theorem 1) is substantially stronger than

just comparing with a single take-it-or leave it offer, which is Evdokimov’s (2022) benchmark.

Seller-Buyer Bargaining: In canonical models of seller-buyer bargaining in which the

buyer is privately informed of his value, all equilibria feature skimming. Fudenberg, Levine,

and Tirole (1985) and Gul, Sonnenschein, and Wilson (1986) establish the Coase Conjecture:

at the patient limit, the seller’s payoff is that of pricing at the lowest buyer valuation. More

precisely, this holds in any equilibrium of the “gap” case (the gains from trade are bounded

away from 0) or in any “stationary/weak Markov” equilibrium of the “no gap” case. Indeed,

there is a unique equilibrium payoff for the seller in the gap case. By contrast, even in the

gap case of our model (i.e., v > 0), Proposer can obtain his commitment payoff and there can

be genuine payoff multiplicity. Ausubel and Deneckere (1989b) show that in the seller-buyer

no gap case, there also exists a non-stationary “reputational equilibrium” in which the seller

obtains his commitment payoff. This equilibrium preserves high prices by punishing the

seller with Coasian low-payoff continuation play if he deviates. Our argument for Proposer’s

25 An analog would be a two-period version of our Section 3 with the assumption that h < 1/2. In that
case, if type l agrees first, then agreement in the second period with type h has to be on action 2h, which
provides h no surplus; so the only first-period action that can support leapfrogging is 0, which turns out
to be unsupportable for any prior. On the other hand, when either h > 1/2 or there are more than two
periods with δ < 1, arguments related to those for Proposition 1 can be used to conclude that leapfrogging
is supportable for suitable priors.
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commitment payoff is distinct; it owes to leapfrogging, which is ruled out by the skimming

property of seller-buyer bargaining.26

Board and Pycia (2014) show that when buyers have outside options, there is a unique

equilibrium outcome and it yields a high seller payoff. The seller charges the static monopoly

price—defined for the distribution of values net of the outside option—and all buyer types

with lower net values immediately take their outside option. Since low types exit immedi-

ately, the seller can credibly stick to the monopoly price even upon rejection. In our analysis,

leapfrogging also clears low types to subsequently credibly target high types. But our model

has no outside options and it is Vetoer’s single-peaked preferences that makes leapfrogging

viable. Moreover, unlike in Board and Pycia (2014), low-payoff equilibria can coexist with

the commitment-payoff equilibrium.27 The idea that low agent types’ incentives to exit can

allow a principal to obtain her commitment payoff also features in Tirole (2016). But there,

unlike in our model, a reverse-skimming property holds, i.e., any equilibrium has “positive

selection” at every history.

Also related to our work are models in which the seller sells multiple varieties. Wang

(1998), Hahn (2006), and Mensch (2017) study bargaining when there is a choice of both

quality and price (or effort and wage in a labor context). In these models, the seller or

principal offers a menu in each period but cannot commit to future menus. The key finding

is that the principal obtains his commitment payoff in the unique equilibrium. More recent

developments include Nava and Schiraldi (2019), who propose a multidimensional extension

of the Coase Conjecture, and Peski (2022), who establishes payoff uniqueness in a broad class

of bargaining protocols and mechanisms.28 In our model, not only are transfers infeasible,

but moreover Proposer can offer only a single action, rather than a menu, in each period.

This hews to the standard approach in studying sequential veto bargaining, and seems ap-

propriate for some non-market applications in politics and organizations. Nevertheless, we

deduce equilibria that deliver Proposer’s commitment payoff. It would be interesting to

study whether allowing for menus eliminates the payoff multiplicity we find. Conversely,

our results raise the possibility that if a seller could offer only a single variety in each pe-

riod in the aforementioned papers’ settings, then there may be payoff multiplicity but the

26 For a gap-case specification, Doval and Skreta (2021) show that the Coasian outcome cannot be escaped
even using arbitrary within-period mechanisms. In our setting, even if we allow for such mechanisms, it
follows from the discussion in Section 4.1 that our commitment payoff is still an upper bound; consequently,
the equivalence between commitment and Proposer’s best no-commitment equilibrium would prevail.

27 Hwang and Li (2017) and Fanning (2023) highlight equilibrium multiplicity in seller-buyer models related
to Board and Pycia (2014).

28 Although Peski (2022) studies a single indivisible good, he allows for commitments to probabilistic trade,
which is effectively the same as varieties.
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commitment payoff may remain achievable.29

Renegotiation and Endogenous Status Quo: Our model assumes that there is com-

mitment to not renegotiate an accepted offer. A useful extension, which we do not pursue

here, would be to model any agreement as the status quo for future negotiations; this would,

of course, influence Vetoer’s incentives to accept an offer insofar as it reveals information

about her preferences that will affect future offers. Although renegotiation has been studied

in seller-buyer settings since Hart and Tirole (1988) (see Strulovici 2017, Maestri 2017, and

Gerardi and Maestri 2020 for recent contributions), the existing literature on political bar-

gaining with an endogenous status quo, surveyed by Eraslan, Evdokimov, and Zapal (2022),

has generally not incorporated private information.

7. Conclusion

Our paper has studied a canonical infinite-horizon model of sequential veto bargaining.

We have shown how leapfrogging—making an offer that is accepted by some low types and

rejected by some higher types—allows Proposer to alleviate his sequential rationality con-

straint and credibly extract surplus from high types; so much so that under some conditions,

Proposer can (approximately) obtain his commitment payoff in an equilibrium when players

are patient.

There are various directions that may be fruitful for future research. On the theoretical

side, it would be of interest to incorporate “pork” or other forms of transfers in addition

to the policy that our players have single-peaked preferences over. Studying a multidimen-

sional policy is also important for political applications. On the empirical side, our work

cautions against a presumption that Proposer’s offers are successive concessions,30 and calls

for attention to whether and when we observe leapfrogging. Given that we have identified

the coexistence of skimming and leapfrogging equilibria, norms in sequential veto bargaining

with incomplete information are especially important; our results show how significantly Pro-

poser could benefit from a favorable equilibrium. Laboratory experiments may be a fertile

ground to deepen our understanding of equilibrium selection.

29 Kumar (2006) studies such a setting and finds a unique equilibrium that does not yield the principal a
high payoff. We attribute this to his model/analysis excluding the quality-price pair that would be used for
leapfrogging. A similar point applies to Inderst (2008), who studies a model with menus but finds that in
some cases the principal’s commitment payoff does not obtain.

30 For example, in their survey article, Cameron and McCarty (2004, p. 424) state a prediction that “In
sequential veto bargaining, Congress makes concessions in repassed bills”, as they did not consider the
possibility of leapfrogging.
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A. Proofs for Two-Type Example

Recall that for the two-type example, we restrict attention to actions in [0, 1]. The

following proofs can be extended straightforwardly to handle actions outside [0, 1], but we

omit that discussion for brevity.

Lemma 4. Fix any large δ < 1. Inductively define an increasing sequence a0 := 2l < a1 <

. . . < aN := 1, where for each i ≥ 1, ai is defined by either uV (ai, h) = δuV (ai−1, h) if there

is a solution with ai ∈ (ai−1, 1], and otherwise ai := 1.31

(a) If offers are restricted to lie in [2l, 1] then for any prior µ0 there is a skimming equi-

librium in which, on path, Proposer first offers some an with probability one and then

works his way down the (ai)0
i=n sequence to 2l. Any offer ai > 2l is rejected by type l

and accepted by type h with positive probability. Both types accept the final offer of 2l.

(b) Define µδ ∈ (µ∗, 1) as the smallest belief that makes Proposer indifferent between the

payoff from this (restricted) equilibrium and the payoff from leapfrogging, i.e., obtaining

aδ from type l in the first period and action 1 from type h in the second period.32 If

µ0 ≤ µδ, then the above skimming equilibrium exists without restriction on the space

of offers: any offer in (aδ, 2l) is accepted by both types, while any offer in [0, aδ] is

accepted by l and rejected by h. As δ → 1, µδ → µ∗.

(c) As δ → 1, Proposer’s payoff in the above skimming equilibrium converges to u(2l)

regardless of his prior in the relevant range: for any ε > 0, there exists δ < 1 such

that if δ ∈ (δ, 1) and µ0 ≤ µδ, then Proposer’s payoff in the skimming equilibrium is in

[u(2l), u(2l) + ε).

Proof. Part (a): Owing to the restriction to offers in [2l, 1], this part follows from arguments

analogous to those in the two-type seller-buyer bargaining problem (Hart, 1986; Fudenberg

and Tirole, 1991, pp. 409–10). So we omit a proof, instead only noting two points. First,

if Proposer is indifferent between two first offers (as can also arise in the seller-buyer con-

struction), we specify for concreteness that Proposer chooses the lower of the two. Second,

there is one difference with the usual seller-buyer construction: if Proposer’s first offer is

31 We suppress the dependence of N and each ai (for 0 < i < N) on δ.
32 The belief µδ is well defined for large enough δ. To confirm that, note first that for any µ0 ≤ µ∗,

Proposer’s payoff from leapfrogging, µ0δu(1) + (1 − µ0)u(aδ) is strictly less than u(2l) by definition of µ∗

and that aδ < 2l; whereas his payoff from the (restricted) skimming equilibrium is at least u(2l). Second,
following the established seller-buyer analysis, for any interior belief µ0 Proposer’s payoff in the (restricted)
skimming equilibrium converges to u(2l) as δ → 1, whereas leapfrogging’s payoff converges to the strictly
larger µ0u(1)+(1−µ0)u(2l). The result follows from continuity of both skimming and leapfrogging’s payoffs
in µ0.
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aN = 1, and aN was defined by the action cap of 1 rather than type h’s indifference, then

Proposer will need to randomize on path between proposing aN−1 and aN−2 in the second

round. Proposer’s second-round randomization is chosen to make type h indifferent between

accepting and rejecting aN = 1; a suitable randomization exists because h would strictly

prefer accepting aN = 1 if Proposer were to offer aN−1 next, while h would strictly prefer

rejecting aN = 1 if Proposer were to offer aN−2 next. Such on-path Proposer randomiza-

tion is not necessary in the seller-buyer problem because there is no price cap—or, in effect

equivalently, Proposer ideal point—there.

Part (b): We stipulate that after a deviation in any period t to at < 2l, type l accepts,

whereas h accepts if and only if uV (at, h) > δuV (1, h), which is equivalent to at > aδ. After a

rejection of the deviation, Proposer puts probability 1 on type h and proposes action 1 ever

after. Clearly we have an equilibrium in any continuation game after the initial deviation.

So we need only verify that no deviation to at < 2l is profitable. Plainly, among at ≤ aδ, the

most profitable deviation is to aδ; but by definition of µδ, that deviation is not profitable

when µt ≤ µδ. (A higher µt makes leapfrogging more attractive than the (putative) skimming

equilibrium because Proposer prefers the skimming equilibrium when Vetoer is of type l and

leapfrogging when Vetoer is of type h.) Any deviation to at ∈ (aδ, 2l) yields a lower Proposer

payoff than the (putative) skimming equilibrium because the skimming equilibrium’s payoff

is at least u(2l). Therefore, no deviation to at < 2l is profitable when µt ≤ µδ, and the

skimming equilibrium exists without any restriction on offers.

To see that µδ → µ∗ as δ → 1, observe that for any µ0, as δ → 1 Proposer’s payoff

from leapfrogging goes to µ0u(1) + (1 − µ0)u(a∗) whereas, as discussed in footnote 32, his

payoff from skimming goes to u(2l). Hence, by definition of µ∗, for any µ0 > µ∗, skimming

is strictly worse than leapfrogging when δ is large enough. The result now follows from µδ

being the smallest belief at which the payoffs from skimming and leapfrogging are equal,

noting that for any δ skimming yields a strictly higher payoff than leapfrogging at belief µ∗

(see footnote 32).

Part (c): Given the previous two parts, this result follows from the same arguments as

in the standard seller-buyer model (e.g., Fudenberg and Tirole, 1991, pp. 409–10). Q.E.D.

Proof of Proposition 1. Part (a) follows from Lemma 4.

To prove parts (b) and (c), we first define two critical values: rδ(µ) and the µ̄δ referred

to in the statement of the result. Recall µδ ∈ (0, 1) from Lemma 4(b). (In what follows, we
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sometimes suppress the caveat of “for large δ”.) For any belief µ ∈ (µδ, 1), let

rδ(µ) :=
µδ(1− µ)

(1− µδ)µ
(3)

be type h’s rejection probability that would lead to posterior µδ after rejection, given that

type l rejects with probability 1. Now let µ̄δ < 1 be the value of µ that solves33

(1− µ)u(aδ) + µδu(1) = (1− µ)δu(aδ) + µ
[
1− rδ(µ) + rδ(µ)δ2

]
u(1). (4)

Given belief µ, the LHS of Equation 4 is Proposer’s utility from leapfrogging, whereas the

RHS corresponds to getting aδ in the next period from l and a lottery from h of either

action 1 in the current period with probability 1− rδ or the same action in two periods with

probability rδ. It can be verified that µ̄δ > µδ and limδ→1 µ̄
δ < 1.34

Part (b): The equilibrium strategies, beliefs, and incentives are as follows.

1. Proposer proposes aδ in the first period and 1 in the second period (and ever after),

with belief µt = 1 after any rejection. Vetoer type l accepts in the first period while type

h rejects in the first period but accepts any proposal of at least aδ starting in the second

period. Clearly Proposer has no incentive to deviate starting in the second period, and

Vetoer is playing optimally in all periods, so what we must show below is that Proposer has

no incentive to deviate in the first period.

2. (Region I in Figure 1.) If Proposer deviates and offers any action a0 ∈ [0, aδ) in the first

period, type l accepts and h rejects. After a rejection, Proposer’s belief is µt = 1 ever after

and so he proposes 1 ever after, which is accepted in the second period by type h. It is clear

that Vetoer is playing optimally and that any such deviation is not profitable for Proposer.

3. (Region II in Figure 1.) If Proposer deviates and offers any a0 ∈ (aδ, 2l] in the first period,

both types accept that; for large δ, this outcome is worse for Proposer than the on-path

outcome, since the latter’s payoff is larger than u(2l). Both types accept any a0 ∈ (aδ, 2l]

because we stipulate if any such offer is rejected (a zero probability event), Proposer holds

belief µt = 1 ever after and offers action 1 ever after.

4. (Region III in Figure 1.) Let u∗h denote type h’s payoff in the skimming equilibrium

33 One can check that the difference between the LHS and the RHS of Equation 4 is continuous and strictly
decreasing in µ, strictly positive for small µ, and strictly negative for large µ; hence there is a unique solution,
which is interior.

34 As µ → µδ from above, rδ(µ) → 1, and so the RHS of Equation 4 goes to δ times the LHS, which is
strictly smaller than the LHS. The properties noted in footnote 33 then imply µ̄δ > µδ. From Lemma 4(b),
limδ→1 µ

δ = µ∗ ∈ (0, 1). Algebraic manipulations of Equations (3) and (4) yield limδ→1 µ̄
δ ∈ (µ∗, 1).
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discussed in Lemma 4 when Proposer has belief µδ defined there. Since µδ → µ∗, it follows

from the established seller-buyer analysis that for δ large enough, Proposer’s first offer in

our skimming equilibrium is arbitrarily close to 2l and hence u∗h is arbitrarily close to but

strictly less than uV (2l, h). Let āδ > 2l be such that h is indifferent between accepting āδ in

the current period and receiving payoff u∗h in the next period. Note that āδ ≈ 2l for large δ.

Consider the interval (2l, āδ]. As described in Lemma 4, the skimming equilibrium (de-

fined assuming actions constrained in [2l, 1]) is constructed using a sequence of actions

a0 ≡ 2l < a1 < . . . < aN ≡ 1 that is defined by h’s indifference. (We suppress the dependence

of the sequence on δ to reduce notation.) Let M ≤ N − 1 be such that aM < āδ ≤ aM+1.

For any deviation a0 ∈ (2l, a1], l rejects and h accepts; Proposer holds belief µt = 0 and

offers at = 2l ever after (accepted by type l in the second period).

Suppose āδ > a1. For any deviation a0 ∈ (a1, āδ], let n ∈ {1, . . . ,M} be such that

a0 ∈ (an, an+1]. Type l rejects, while type h rejects with the probability that makes the

posterior µ1 = µn, where µn is the unique belief that makes Proposer indifferent between

starting the decreasing offer sequence with an and an−1. (Type h’s rejection probability is

well-defined and unique so long as µn ≤ µ0, which will be verified below by showing that

µn ≤ µδ.) Proposer will then randomize in the second period between the starting offers of

an and an−1. If Proposer were to start with an, h would prefer to accept a0; if Proposer were

to start with an−1, h would prefer to reject a0; so there is a unique randomization that makes

h indifferent. We are left to check that µn ≤ µδ: if so, then Proposer prefers the decreasing

offer sequence to leapfrogging, and we can support the skimming equilibrium by specifying

behavior for offers in [0, 2l] as in the proof of Lemma 4(b). Indeed µn ≤ µδ, since n ≤ M

and under belief µδ Proposer starts the decreasing offer sequence with aM while under belief

µn it is optimal to start with an (and a higher belief corresponds to a higher starting offer

in the skimming equilibrium).35

So a deviation to any a0 ∈ (2l, āδ] yields Proposer a payoff that is no higher than from a

skimming equilibrium with restricted action space [2l, 1] and belief µ0 (see Lemma 4(a)). As

δ → 1, the payoff from a (restricted) skimming equilibrium converges uniformly to u(2l) on

any interval of priors bounded away from 1, whereas the payoff from leapfrogging converges

uniformly to µ0u(1) + (1− µ0)u(a∗). The latter limit is strictly larger than the former limit

when µ0 > µ∗, by definition of µ∗. Since µδ > µ∗ and limδ→1 µ̄
δ < 1, it follows that for

35 That Proposer starts the decreasing offer sequence with aM under belief µδ follows from type h’s indif-
ference in the definition of āδ and āδ ∈ (aM , aM+1]. For, if Proposer started with an offer aM−1 or lower,
then h would strictly prefer to wait for that offer in the next period rather than accept āδ in the current
period; if Proposer started with an offer aM+1 or higher, then h would strictly prefer to accept āδ.
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all δ large enough, the payoff from leapfrogging is strictly larger than from the (restricted)

skimming equilibrium for all µ0 ∈ (µδ, µ̄δ). Hence, for δ large enough, a deviation to any

a0 ∈ (2l, āδ) is not profitable.

5. (Region IV in Figure 1.) It remains to consider any first-period deviation a0 ∈ (āδ, 1].

• Type l rejects since a0 > 2l. Type h rejects with probability rδ(µ0), independent of a0,

which leads to second-period belief µ1 = µδ.

• In the second period: Proposer randomizes between starting the play of a skimming

equilibrium (see Lemma 4) with some probability λ(a0) and starting the leapfrogging

path with remaining probability. By definition of µδ, Proposer is indifferent between

starting either of these two paths. The randomization probability λ(a0) is set to make

type h indifferent between accepting a0 in the first period and getting a lottery over

payoff u∗h in the second period with probability λ(a0) and getting action 1 in the third

period with complementary probability.36

For any second-period offer a1 besides the two that Proposer randomizes over, we

stipulate that continuation play would follow that in a skimming equilibrium with

initial offer a1. Plainly, no such offer a1 is a profitable deviation.

• Finally, we argue that among deviations to a0 ∈ (āδ, 1], the most profitable deviation

is to action 1, and that is not profitable because µ0 ≤ µ̄δ. Note that after a rejection of

any a0 > āδ, leapfrogging is optimal for Proposer in the second period. So Proposer’s

expected payoff from any a0 > āδ is

(1− µ0)δu(aδ) + µ0

[(
1− rδ(µ0)

)
u(a0) + rδ(µ0)δ2u(1)

]
.

This payoff is maximized when a0 = 1, in which case it becomes the RHS of Equation 4

(with µ = µ0). Since µ0 ≤ µ̄δ, the definition of µ̄δ implies that leapfrogging starting in

the first period is at least as good for Proposer (see footnote 33).

Part (c): The construction for this part is the same as that for part (b), except that Proposer

now proposes action 1 in the first period, rather than aδ. By the logic used in the last bullet

of point 5 above, proposing a0 = 1 is better for Proposer than proposing any a0 ∈ (āδ, 1),

and also now better than proposing a0 = aδ because µ0 > µ̄δ. By points 2–4 above, a0 = aδ

is in turn better than any other first-period offer less than āδ. Q.E.D.

36 I.e., uV (a0, h) = λ(a0)δu∗h + (1 − λ(a0))δ2uV (1, h). There is a unique λ(a0) that solves this equation
because δu∗h > uV (a0, h) > δ2uV (1, h), where the first inequality is because a0 > āδ > h and δu∗h = uV (āδ, h).
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B. Proofs for General Analysis

B.1. Obtaining the Commitment Payoff without Commitment

Proof of Lemma 1. Fix any strategy for Proposer and any best response for Vetoer, and

denote this strategy profile by σ. For any type v, the profile σ induces a probability distri-

bution λv over R × N ∪ {∞}, where (a, t) ∈ R × N denotes the outcome that proposal a is

accepted in period t, and ∞ denotes no agreement. We construct an incentive compatible

and individually rational mechanism for the static problem that achieves the same expected

payoff for Proposer as under σ.

For any t ∈ N, let λv(t) be the measure on R defined by λv(t)(A) := λv(A × {t}) for

every (Borel) set A ⊆ R. Define a mechanism for the static problem as follows:

m(v) :=
∞∑
t=0

δtλv(t) +
(

1−
∞∑
t=0

δtλv(t)(R)
)
10,

where 10 denotes the Dirac measure on 0. Intuitively, for every agreement (a, t) that has

positive probability under λv, m(v) gives probability δt to action a and probability 1− δt to

action 0. It can be verified that m(v) is a probability measure over R.

Since ∫
a

uV (a, v)dm(v)(a) =
∞∑
t=0

δt
∫
a

uV (a, v)dλv′(t)(a),

the expected utility for type v reporting v′ in the static mechanism is the same as in the

dynamic game were type v to play as v′ does. Hence, as Vetoer is playing a best response in

σ, mechanism m is incentive compatible and individually rational.

Analogous arguments show that Proposer’s expected utility in the static mechanism is

the same as his expected utility in the dynamic game under strategy profile σ. Therefore,

Proposer can replicate his payoff from the dynamic game using a static mechanism, and

hence can do no worse in the static problem. Q.E.D.

Proof of Lemma 2. To obtain a contradiction, suppose there is a (potentially stochastic)

mechanism m that yields a strictly higher payoff than the delegation set [c∗, 1] under prior

F[c,c′] for some c ≤ c∗/2 ≤ c∗ ≤ c′. Let M := m([c, c′]) denote the image of [c, c′] under m.

We can assume without loss of generality that u(m(c′)) ≥ u(m(v)) for all v ∈ [c, c′] and that
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u(m(c)) ≥ u(0).37 Define a menu of stochastic actions by

M̃ := M ∪ {v ∈ [c∗, 1] : u(v) ≥ u(m(c′))} ∪ {0}.

Let m̃ be the induced mechanism where each type v chooses its favorite action in M̃ and

indifference is broken in Proposer’s favor. Plainly, m̃ is incentive compatible and individually

rational. We will show that given prior F , Proposer’s payoff from m̃ is strictly higher than

from delegation set [c∗, 1].

Conditional on the event {v : v ∈ [c, c′]}, Proposer’s payoff from menu M is strictly

higher than from menu [c∗, 1] by assumption. Compared to menu M , the additional actions

in M̃ chosen by types v ∈ [c, c′] are ones that Proposer prefers to m(c′), which he prefers to

m(v) for any v ∈ [c, c′]. Hence, conditional on {v : v ∈ [c, c′]}, Proposer’s payoff from menu

M̃ is strictly higher than from menu [c∗, 1].

We next show that for every v > c′, u(m̃(v)) ≥ u(v). Since Vetoer’s utility satisfies SCED

and she breaks indifference in favor of Proposer, either m̃(v) = m(c′) or m̃(v) ∈ M̃\(M∪{0}).
In either case, u(m̃(v)) ≥ u(m(c′)). If u(m(c′)) > u(v) then it follows that u(m̃(v)) ≥ u(v).

If, instead, u(v) ≥ u(m(c′)) then m̃(v) = v and we conclude u(m̃(v)) = u(v).

Moreover, SCED implies that for all v < c, either m̃(v) = m̃(c) or m̃(v) = 0. Since

u(m̃(c)) ≥ u(0) and u(0) is Proposer’s payoff under delegation set [c∗, 1] whenever v < c, it

follows that Proposer’s payoff from mechanism m̃ is higher than his payoff from delegation

set [c∗, 1] under belief F , a contradiction. Q.E.D.

Proof of Lemma 3. Fix any ε > 0. Let δ < 1 be such that δU(F[v,c∗]) ≥ U(F[v,c∗])−ε, and

fix any δ ≥ δ. Let (σ̃, µ̃) be an equilibrium when Proposer’s prior belief is F[v,c∗], where σ̃

denotes the strategy profile and µ̃ the system of beliefs. If Proposer’s payoff in equilibrium

(σ̃, µ̃) is higher than δU(F[v,c∗]) then the claim holds; so suppose his payoff is strictly lower.

37 If u(m(c′)) < u(m(v)) for some v ∈ [c, c′], add the action min{1,Em(c′)[a]} to M and consider the
corresponding mechanism m̂ in which each type chooses its favorite lottery, breaking indifference in Proposer’s
favor. Since Em(v)[a] is increasing in v because mechanism m is IC, the new mechanism m̂ yields Proposer
a higher payoff than m and satisfies u(m̂(c′)) ≥ u(m̂(v)) for all v ≤ c′.

Now suppose u(m(c)) < u(0). If c ≤ 0, consider an alternative mechanism m̂ that is identical to m except
for assigning action 0 with probability one to all types below 0. This mechanism is individually rational
(IR) and IC and yields Proposer a higher payoff than m and satisfies u(m̂(c)) = u(0). If c > 0, consider
an alternative mechanism m̂ that is identical to m except for m̂(c) assigning probability one to an action in
[0,E[m(c)] that makes type c indifferent with m(c). Such an action exists because uV (m(c), c) ≥ uV (0, c), as
m is IR, and uV (·, c) is continuous. Since m is IC and IR, and any type v > c prefers m(v) to m̂(c) (by SCED,
type c’s indifference between m(c) and m̂(c), and that type m̂(c) strictly prefers m̂(c) to m(c)), it follows
that m̂ is incentive compatible and individually rational. Moreover, u(m̂(c)) ≥ u(0) and the mechanism m̂
yields Proposer a higher payoff than m.
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Define a candidate equilibrium profile (σ, µ) as follows:

• On path, Proposer offers 0 in the first period, c∗ in the second period, followed by

min{2c∗, 1} ever after. Vetoer of type v accepts the first proposal 0 if and only if she

strictly prefers it to c∗ in the next period; in the second period she accepts c∗ if and

only if she (weakly) prefers it to both min{2c∗, 1} and 0 in the third period; and for

any subsequent history starting with proposal sequence (0, c∗), she accepts the current

proposal if and only if she (weakly) prefers it to both min{2c∗, 1} and 0 in the next

period. For any on-path history h, let µ(h) be derived from Bayes’ rule whenever

possible, and for any history h starting with (0, c∗), let µ(h) put probability 1 on type

c∗.

• For any off-path history h that starts with (0, a) for a 6= c∗, let (σ, µ) specify some

continuation equilibrium with the starting belief F[c∗/2,c∗]; a continuation equilibrium

exists by hypothesis (EqmExists). For any off-path history h in which the first proposal

is different from 0, let (σ, µ)(h) = (σ̃, µ̃)(h).

Proposer’s payoff from the strategy profile σ is δU(F[v,c∗]) because on path types below

c∗/2 accept proposal 0 and types in [c∗/2, c∗] accept proposal c∗ in period 1; while in the

static problem, Lemma 2 implies that for belief F[v,c∗] the delegation set [c∗, 1] is optimal,

which results in all types in [v, c∗/2) obtaining action 0 and all types in (c∗/2, c∗] obtaining

action c∗. We will argue that the profile (σ, µ) is an equilibrium, which proves the claim.

First, Proposer is playing a best response in the profile (σ, µ) at the start of the game

since any deviation induces the same payoff as in equilibrium (σ̃, µ̃), which is strictly lower

than δU(F[v,c∗]) by hypothesis. Moreover, by construction, Vetoer is playing a best response

at the history h = (0), i.e., after the initial proposal of 0.

Second, we claim that Proposer is playing a best response at history h = (0). Note that

the second-period belief after this history is µ(0) = F[c∗/2,c∗] and that in the continuation

game starting at h = (0) the strategy profile σ yields payoff U(F[c∗/2,c∗]): all types in [c∗/2, c∗]

accept proposal c∗ immediately and the delegation set [c∗, 1] solves the static problem by

Lemma 2. Any deviation by Proposer to an offer a 6= c∗ gives Proposer a payoff of at most

U(F[c∗/2,c∗]) by Lemma 1. Therefore, Proposer is playing a best response at history h = (0).

Finally, we claim that both players are playing best responses at any other history.

Indeed, for any history starting with proposals (0, c∗), best responses are assured by con-

struction. For any history starting with (0, a) with a 6= c∗, our construction specifies some

continuation equilibrium. For any history starting with a proposal different from 0 players

are playing an equilibrium because (σ̃, µ̃) is an equilibrium for prior belief F[v,c∗].
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As it is straightforward that the system of beliefs µ satisfies Bayes Rule whenever possible,

we conclude that (σ, µ) is an equilibrium. Q.E.D.

Proof of Theorem 1. Without loss of generality, we assume U(F ) ≤ 1, as Proposer’s

utility can be rescaled accordingly. Furthermore, we prove the result only for c∗ > 0; the

c∗ = 0 case is implied by Proposition 2.

As a roadmap: Steps 1–4 below use induction to show that there are equilibria in which

Proposer can obtain arbitrarily close to his commitment payoff on some interval of types

below a threshold. Step 5 establishes this threshold can be made arbitrarily close to v. Step

6 then argues that there is an equilibrium in which Proposer obtains arbitrarily close to his

commitment payoff from the full interval of types [v, v].

We begin with some preliminaries for the inductive argument. Let c0(ε, δ) := c∗ > 0 and

define for all integers n > 0,

cn(ε, δ) := min

{
cn−1(ε, δ) +

ε

4u′(0)
, cn−1(ε, δ)

√
1 +
√

1− δ
}
.38

It follows that there is some n ∈ N such that cn(ε, δ) ≥ v. Let f > 0 denote a lower bound

for f on [v, v]. For ε > 0, define

δ∗(ε, δ) := 1− ε

2
f min

{
ε

4u′(0)
, c∗
(√

1 +
√

1− δ − 1

)}
,

and let δ(ε) ∈ (
√

1− ε, 1) be such that for all δ ∈ (δ(ε), 1), δ ≥ δ∗(ε, δ). Such a δ(ε) exists

because δ∗(ε, 1) = 1, δ∗(ε, ·) is continuous, and limδ↑1
∂δ∗(ε,δ)
∂δ

= +∞.

The induction hypothesis for n ≥ 0 is:

For all ε > 0, δ > δ(ε), and c satisfying c∗ ≤ c ≤ cn(ε, δ), if Proposer’s belief is F[v,c] then

there is an equilibrium in which Proposer’s payoff is at least U(F[v,c])− ε.

The induction hypothesis holds for n = 0 by Lemma 3.

Let (σ̂, µ̂) be an equilibrium for the game with belief F[v,cn−1(ε,δ)] that yields Proposer

payoff at least U(F[v,cn−1(ε,δ)]) − ε (such an equilibrium exists under the induction hypoth-

esis) and let an−1(ε, δ) be the largest action that makes type cn−1(ε, δ) indifferent between

accepting an−1(ε, δ) and playing (σ̂, µ̂) from the next period on. Steps 1–4 below establish

that if the induction hypothesis holds for n and an−1(ε, δ) ≤ 1 then it holds for n+ 1, given

(EqmExists).

38 If u is not differentiable at 0, let u′(0) denote the right-derivative at 0, which exists because u is concave.
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Step 1: Fix arbitrary ε > 0, δ ≥ δ(ε), and c satisfying cn(ε, δ) < c ≤ cn+1(ε, δ), and an

equilibrium (σ̃, µ̃) for the game with belief F[v,c]. If Proposer’s payoff is at least U(F[v,c])− ε
we are done; so suppose Proposer’s payoff is strictly less. Below, we suppress the dependence

of cn and an−1 on ε and δ, and we set c−1(ε, δ) := c∗.

We construct a new equilibrium (σ, µ) for the game with belief F[v,c] as follows: Proposer’s

first offer is an−1. On path, types above cn−1 accept an−1 and types below cn−1 reject an−1.

After a rejection of an−1, Proposer updates to F[v,cn−1] and continuation play proceeds as

specified by (σ̂, µ̂). Moreover, if Proposer deviates in the first period, continuation play is as

specified by (σ̃, µ̃).

Step 2: We show that Vetoer is playing a best response when an−1 is proposed in the

first period.

It is optimal for types below cn−1 to reject an−1 since type cn−1’s equilibrium strategy in

the continuation game yields a higher payoff (using that an−1 > cn−1 and Vetoer’s preferences

satisfy SCED).39 We now explain why it is optimal for types in [cn−1, c] to accept an−1; there

is no need to consider types above c because Proposer’s belief is supported on [v, c]. Accepting

an−1 is a best response for types cn−1 and an−1, and SCED implies that the set of types for

which it is a best response to accept is an interval. Therefore, if an−1 ≥ c, then accepting

an−1 is a best response for all types in [cn−1, c]. So suppose an−1 ∈ [cn−1, c). It would be a

best response for type c to accept cn−1 since that is even better than obtaining c next period

(as 2ccn−1 − c2
n−1 ≥ δc2 because of our assumption that c ≤ cn−1 + cn−1

√
1− δ). Therefore,

since type c prefers an−1 ∈ [cn−1, c) to cn−1, accepting an−1 is a best response for type c and

hence for all types in [cn−1, c].

Step 3: We show that Proposer’s payoff from profile σ is at least U(F[v,c])− ε.

Proposer’s payoff if the first proposal an−1 is accepted times the probability of acceptance

is at least

[F[v,c](c)− F[v,c](cn−1)]u(cn−1) ≥
∫ c

cn−1

[u(v)− u′(0)(v − cn−1)]dF[v,c]

≥
∫ c

cn−1

[u(v)− ε/2]dF[v,c],

where the first expression is because an−1 ∈ [cn−1, 1], the first inequality is because u(v) −

39 To elaborate, note that when comparing action an−1 and the lottery induced by type cn−1’s equilibrium
strategy, cn−1 is indifferent whereas (a possibly hypothetical) type an−1 strictly prefers action an−1. SCED
implies that given any two lotteries and any three types v1 < v2 < v3, if v2 is indifferent and v3 strictly
prefers one lottery, then v1 (weakly) prefers the other lottery.
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u(cn−1) ≤ u′(0)(v − cn−1), and the second inequality is because c− cn−1 ≤ ε
2u′(0)

.

For the case n = 0, Proposer’s payoff conditional on proposal a0 being rejected times the

probability of rejection is at least δ2U(F[v,cn−1])F[v,c](cn−1) by Lemma 3. Since δ ≥
√

1− ε
and U(F[v,cn−1]) ≤ 1, these two bounds imply that Proposer’s payoff is at least

[U(F[v,cn−1])− ε]F[v,c](cn−1) +

∫ c

cn−1

[u(v)− ε/2]dF[v,c].

Since the delegation set [c∗, 1] is optimal for belief F[v,c] by Lemma 2, this implies that

Proposer’s payoff is at least U(F[v,c])− ε.

Consider now the case n ≥ 1. Proposer’s payoff conditional on proposal an−1 being

rejected times the probability of rejection is at least δ
[
U(F[v,cn−1])− ε

]
F[v,c](cn−1). Therefore,

Proposer’s payoff is at least

δ
[
U(F[v,cn−1])− ε

]
F[v,c](cn−1) +

∫ c

cn−1

[u(v)− ε/2]dF[v,c]

≥U(F[v,c])− ε+
ε

2
[F[v,c](c)− F[v,c](cn−1)]− (1− δ)

≥U(F[v,c])− ε,

where the first inequality is because the delegation set [c∗, 1] is optimal for belief F[v,c] (by

Lemma 2) and U(F[v,cn−1]) ≤ 1, and the second inequality is because

F[v,c](c)− F[v,c](cn−1) ≥ f min

{
ε

4u′(0)
, c∗
(√

1 +
√

1− δ − 1

)}
and

δ ≥ δ∗(ε, δ) = 1− ε

2
f min

{
ε

4u′(0)
, c∗
(√

1 +
√

1− δ − 1

)}
.

This establishes Step 3.

Step 4: To verify that (σ, µ) is an equilibrium, observe that Proposer plays a best response

in the first period since any deviation gives a payoff less than U(F[v,c]) − ε by supposition.

Vetoer plays a best response to proposal an−1 as argued above. Finally, both players play

best responses after any other history because we began in Step 1 with equilibria (σ̃, µ̃) and

(σ̂, µ̂). This establishes the induction step if an−1 ≤ 1.

Step 5: We show that, when ε is small and δ is large, the inductive argument in Steps

1–4 covers a large fraction of types.

Let c̄(ε, δ) := cn(ε, δ), where n is the smallest index such that the action an(ε, δ) defined
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in our induction argument is strictly above 1. We claim∫ v

c̄(ε,δ)

[u(1)− u(v)] dF (v) ≤ 1− δ + ε, (5)

which implies that c̄(ε, δ)→ v as δ → 1 and ε→ 0.

To derive inequality (5), note that because an(ε, δ) > 1 there is a static incentive com-

patible and individually rational mechanism in which all types above c̄(ε, δ) receive action 1

and Proposer’s payoff from types below c̄(ε, δ) is at least as in equilibrium (σ̂, µ̂) discounted

by δ. This mechanism gives Proposer payoff at least

δ[U(F[v,c̄(ε,δ)])− ε]F (c̄(ε, δ)) +

∫ v

c̄(ε,δ)

u(1)dF (v).

By Lemma 2, this is less than the payoff from delegation set [c∗, 1], which can be written as

U(F[v,c̄(ε,δ)])F (c̄(ε, δ)) +

∫ v

c̄(ε,δ)

u(v)dF (v).

Some algebra using U(F[v,c̄(ε,δ)]) ≤ 1 now yields inequality (5).

Step 6: Given the belief F and an arbitrary ε > 0, we show that for all δ large enough

there is an equilibrium in which Proposer’s payoff is at least U(F )− ε, which completes the

proof.

For any ε′ > 0 and δ > δ(ε′), we have established in Steps 1–5 that for belief F[v,c̄(ε′,δ)] there

is an equilibrium, denoted by (σ, µ), in which Proposer’s payoff is at least U(F[v,c̄(ε′,δ)])− ε′.
Let a(ε′, δ) be the largest action that makes type c̄(ε′, δ) indifferent between accepting a(ε′, δ)

and playing (σ, µ) from next period on. Note that a(ε′, δ) ∈ (1, 2] by definition (that it is

less than 2 is because actions above 2 are worse than the status quo for all types).

Consider a strategy profile in which Proposer initially offers a(ε′, δ), followed by contin-

uation play as described by (σ, µ). It is a best response for all types in [c̄(ε′, δ), v] to accept

a(ε′, δ) because of SCED and that accepting is a best response for type c̄(ε′, δ) and a (hy-

pothetical) type a(ε′, δ) that is larger than v; it is also a best response for all types below

c̄(ε′, δ) to reject a(ε′, δ). Since a(ε′, δ) ∈ (1, 2] and Proposer’s ideal point is 1, it follows that

Proposer’s payoff given this strategy profile is at least

δ[U(F[v,c̄(ε′,δ)])− ε′]F (c̄(ε′, δ)) +

∫ v

c̄(ε′,δ)

u(2)dF (v).

40



For ε′ > 0 small enough and δ < 1 large enough, this payoff is at least U(F ) − ε. Given

(EqmExists) it follows that there is an equilibrium in which Proposer’s payoff is at least as

large: analogous to the logic used in Step 1, if a given equilibrium does not yield payoff at

least U(F ) − ε, we can modify it by having Proposer offer a(ε′, δ) in the first period with

continuation play given by (σ, µ). Q.E.D.

B.2. A Skimming Equilibrium

We construct a skimming equilibrium building on ideas from the seller-buyer literature,

which are summarized instructively by Ausubel, Cramton, and Deneckere (2002, pp. 1912–

15). Our first step is to define a pair of functional equations whose joint solution describes

a skimming equilibrium.

Definition 1. Let R : [v, v∗] → R be continuous and P : [v, v∗] → R be right-continuous,

where v∗ ∈ (v, v]. We say that (R,P ) supports a skimming equilibrium on [v, v∗] if, for all

v ∈ [v, v∗],

R(v) = max
y∈[v,v]

{
u(P (y))[F (v)− F (y)] + δR(y)

}
, (6)

uV (P (v), v) = δuV (P (t(v)), v), (7)

where T (v) denotes the argmax correspondence in (6), t(v) := maxT (v), P (v) is the largest

proposal that satisfies (7), and P is the increasing envelope of P , i.e., P (v) := supy≤v P (y).40

The idea behind this definition is that R(y) describes Proposer’s value function and P (v)

describes Vetoer’s acceptance behavior. We will construct an equilibrium in which at any

history, type v accepts a positive offer if and only if the offer is below P (v). Alternatively,

given that P is increasing, any offer P (v) is accepted precisely by all types above v.41 Conse-

quently, at any history, Proposer’s belief is a right-truncation of the prior to [v, v] for some v.

The upper endpoint v thus acts like a state variable that Proposer optimizes. Equation (6)

is the dynamic programming equation that captures Proposer’s tradeoff between extracting

surplus via screening and the cost of delay: given the current state v, if Proposer brings

the state down to y with an offer P (y), then with probability F (v)− F (y) (ignoring a nor-

malization factor) he obtains current payoff u(P (y)); in addition, after a one-period delay

40 The maximizers in this definition exist because P being right-continuous implies P is right-continuous,
and since it is also increasing, P is upper semicontinuous.

41 This statement is imprecise when there are multiple ṽ such that P (ṽ) = P (v); we gloss over this issue
for this heuristic explanation.
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he obtains payoff R(y). Concomitantly, Equation (7) is the indifference condition for type

v between accepting offer P (v) and waiting one period for the next offer, which would be

P (t(v)). Note that P (v) = 2v+ because t(v) = v, and hence P (v) ≥ max{v, 2v+} for all v.

Consequently, R(v) > 0 for all v > v+.

The following result establishes that there is in fact an equilibrium corresponding to

the pair of functions (R,P ). If P is continuous, then on the equilibrium path Proposer

first targets the threshold type t(v) with offer P (t(v)), and then successively follows with

offers P (t2(v)), P (t3(v)), . . .. This is a decreasing sequence because P and t are increasing

functions; the latter point owes to a monotone comparative statics argument. Vetoer accepts

the initial offer if her type is in [t(v), v], the second offer if her type is in [t2(v), t(v)), the

third offer if her type is in [t3(v), t2(v)), and so on.

Lemma 5. Suppose v ≤ 0 or v ≤ 1/2. If (R,P ) supports a skimming equilibrium on [v, v]

then there is an equilibrium in which proposals will be decreasing along the equilibrium path.

The proof of Lemma 5 builds on arguments from the seller-buyer bargaining literature

(e.g., Gul, Sonnenschein, and Wilson, 1986, Theorem 1), and is relegated to the supplemen-

tary appendix. As discussed in the main text after Proposition 2, novel considerations arise

in deterring Proposer from deviating to offers below 2v+; for that we use Lemma 5’s hypothe-

sis that either v ≤ 0 or v ≤ 1/2. For readers familiar with the seller-buyer arguments, we also

flag that another notable aspect of our argument is the use of the increasing envelope P . We

use this because, owing to single-peaked Vetoer preferences, we cannot guarantee that there

is a solution to equations (6) and (7) in which the P function is (even weakly) increasing.

The lack of monotonicity precludes specifying P (y) as type y’s acceptance threshold—we

would not be assured that Proposer’s beliefs are right-truncations. Using the increasing

envelope P to specify strategies allows us to surmount non-monotonicities in P .

For Lemma 5 to be useful, we must assure existence:

Lemma 6. There is (R,P ) that supports a skimming equilibrium on [v, v].

The proof of this result adapts arguments from the seller-buyer literature, and is relegated

to the supplementary appendix. In a nutshell, we first suppose v > 0 and follow the reasoning

of Fudenberg, Levine, and Tirole (1985, pp. 78–79) to show that there is an (R,P ) that

supports a skimming equilibrium on [v, v + ε] if ε > 0 is small enough; the intuition is that

when Proposer’s belief is concentrated near v, the cost of delay outweighs the benefit from

screening types and it is optimal to just offer P (t(v)) = 2v for all remaining types. An

argument following Ausubel and Deneckere (1989b, Lemma A.3) allows us to extend (R,P )
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to support a skimming equilibrium on [v, v], proving Lemma 6 so long as v > 0. Lastly, an

approximation argument analogous to that in Ausubel and Deneckere (1989b, Theorem 4.2)

allows us to cover the case of v = 0, which in turn can be straightforwardly extended to

v < 0.

Proof of Proposition 2. Together, Lemma 5 and Lemma 6 establish a skimming equilib-

rium if either v ≤ 0 or v ≤ 1/2.

Let us show that Proposer’s payoff in this equilibrium converges to U(F ). Since Proposer

never makes a strictly negative offer in this equilibrium and no type v < 0 accepts a strictly

positive offer, we assume without loss of generality that v ∈ [0, 1/2). Let A∗(v) denote type

v’s choice from the menu [2v, 1]. As noted after Definition 1, it holds that P (v) ≥ max{v, 2v}.
Hence, P (v) ≥ A∗(v).

To show that Proposer’s payoff is at least U(F ) in the patient limit, observe that for any

v and any strictly positive integer m there is δ(m) such that for all δ > δ(m),

R(v) ≥ (1− 1/m)

∫ v

v

[
u(min{P (v′), 1})− 1/m

]
dF (v′). (8)

The intuition for this inequality is that if Proposer makes offers with small step size, he

can ensure that each type v accepts a proposal close to min{P (v), 1}, because each type v

accepts a proposal if and only if it is less than P (v); moreover, as δ → 1 the cost of delay

vanishes. Together with P (v) ≥ P (v) ≥ A∗(v), inequality (8) implies that if (R,P ) supports

a skimming equilibrium then Proposer’s payoff in this equilibrium is at least U(F ) in the

patient limit.

It remains to show that Proposer’s payoff in any such equilibrium is at most U(F ) in the

patient limit. Suppose not. Then there is ε′ > 0 and a sequence δn → 1 such that for each n

there is (Rn, Pn) supporting a skimming equilibrium that yields payoff at least U(F )+ε′. Let

An(v) be the proposal that is accepted in this equilibrium by type v and let τn(v) be the time

at which type v accepts.42 Since An is monotonic and uniformly bounded (as 0 ≤ An(v) ≤ 1

for all v and n), Helly’s selection theorem implies that there is a subsequence, which we also

index by n for convenience, along which An → A pointwise.

We claim A(v) ≥ v for all v ≤ 1. Suppose not. Then there is v ≤ 1 and ε > 0 such that

for all n large enough, An(v) ≤ v − ε. Let xn denote the state (in the sense described after

Definition 1) in which Proposer makes offer An(v). Since P n(v) ≥ v, Proposer could offer

An(v)+ε/2 in state xn and get it accepted by all types in [v−ε/2, v], which have probability

42 If type v never accepts any proposal, we set An(v) := 0 and τn(v) :=∞.
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at least min{ε/2, v − v}f . For δ high enough such an offer is profitable, contradicting that

(Rn, Pn) supports a skimming equilibrium.

Since Proposer’s payoff is at least U(F ) + ε′, there must exist v ∈ [2v,min{v, 1}] and

ε > 0 such that A(v) = v+ ε (by the dominated convergence theorem). Choose v1 such that

A(v1) = v + ε and such that there is v2 ≥ v1 − ε/5 with A(v2) < A(v1). We can then choose

ω ∈ (0, ε) such that A(v2) ≤ v1 + ε − ω. Since v1 − ε/5 ≤ v2 ≤ A(v2), we can find N such

that for all n > N , An(v1) > v1 + ε− ω/2 and

v1 − ε/4 ≤ An(v2) ≤ v1 + ε− 3ω/4. (9)

Let sn be the state in which Proposer makes offer An(v1) in equilibrium (Rn, Pn). By

definition, type v1 accepts the offer An(v1) at time τn(v1) < ∞ (since An(v1) > 0) and

therefore prefers An(v1) at time τn(v1) over An(v2) at time τn(v2). Moreover, the inequalities

in (9) imply that type v1 prefers An(v2) over v1 + ε− 3ω/4. Hence,

uV (v1 + ε− ω/2, v1) ≥ δτn(v2)−τn(v1)
n uV (v1 + ε− 3ω/4, v1),

which rearranges to yield

δτn(v2)−τn(v1) ≤ uV (v1 + ε− ω/2, v1)

uV (v1 + ε− 3ω/4, v1)
< 1.

But this implies the following bound on Rn in state tn(sn) (after proposal An(v1) in state sn

has been rejected; if the state is limd′↑sn tn(d′) the argument is analogous):

Rn(tn(sn)) ≤
∫ tn(sn)

v2

u(min{P n(v), 1})dF (v)

+ δτn(v2)−τn(v1)
n

∫ v2

v

u(min{P n(v), 1})dF (v). (10)

To understand inequality (10), note that for types above v2 an upper bound on Proposer’s

utility is getting min{P n(v), 1} accepted immediately. Since type v2, and therefore all lower

types, cannot accept before waiting τn(v2) − τn(v1) periods, an upper bound on Proposer’s

utility is getting min{P n(v), 1} accepted after τn(v2)− τn(v1) periods.

For any strictly positive integer m, inequality (8) implies that for all integers n large

enough,

Rn(tn(sn)) ≥ (1− 1/m)

∫ tn(sn)

v

u(min{P n(v), 1})dF (v)− 1/m.
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It follows that there exist m and n such that inequality (10) contradicts (8). Q.E.D.

B.3. A Commitment-Payoff Equilibrium

Lemma 7. Suppose c∗ > 0, and that either (i) v < 0 and suppG = [v, 0] ∪ [c∗/2, v] or

(ii) v = 0 and suppG = [c∗/2, v].43 There is a skimming equilibrium in which, on the

equilibrium path, there is a decreasing sequence of proposals culminating in c∗, with Proposer

payoff approximately
∫ v
c∗/2

u(max{v, c∗})dG(v).

Proof. First, by an argument analogous to Lemma 6, there is (R,P ) that supports a skim-

ming equilibrium on [c∗/2, v]. Second, analogous to Lemma 5, we can use that (R,P ) to

construct a skimming equilibrium with the desired properties: just treat c∗/2 here like v in

Lemma 5; the only point to note is that because in fact v ≤ 0, no matter whether hypothesis

(i) or (ii) in the lemma holds, we can deter deviations to any offer in [0, c∗) by stipulating

that any such offer is accepted, with the belief upon rejection supported on non-positive

types and all subsequent offers being 0. Q.E.D.

Proof of Proposition 3. We consider two cases, explaining in each case the beliefs and

behavior off path that support the on-path behavior described in the proposition.

First, consider v ≤ 0. If the first-period offer of 0 is rejected, Bayes rule implies that

Proposer updates to the belief F[v,0]∪[c∗/2,v], which is the prior’s conditional distribution

when excluding types (0, c∗/2). Continuation play then follows the skimming equilibrium of

Lemma 7. If Proposer makes a first-period offer other than 0, continuation play follows the

skimming equilibrium of Lemma 5. It remains only to show that Proposer has no profitable

deviation in the first period. Since Proposer’s belief when his initial offer of 0 is rejected

is F[v,0]∪[c∗/2,v], it follows from Lemma 7 that Proposer’s on-path payoff is approximately∫ 1

c∗/2
u(max{v, c∗})dF (v) +

∫ v
1
u(1)dF (v), which equals U(F ). On the other hand, Proposi-

tion 2 implies that deviating to a first-period offer other than 0 yields a payoff no more than

approximately U(F ). As U(F ) < U(F ), no such deviation is profitable.

Second, consider v > 0 (and correspondingly v ≤ 1/2). If the first-period offer of 0 is

rejected, Bayes rule implies that Proposer updates to the belief F[c∗/2,v]. Continuation play

then follows the skimming equilibrium of Lemma 5 applied to this belief, i.e., replacing F in

that lemma with F[c∗/2,v]. If Proposer makes a first-period offer other than 0, continuation

play follows the skimming equilibrium of Lemma 5 with the original belief F . It follows

from an essentially identical argument to that in the previous paragraph that no first-period

deviation is profitable for Proposer. Q.E.D.

43 We assume that G has a density bounded away from 0 and ∞ on its support.
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B.4. Is Leapfrogging Necessary?

Proof of Proposition 4. Towards contradiction, suppose there is a sequence of δn → 1 and

corresponding skimming equilibria such that Proposer’s payoff converges to U(F ). For each

n and v, let Bn(v) denote the expected discounted proposal that type v accepts: Bn(v) :=

E[δtat], where the expectation is taken over the accepted proposals and agreement times for

type v given the equilibrium strategies. Since Bn is monotonic (because the corresponding

mechanism is IC) and uniformly bounded, Helly’s selection theorem implies that there is

some B and a subsequence of Bn, which we also index by n for convenience, along which

Bn → B pointwise and in L1-norm.

Since interval delegation is (essentially) uniquely optimal, it must hold that (up to mea-

sure zero sets) B(v) = 0 for v ∈ [v, c∗/2), B(v) = c∗ for v ∈ (c∗/2, c∗), B(v) = v for

v ∈ (c∗,min{v, 1}), and B(v) = 1 for v ∈ [1, v]. (Suppose not. B corresponds to some feasi-

ble mechanism in the static problem and therefore, by the essential uniqueness assumption,

yields payoff at most U(F ) − ε for some ε > 0. Since Bn → B in the L1-norm, for all n

large enough Proposer’s payoff in the equilibrium corresponding Bn is at most U(F )− ε/2,

a contradiction.)

For any ε > 0, there is N such that for all n > N , Bn(v) ≤ ε for all v ∈ [v, c∗/2 − ε].
Then for all n large enough, there is a history at which Proposer’s belief is F[v,c] for some

cutoff c ≥ c∗/2− ε (since on-path offers are accepted by upper sets) and Proposer’s payoff in

the continuation equilibrium is at most u(ε). But, for any ε′ ∈ (0, c), Proposer can deviate

to make decreasing offers on a fine grid between ε′ and c such that all types in [ε′, c] accept

one of the offers close to their type or higher, and there is approximately no cost of delay as

δ → 1.44 Proposer’s payoff from this deviation is strictly greater than u(ε) for ε and ε′ small

enough and δ large enough, contradicting Proposer’s payoff in the continuation equilibrium

being at most u(ε). Q.E.D.

44 One can verify that type v ≥ 0 strictly prefers any action in
(
v − v

√
1− δ, v + v

√
1− δ

)
to action v

next period. Therefore, if Proposer makes decreasing offers between ε′ and c on a fine grid with diameter
ε′
√

1− δ, every type in [ε′, c] will accept one of the offers close to its type or higher in any best response.

Moreover, agreement with those types is reached within at most c−ε′
ε′
√
1−δ + 1 rounds. Since δ

(
c−ε′
ε′
√

1−δ+1
)
→ 1

as δ → 1, Proposer incurs essentially no cost of delay for types in [ε′, c] as δ → 1.
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C. Supplementary Appendix (For Online Publication)

This supplementary appendix provides proofs for the lemmas stated in Appendix B.2.

To reduce notation, we denote S(v) := P (t(v)).

Lemma 8. For any v and z < y ∈ T (v), we have P (z) < P (y).

Proof. Suppose that there are v and z < y such that P (z) ≥ P (y). We prove that y /∈ T (v).

Since P is increasing, it is constant on [z, y]; call that value p̄. It follows that

u(p̄)[F (v)− F (y)] + δR(y)

≤u(p̄)[F (v)− F (y)] + δ {u(p̄)[F (y)− F (z)] +R(z)}

<u(p̄)[F (v)− F (z)] + δR(z),

where the first inequality is because the payoff from any type in [z, y] is at most u(p̄) (and

hence R(y)−R(z) ≤ u(p̄)[F (y)− F (z)]). Thus, y /∈ T (v). Q.E.D.

Below, we will use the fact that T is upper hemicontinuous. This follows from the gener-

alized theorem of the maximum in Ausubel and Deneckere (1989b, p. 527). The theorem is

applicable because: (i) the maximand function u(P (y))[F (v)−F (y)] + δR(y) is upper semi-

continuous as a function of y for every v, which in turn is because P is upper semicontinuous,

and u and F are continuous and increasing on the relevant range {y : y ≤ v and P (y) ≤ 1};45

and (ii) for any sequence vn → v, the maximand function converges uniformly.

Proof of Lemma 5. Step 1: We begin by specifying beliefs and strategies:

• µ is derived from Bayes’ rule whenever possible; if at history h = (h′, a) a probability

0 rejection occurs, µ(h) puts probability 1 on v if v ≤ 1/2 and probability 1 on 0 if

v > 1/2 (in the latter case, v ≤ 0 by assumption);

• At any history h = (h′, a), any Vetoer type not in the support of Proposer’s current

belief plays an arbitrary best response; type v ≥ 0 in the support accepts a if and only

if a ∈ [0, P (v)]; type v < 0 in the support accepts if and only if uV (a, v) ≥ uV (0, v);

• Proposer’s first offer is S(v). To describe the rest of Proposer’s strategy, consider any

history h = (h′, a). Given Vetoer’s strategy and the belief updating specified above,

if Proposer holds a non-degenerate belief upon rejection of a then this belief equals

45 There is no loss in restricting attention to this range by a similar argument to that in the proof of
Lemma 8.
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F[v,d] for some d. We stipulate that if a = P (d) = P (d), then Proposer offers S(d);

if a = P (d) > P (d), then Proposer offers limd′↑d S(d′); if a ∈ [limd′↑d P (d′), P (d)),

then Proposer randomizes between limd′↑d S(d′) and S(d) so that type d is indifferent

between a in the current period and the lottery in the next period; and for any a 6∈
[P (v), P (v)], Proposer offers S(d). Finally, whenever Proposer’s belief is degenerate on

x ≥ 0 (x ∈ {0, v}), Proposer offers min{2x, 1} in all future periods.

Observe that at any history, Proposer’s subsequent on path offers are decreasing, either

trivially if the current belief is degenerate, or for any non-degenerate belief because the belief

cutoffs are decreasing by definition and P and t are increasing.

Step 2: We verify that Proposer is playing a best response to Vetoer’s strategy given

beliefs µ. As this is obvious whenever he has a degenerate belief, assume he has a non-

degenerate belief. As noted above, any such belief is of the form F[v,d] for some d. Proposer’s

strategy prescribes some randomization (possibly degenerate) between S(d) and limd′↑d S(d′).

We first claim that S(d) is an optimal proposal. Given Vetoer’s strategy, R(d) is an upper

bound on Proposer’s payoff. Furthermore, it follows from Lemma 8 that Vetoer’s strategy

has all types above t(d) accepting S(d) and all types strictly below rejecting. The claim

follows.

We next claim that limd′↑d S(d′) is also an optimal proposal. Since T is upper hemicon-

tinuous, limd′↑d t(d
′) ∈ T (d). Hence, given Vetoer’s strategy, P (limd′↑d t(d

′)) is an optimal

proposal. It therefore suffices to show that limd′↑d S(d′) = P (limd′↑d t(d
′)), or equivalently,

limd′↑d P (t(d′)) = P (limd′↑d t(d
′)). Note that limd′↑d P (t(d′)) ≤ P (limd′↑d t(d

′)) because t and

P are increasing. But if limd′↑d P (t(d′)) < P (limd′↑d t(d
′)) then continuity of R and u and

strict monotonicity of u in the relevant range imply the contradiction

R(d) = u(lim
d′↑d

P (t(d′)))[F (d)− F (lim
d′↑d

t(d′))] + δR(lim
d′↑d

t(d′))

< u(P (lim
d′↑d

t(d′)))[F (d)− F (lim
d′↑d

t(d′))] + δR(lim
d′↑d

t(d′)) = R(d).

All that remains is to verify that at a history h = (h′, a) with a ∈ [limd′↑d P (d′), P (d)),

there is a randomization between S(d) and limd′↑d S(d′) that makes type d indifferent between

a in the current period and the lottery in the next period. To confirm this, note that since

P is right-continuous and P (v) ≥ v for any v, we have

uV (lim
d′↑d

P (d′), d) ≥ uV (a, d) ≥ uV (P (d), d).
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The existence of a suitable randomization now follows from continuity of uV (·, d) and Equa-

tion (7).

Step 3: We verify that Vetoer is playing a best response at each history. Consider any

history (h, a) with µ(h) = F[v,q]. Since types outside of the support of Proposer’s belief play

a best response by assumption, we only consider types in [v, q].

• If a > P (q), Vetoer’s strategy prescribes that no type below q accepts, and Proposer

will propose S(q) next period. Since type q is indifferent between P (q) in the current

period and S(q) next period, and S(q) ≤ P (q) ≤ P (q) < a, type q prefers S(q) next

period to a in the current period. The same holds for all lower types, and hence Vetoer

is playing a best response.

• If a < 0, then: (i) it is clearly a best response for all types v ≥ 0 to reject; and (ii)

types v < 0 accept if and only if they prefer a to 0, which is a best response because

Proposer will never make a strictly negative offer in the continuation equilibrium.

• If a is positive but below the range of P , all types v ≥ 0 accept. After a rejection,

Proposer will either perpetually offer 0 or 2v, yielding a continuation payoff of 0 to all

types, and so it is a best response for any type v ≥ 0 to accept a.

• Otherwise, a is between P (v) and P (q).

If a = P (d) = P (d) for some d ≤ q, Vetoer’s strategy prescribes that all and only those

types above d accept.46 On path, Proposer will propose S(d) next period followed by

lower offers; since type d is indifferent between a in the current period and S(d) next

period, and all future offers are below a, SCED implies that it is a best response for

all higher types to accept and for all lower types to reject. Hence, Vetoer is playing a

best response.

If there is d ≤ q such that a = P (d) > P (d), Vetoer’s strategy prescribes that all

and only those types above d accept. Proposer will propose limd′↑d S(d′) next period,

followed by lower offers. Since type d′ is indifferent between P (d′) in the current

period and S(d′) next period, continuity of u implies that type d is indifferent between

limd′↑d P (d′) = P (d) = a in the current period and limd′↑d S(d′) next period. Hence,

Vetoer is playing a best response.

If there is d ≤ q such that a ∈ [limd′↑d P (d′), P (d)), Vetoer’s strategy again prescribes

that all and only those types above d accept. Proposer will randomize next period

between limd′↑d S(d′) and S(d) to make type d indifferent between accepting a or getting

46 If there are multiple values of d satisfying a = P (d), all types above the lowest one accept.
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the lottery next period. Therefore, Vetoer is playing a best response. Q.E.D.

Proof of Lemma 6. Step 1: Suppose v > 0. We claim that there is ε > 0 such that (R,P )

given by

R(v) := u(2v)F (v)

P (v) := v +
√
v2 − 4δv(v − v)

supports a skimming equilibrium on [v, v + ε]. Plainly, R and P are continuous, given that

F is continuous. Also, P is increasing and hence P = P . Some algebra confirms that R(v)

is the value from securing acceptance from all types below v on action 2v, while P (v) is the

action that makes type v indifferent between accepting that action now and getting action

2v in the next period. Therefore, it is sufficient for us to show that there is ε > 0 such that

for all v ∈ [v, v + ε] the unique maximizer of the RHS of Equation (6) is v, which implies

t(v) = v.

To that end, observe that the derivative of the objective function in Equation (6) with

respect to y is

u′(P (y))P
′
(y)[F (v)− F (y)]− u(P (y))f(y) + δu(2v)f(y). (11)

Since 0 < u(2v) ≤ u(P (y)) and f is bounded away from 0, the sum of the last two terms

in expression (11) is strictly negative and bounded away from 0. Since u′(P (y)) is bounded

(by concavity), P
′
(y) is bounded (as v2 − 4δv(v − v) > 0 for all v), F is continuous, and

v, y ∈ [v, v + ε], the first term in expression (11) goes to 0 as ε → 0. It follows that there

is ε > 0 such that expression (11) is strictly negative for all y ∈ [v, v + ε], and hence the

maximum of the RHS of Equation (6) is attained uniquely at t(v) = v whenever v ≤ v + ε.

Step 2: Suppose (Rv∗ , Pv∗) supports a skimming equilibrium on [v, v∗], where 0 < v <

v∗ < v. We will show that there is (R,P ) that supports a skimming equilibrium on [v, v]

with the property that P (v) = Pv∗(v) and R(v) = Rv∗(v) for all v ∈ [v, v∗].

Pick v′ ∈ (v∗, v] as large as possible such that

u(1)[F (v′)− F (v∗)] ≤ (1/2)(1− δ)Rv∗(v
∗). (12)

Note that v′ is well-defined because F is continuous and Rv∗(v
∗) > 0 (this inequality holds

because of v∗ > v and the property noted at the end of the paragraph following Definition 1).
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Moreover, letting f denote an upper bound for f , it holds that

v′ − v∗ ≥ (1/2)(1− δ)Rv∗(v
∗)

u(1)f
> 0. (13)

We extend Rv∗ to Rv′ defined on [v, v′] by setting Rv′(v) := Rv∗(v) for v ∈ [v, v∗], and for

v ∈ (v∗, v′],

Rv′(v) := max
y∈[v,v∗]

{
u(P v∗(y))[F (v)− F (y)] + δRv∗(y)

}
and define tv′(v) to be the largest value in the argmax correspondence. Observe that P v∗ is

upper semicontinuous (since Pv∗ is right-continuous by assumption, and hence P v∗ is right-

continuous) and Rv∗ is continuous; hence, Rv′(v) and tv′(v) are well-defined. We extend Pv∗

to Pv′ defined on [v, v′] by setting Pv′(v) := Pv∗(v) for v ∈ [v, v∗], and for v ∈ (v∗, v′] by

letting Pv′(v) be the largest value satisfying

uV (Pv′(v), v) = δuV (P v∗(tv′(v)), v).

So (Rv′ , Pv′) satisfies Equation (7). We can apply the generalized theorem of the maximum

in Ausubel and Deneckere (1989b, p. 527) analogously to the discussion after Lemma 8 and

conclude that Rv′ is continuous and Tv′ is non-empty and upper hemicontinuous. Therefore,

tv′ is upper semicontinuous and, since it is increasing, right-continuous. These properties

of tv′ and the hypothesis that Pv∗ is right-continuous imply that Pv′ is right-continuous.

(Rv′ , Pv′) also satisfies Equation (6), i.e.,

Rv′(v) = max
y∈[v,v]

{
u(P v′(y))[F (v)− F (y)] + δRv′(y)

}
for all v ∈ [v, v′], because for all y ∈ [v∗, v],

u(P v′(y))[F (v)− F (y)] + δRv′(y)

≤u(1)[F (v)− F (y)] + δRv′(y)

≤(1/2)(1− δ)Rv∗(v
∗) + δRv′(y)

≤(1/2)(1− δ)Rv′(y) + δRv′(y)

<Rv′(v).

Here the second inequality is because the choice of v′ satisfies inequality (12) and the second
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inequality is because Rv∗(v
∗) = Rv′(v

∗) and Rv′ is increasing. Therefore, the maximum is

attained for y ∈ [v, v∗) and the claim follows since Rv′(y) = Rv∗(y) for any such y.

We have established that (Rv′ , Pv′) supports a skimming equilibrium on [v, v′]. Since

Rv′ is increasing, it follows from inequality (13) that a finite number of repetitions of this

argument extends (Rv∗ , Pv∗) to the entire [v, v] interval.

Step 3: By an approximation argument analogous to that in Ausubel and Deneckere

(1989b, Theorem 4.2), there exists (R,P ) that supports a skimming equilibrium on [v, v] if

v = 0; we omit details. The case of v < 0 is handled by setting R(v) = 0 and P (v) = 0 for

all v < 0, and pasting that to a solution when we take v = 0 and set the distribution on

[0, v] to be the conditional distribution F[0,v]. Q.E.D.
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