Improving Information from Manipulable Data

Alex Frankel Navin Kartik

July 2020

Allocation Problem

Designer uses data about an agent to assign her an allocation Wants higher allocations for higher types

- Credit: Fair Isaac Corp maps credit behavior to credit score used to determine loan eligibility, interest rate, . . .
 - ightarrow Open/close accounts, adjust balances
- Web search: Google crawls web sites for keywords & metadata used to determine site's search rankings
 - \rightarrow SEO
- Product search: Amazon sees product reviews used to determine which products to highlight
 - → Fake positive reviews

Given an allocation rule, agent will manipulate data to improve allocation

Manipulation changes inference of agent type from observables

Response to Manipulation

Allocation rule/policy \to agent manipulation \to inference of type from observables \to allocation rule

- Fixed point policy: best response to itself
 - Rule is ex post optimal given data it induces
 - May achieve through adaptive process
- Optimal policy: commitment / Stackelberg solution
 - Maximizes designer's objective taking manipulation into account
 - Ex ante but (perhaps) not ex post optimal

Our interest:

- 1 How does optimal policy compare to fixed point?
- 2 What ex post distortions are introduced?

Fixed Point vs Optimal (commitment) policy

In our model:

- How does optimal policy compare to fixed point?
 - Optimal policy is flatter than fixed point Less sensitive to manipulable data
- What ex post distortions are introduced?
 - Commit to underutilize data
 Best response would be put more weight on data

Fixed Point vs Optimal (commitment) policy

Two interpretations of optimally flattening fixed point

- Designer with commitment power
 - Google search, Amazon product rankings, Government targeting
 - Positive perspective or prescriptive advice
- Allocation determined by competitive market
 - Use of credit scores (lending) or other test scores (college admissions)
 - Market settles on ex post optimal allocations
 - What intervention would improve accuracy of allocations? (Govt policy or collusion)

Related Literature

- Framework of "muddled information"
 - Prendergast & Topel 1996; Fischer & Verrecchia 2000; Benabou & Tirole 2006; Frankel & Kartik 2019
 - Ball 2020
 - Björkegren, Blumenstock & Knight 2020
- Related "flattening" to reduce manipulation in other contexts
 - Dynamic screening: Bonatti & Cisternas 2019
 - Finance: Bond & Goldstein 2015; Boleslavsky, Kelly & Taylor 2017
- Other mechanisms/contexts to improve info extraction
- CompSci / ML: classification algorithms with strategic responses

Background on Framework

Information Loss

In some models, fixed point policy yields full information, so no need to distort

■ When corresponding signaling game has separating eqm

Muddled information framework (FK 2019)

- Observer cares about agent's natural action η
 - Agent's action absent manipulation
- lacktriangle Agents also have heterogeneous gaming ability γ
 - Manipulation skill, private gain from improving allocation, willingness to cheat
- No single crossing: 2-dim type; 1-dim action
- When allocation rule rewards higher actions, high actions will muddle together high η with high γ

Muddled Information

Frankel & Kartik 2019

- Market information in a signaling equilibrium Analogous to fixed point in current paper
- Agent is the strategic actor
 - chooses x to maximize $V(\hat{\eta}(x), s) C(x; \eta, \gamma)$
 - x is observable action, $\hat{\eta}$ is posterior mean, s is stakes / manipulation incentive
 - leading example: $s\hat{\eta}(x) \frac{(x-\eta)^2}{\gamma}$
- Allocation implicit: agent's payoff depends on market belief
- Key result: higher stakes ⇒ less eqm info (about natural action)
 - suitable general assumptions on $V(\cdot)$ and $C(\cdot)$
 - precise senses in which the result is true

Current paper explicitly models allocation problem;

How to use commitment to ↓ info loss and thereby ↑ alloc accuracy

Model

Designer's problem

- Agent(s) of type $(\eta, \gamma) \in \mathbb{R}^2$
- Designer wants to match allocation $y \in \mathbb{R}$ to natural action η :

Utility
$$\equiv -(y - \eta)^2$$

- Allocation rule Y(x), based on agent's observable $x \in \mathbb{R}$
- Agent chooses x based on (η, γ) and Y (details later)
- Expected loss for designer:

$$Loss \equiv \mathbb{E}[(Y(x) - \eta)^2]$$

Nb: pure allocation/estimation problem

- Designer puts no weight on agent utility
- Effort is purely "gaming"

Designer's problem

- Agent(s) of type $(\eta, \gamma) \in \mathbb{R}^2$
- Designer wants to match allocation $y \in \mathbb{R}$ to natural action η :

Utility
$$\equiv -(y - \eta)^2$$

- Allocation rule Y(x), based on agent's observable $x \in \mathbb{R}$
- Agent chooses x based on (η, γ) and Y (details later)
- Expected loss for designer:

$$Loss \equiv \mathbb{E}[(Y(x) - \eta)^2]$$

Useful decomposition:

$$\operatorname{Loss} = \underbrace{\mathbb{E}[(\mathbb{E}[\eta|x] - \eta)^2]}_{\text{Info loss from estimating } \eta \text{ from } x} + \underbrace{\mathbb{E}[(Y(x) - \mathbb{E}[\eta|x])^2]}_{\text{Misallocation loss given estimation}}$$

Linearity assumptions

We will focus on

■ Linear allocation policies for designer:

$$Y(x) = \beta x + \beta_0$$

- ullet β is allocation sensitivity, strength of incentives
- Agent has a linear response function:

Given policy (β, β_0) , agent of type (η, γ) chooses

$$x = \eta + m\beta\gamma$$

Parameter m > 0 captures manipulability of the data (or stakes)

Such response is optimal if agent's utility is, e.g.,

$$y - \frac{(x-\eta)^2}{2m\gamma}$$

Summary of designer's problem

- Joint distribution over (η, γ)
 - Means μ_{η} , μ_{γ} ; finite variances $\sigma_{\eta}^2, \sigma_{\gamma}^2 > 0$; correlation $\rho \in (-1,1)$
 - $\rho \geq 0$ may be more salient, but $\rho < 0$ not unreasonable
 - Main ideas come through with $\rho = 0$
- Designer's optimum (β^*, β_0^*) minimizes expected quadratic loss:

$$\min_{\beta,\beta_0} \ \mathbb{E}\Big[\underbrace{\left(\beta(\overbrace{\eta+m\beta\gamma})+\beta_0-\eta\right)^2}_{\text{allocation }Y(x)}\Big]$$

• Simple model, but objective is quartic in β

Preliminaries

Linearly predicting type η from observable x

- Suppose Agent responds to allocation rule $Y(x) = \beta x + \beta_0$, then Designer gathers data on joint distr of (η, x)
- Let $\hat{\eta}_{\beta}(x)$ be the best linear predictor of η given x:

$$\hat{\eta}_{\beta}(x) = \hat{\beta}(\beta)x + \hat{\beta}_{0}(\beta),$$
 where, following OLS,
$$\hat{\beta}(\beta) = \frac{\mathrm{Cov}(x,\eta)}{\mathrm{Var}(x)} = \frac{\sigma_{\eta}^{2} + m\rho\sigma_{\eta}\sigma_{\gamma}\beta}{\sigma_{\pi}^{2} + m^{2}\sigma_{\pi}^{2}\beta^{2} + 2m\rho\sigma_{\eta}\sigma_{\gamma}\beta}$$

■ Can rewrite designer's objective

$$\operatorname{Loss} = \underbrace{\mathbb{E}[(\mathbb{E}[\eta|x] - \eta)^2]}_{ \begin{array}{c} \text{Info loss from} \\ \text{estimating } \eta \text{ from } x \end{array}} + \underbrace{\mathbb{E}[(Y(x) - \mathbb{E}[\eta|x])^2]}_{ \begin{array}{c} \text{Misallocation loss given} \\ \text{estimation} \end{array}}$$

Preliminaries

Linearly predicting type η from observable x

- Suppose Agent responds to allocation rule $Y(x) = \beta x + \beta_0$, then Designer gathers data on joint distr of (η, x)
- Let $\hat{\eta}_{\beta}(x)$ be the best linear predictor of η given x:

$$\hat{\eta}_{\beta}(x) = \hat{\beta}(\beta)x + \hat{\beta}_{0}(\beta),$$
 where, following OLS,
$$\hat{\beta}(\beta) = \frac{\mathrm{Cov}(x,\eta)}{\mathrm{Var}(x)} = \frac{\sigma_{\eta}^{2} + m\rho\sigma_{\eta}\sigma_{\gamma}\beta}{\sigma_{\pi}^{2} + m^{2}\sigma_{\pi}^{2}\beta^{2} + 2m\rho\sigma_{\eta}\sigma_{\gamma}\beta}$$

Can rewrite designer's objective for linear policies

$$\operatorname{Loss} = \underbrace{\mathbb{E}[(\hat{\eta}_{\beta}(x) - \eta)^2]}_{ \text{Info loss from } \atop \text{linearly estimating } \eta \text{ from } x } + \underbrace{\mathbb{E}[(Y(x) - \hat{\eta}_{\beta}(x))^2]}_{ \text{Misallocation loss given } \atop \text{linear estimation} }$$

- Info loss $\propto 1 R_{nx}^2$
- For corr. $\rho > 0$, $\hat{\beta}(\beta)$ is \downarrow on $\beta > 0$ (: $x = \eta + m\beta\gamma$)

Benchmarks

Benchmarks

Loss = Info loss from linear estimation + Misallocation loss given linear estimation

Constant policy: $Y(x) = 0 \cdot x + \beta_0$

- No manipulation, $x = \eta$
- Info loss is 0
- Misallocation loss may be very large

Naive policy: $Y(x) = 1 \cdot x + 0$

■ Designer's b.r. to data generated by constant policy $Y(x) = \hat{\eta}_{\beta=0}(x) = \hat{\beta}(0)x + \hat{\beta}_0(0)$

■ But after implementing this policy, agent's behavior changes Agent now responding to $\beta=1$, not $\beta=0$

Benchmarks

Loss = Info loss from linear estimation + Misallocation loss given linear estimation

Designer's b.r. if agent behaves as if policy is (β, β_0)

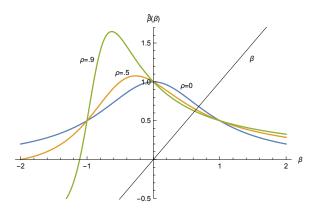
- Set $Y(x) = \hat{\eta}_{\beta}(x) = \hat{\beta}(\beta)x + \hat{\beta}_{0}(\beta)$
- Designer's optimum if agent's behavior were fixed

Fixed point policy:
$$Y(x) = \beta^{fp}x + \beta_0^{fp}$$

- $\hat{\beta}_0(\beta^{\mathrm{fp}}) = \beta_0^{\mathrm{fp}} \text{ and } \hat{\beta}(\beta^{\mathrm{fp}}) = \beta^{\mathrm{fp}}$
- Simultaneous-move game's NE (under linearity restriction)
 - NE w/o restriction if (η, γ) is elliptically distr
- Misallocation loss given linear estimation = 0, allocations ex post optimal
- Info loss may be large

Designer best response $\hat{\beta}(\cdot)$ and fixed points

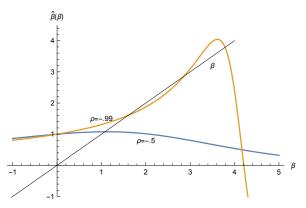
If (η, γ) 's corr. is $\rho \geq 0$, then:



- For $\beta \ge 0$, best response sensitivity $\hat{\beta}(\beta)$ is positive and \downarrow
- lacksquare Unique positive fixed point, and it is below naive b.r.: $eta^{\mathrm{fp}} < 1$

Designer best response $\hat{\beta}(\cdot)$ and fixed points

If (η, γ) 's corr. is $\rho < 0$, then:



- $\beta \gg 0 \implies \text{higher } x \text{ indicates lower } \eta \implies \hat{\beta}(\beta) < 0$
- $\hat{\beta}(\beta)$ can increase on $\beta \geq 0$
- lacksquare Possible for fixed point sensitivity above naive: $eta^{\mathrm{fp}} > 1$

Multiple positive fixed points possible

Main Result

Main Result

Designer chooses policy $Y(x) = \beta x + \beta_0$

Nb: Always at least one positive fixed point; just one if $\rho \geq 0$

Proposition

For the optimal policy's sensitivity β^* :

- **1** (Flattening.) $0 < \beta^* < \beta^{fp}$ for any $\beta^{fp} > 0$.
- **2** (Underutilize info.) $\hat{\beta}(\beta^*) > \beta^*$.

Commitment can yield large gains: ∃ params s.t.

$$L(\beta^{\mathrm{fp}})\simeq L(0)=\sigma_{\eta}^2,$$
 arbitrarily large
$$L(\beta^*)\simeq 0, \text{ first best}$$

Main Result

Designer chooses policy $Y(x) = \beta x + \beta_0$

Nb: Always at least one positive fixed point; just one if $\rho \geq 0$

Proposition

For the optimal policy's sensitivity β^* :

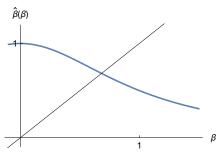
- **1** (Flattening.) $0 < \beta^* < \beta^{fp}$ for any $\beta^{fp} > 0$.
- **2** (Underutilize info.) $\hat{\beta}(\beta^*) > \beta^*$.

Proof logic:

- **1** First order benefit of $\uparrow \beta$ from 0: constant policy not optimal
- 2 Lemma 1: First order benefit of $\downarrow \beta$ from any β^{fp}
 - \implies There is a local max in $(0, \beta^{\mathrm{fp}})$
- Show that such local max is global max (quartic polynomial)

Intuition for main result

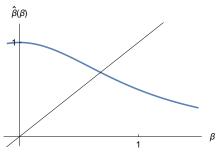
Loss = Info loss from linear estimation + Misallocation loss given linear estimation



- Misallocation loss is smaller when β close to b.r. $\hat{\beta}(\beta)$
- Info loss from estimation is smaller when β is smaller
 - Stronger incentives $\beta \implies$ more manipulation, less informative x
 - True for all $\beta>0$ when $\rho\geq 0,$ true for relevant range of β when $\rho<0$

Intuition for main result

Loss = Info loss from linear estimation + Misallocation loss given linear estimation



At $\beta = \beta^{fp}$, misallocation loss is minimized

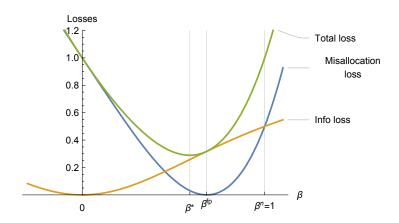
Slightly reducing sensitivity β yields

- First order benefit from ↓ info loss
- Second order harm from ↑ misallocation loss

(Analogously for $\uparrow \beta$ from 0, because there info loss minimized.)

Intuition for main result

Loss = Info loss from linear estimation + Misallocation loss given linear estimation



(In general, Loss not convex or even quasiconvex on \mathbb{R} .)

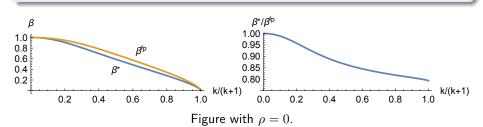
Some comparative statics

Recall
$$x = \eta + m\beta\gamma$$

Let $k \equiv m\sigma_{\gamma}/\sigma_{\eta}$ describe susceptibility to manipulation

Proposition

- **1** As $k \to \infty$, $\beta^* \to 0$; As $k \to 0$, $\beta^* \to 1$; When $\rho > 0$, $\beta^* \downarrow$ in k.
- 2 When $\rho=0$, $\beta^*/\beta^{\mathrm{fp}}\downarrow$ in k; $\beta^*/\beta^{\mathrm{fp}}\to 1$ as $k\to 0$ and $\beta^*/\beta^{\mathrm{fp}}\to \sqrt[3]{1/2}\simeq .79$ as $k\to \infty$.



Conclusion

Discussion

- Can nonlinear allocation rules do better?
 - Typically yes
 - Linear rules are simple, easier to verify/commit to
 - Comparable to linear fixed points, which exist for elliptical distrs and to naive, which is linear
- If designer wants to reduce manipulation costs, $\downarrow \beta^*$
- If manipulation is productive effort, $\uparrow \beta^*$
- Crucial asymmetry in agent behavior $x = \eta + m\beta\gamma$
 - E.g., agent chooses effort (cost) e to generate data $x=\eta+\sqrt{\gamma}\sqrt{e}$ Is effort a substitute or complement to the trait designer's values?
 - If designer wants to match allocation to γ , logic flips

$$\rightarrow$$
 For $\rho \geq 0$, $\beta^* > \beta^{\mathrm{fp}}$ for any β^{fp}

• If designer wants to match $(1-w)\eta + w\gamma$,

$$\rightarrow$$
 For $\rho = 0$, $\operatorname{sign}[\beta^* - \beta^{\operatorname{fp}}] = \operatorname{sign}[w - w^*]$

Discussion

- Our model: info loss driven by heterogeneous response to incentives Does flattening fixed point extend to other sources of info loss?
 - Appendix: simple model of info loss driven by bounded action space
- More research: counterparts to "flattening" / "underutilizing information" in general allocation problems

Thank you!