Single-Crossing Differences on Distributions

Navin Kartik SangMok Lee Daniel Rappoport

September 2017

SCD on Distributions

Introduction (1)

Single Crossing Differences is central to MCS

 $\forall a, a' \in A : v(a, \theta) - v(a', \theta)$ is single crossing in θ

 \iff choices are monotonic in type $\forall A' \subseteq A$

strong set order

- Agent may be faced with lotteries over A
 - directly or indirectly (e.g., in a game)
 - e.g., Crawford and Sobel '82: what if S does not know R's prefs?
- For vNM agent, Single Crossing Expectational Differences

 $\forall P, Q \in \Delta A : \mathbb{E}_P[v(a, \theta)] - \mathbb{E}_Q[v(a, \theta)]$ is SC in θ

Not assured by SCD over A

SCD on Distributions

Introduction (2)

Our results:

1 Characterize $v(a, \theta)$ that have SCED

A Takeaway $\operatorname{SCED}_{\overset{\scriptstyle \longleftrightarrow}{\underset{\scriptstyle \text{often}}{\longrightarrow}}} v(a,\theta) \ \sim u(a) + f(\theta)w(a) \text{, with } f \text{ monotonic}$

2 Establish SCED \iff MCS on ΔA

3 Applications

In achieving (1):

Characterize sets of functions whose linear combinations are SC

A characterization of MLRP (known, but apparently not well)

SCD on Distributions

Literature

More related (elaborate later):

- Kushnir and Liu 2017
- Quah and Strulovici ECMA 2012, Choi and Smith JET 2016
- Karlin 1968 book
- Milgrom and Shannon ECMA 1994

Less related:

- Milgrom RAND 1981
- Athey QJE 2002

Main Results

Setting

- A is some space (outcomes/allocations)
 - talk as if A finite; avoiding technical details
 - ΔA is set of all prob. measures
- (Θ, \leq) is a partially-ordered space (types)
 - \leq is reflexive, transitive, antisymmetric
 - · contains upper and lower bounds for all pairs
 - some results are trivial when $|\Theta| \leq 2$
- $v: A \times \Theta \to \mathbb{R}$ (payoff fn)
- Expected Utility: $V(P, \theta) \equiv \int_A v(a, \theta) dP$
- Expectational Difference: $D_{P,Q}(\theta) \equiv V(P,\theta) V(Q,\theta)$

SCD on Distributions

Single Crossing

Definition

 $f:\Theta\to\mathbb{R}$ is

single crossing from below if

 $(\forall \theta_l < \theta_h) \quad f(\theta_l) \ge (>)0 \implies f(\theta_h) \ge (>)0.$

2 single crossing from above if

$$(\forall \theta_l < \theta_h) \quad f(\theta_l) \leq (<) 0 \implies f(\theta_h) \leq (<) 0.$$

3 single crossing if it is SC from below or from above.

E.g., $f(\cdot) > 0$ is SC from below *and* above.

SCD on Distributions

SC Expectational Differences

Definition

Let X be arbitrary.

 $f: X \times \Theta \to \mathbb{R}$ has SC Differences (SCD) if

 $\forall x, x' \in X : f(x, \theta) - f(x', \theta)$ is single crossing in θ .

Not quite the usual definition; X need not be ordered

Definition

v has SC Expectational Differences (SCED) if $V : \Delta A \times \Theta \to \mathbb{R}$ has SCD.

•
$$D_{P,Q}(\theta)$$
 is SC for all lotteries P,Q

 \blacksquare SCED is an ordinal property of prefs over ΔA

• When
$$|A| = 2$$
, equiv. to v having SCD

SCD on Distributions

 $SCD \Rightarrow SCED$

SCD on Distributions

Main Result

Theorem

 \boldsymbol{v} has SCED if and only if

$$v(a,\theta) = g_1(a)f_1(\theta) + g_2(a)f_2(\theta) + c(\theta),$$

with f_1, f_2 each SC and ratio ordered.

- If $f_1, f_2 > 0$, then RO $\iff f_1/f_2$ monotonic; and SC trivial
- Then interpret as: two prefs s.t. each θ 's pref is a convex combination, with weight shifting monotonically in θ
- But f_1, f_2 need not be positive (nor single-signed)

(1)
$$\implies D_{P,Q}(\theta) = \alpha_1 f_1(\theta) + \alpha_2 f_2(\theta)$$
 for some $\alpha \in \mathbb{R}^2$

Is such $D_{P,Q}$ single crossing?

SCD on Distributions

Kartik, Lee, Rappoport

(1)

Ratio Ordering

- If both are (str. +) densities, simply likelihood ratio ordering
- Defn does not assume either f_i has constant sign
 - $(\forall f) \ f \text{ and } -f$ are ratio ordered

SCD on Distributions

Geometric Interpretation

• $f_1 \operatorname{RD} f_2 \implies (\forall \theta_l < \theta_h) f(\theta_l) \text{ rotates clockwise } (\leq 180^\circ) \text{ to } f(\theta_h)$ $(f(\theta'), 0) \times (f(\theta''), 0) = ||f(\theta')|| ||f(\theta'')|| \sin(r)e_3 = (f_1(\theta')f_2(\theta'') - f_1(\theta'')f_2(\theta'))e_3$

Ratio ordering $\implies f(\theta)$ rotates monotonically ($\leq 180^{\circ}$)

📛 modulo nuances

SCD on Distributions

Linear Combinations Lemma

Lemma

Let $f_1, f_2: \Theta \to \mathbb{R}$ each be SC.

 $\alpha_1 f_1(\theta) + \alpha_2 f_2(\theta)$ is SC $\forall \alpha \in \mathbb{R}^2 \iff f_1, f_2$ are ratio ordered.

• A characterization of LR ordering (for str. + densities)

- Coeffs of opp signs are key
- f_1 and f_2 need not be SC in the same direction (e.g., $f_1 = -f_2$)

Linear Combinations Lemma

Lemma

Let $f_1, f_2: \Theta \to \mathbb{R}$ each be SC.

 $\alpha_1 f_1(\theta) + \alpha_2 f_2(\theta)$ is SC $\forall \alpha \in \mathbb{R}^2 \iff f_1, f_2$ are ratio ordered.

Linear Combinations Lemma

Lemma

Let $f_1, f_2: \Theta \to \mathbb{R}$ each be SC.

 $\alpha_1 f_1(\theta) + \alpha_2 f_2(\theta)$ is SC $\forall \alpha \in \mathbb{R}^2 \iff f_1, f_2$ are ratio ordered.

Linear Combinations of Multiple Functions

Necess. direction of Thm requires aggregating many SC functions

Proposition

Consider $\{f_i\}_{i=1}^n$, where each $f_i : \Theta \to \mathbb{R}$ is SC. $\sum_i \alpha_i f(x_i, \theta)$ is SC $\forall \alpha \in \mathbb{R}^n$ if and only if $\exists i, j$ s.t. **1** Ratio Ordering: f_i and f_j are ratio ordered;

2 Spanning: $(\forall k) f_k(\cdot) = \lambda_k f_i(\cdot) + \gamma_k f_j(\cdot)$.

Theorem

v has SCED if and only if

$$v(a,\theta) = g_1(a)f_1(\theta) + g_2(a)f_2(\theta) + c(\theta),$$

with f_1, f_2 each SC and ratio ordered.

• Sufficiency follows from Linear Combinations Lemma: $D_{P,Q}(\theta) = \left[\int g_1 dP - \int g_1 dQ\right] f_1(\theta) + \left[\int g_2 dP - \int g_2 dQ\right] f_2(\theta)$

Theorem

v has SCED if and only if

$$v(a,\theta) = g_1(a)f_1(\theta) + g_2(a)f_2(\theta) + c(\theta),$$

with f_1, f_2 each SC and ratio ordered.

Idea underlying necessity:

• Consider
$$A = \{a_0, \ldots, a_n\}$$
 and $v(a_0, \cdot) = 0$.

SCED
$$\implies$$
 ($\forall a$) $v(a, \theta)$ is SC ($\because \delta_a$ and δ_{a_0})

• $\forall \lambda \in \mathbb{R}^n$, $\sum_i \lambda_i v(a_i, \theta) \propto \sum_i (p(a_i) - q(a_i)) v(a_i, \theta)$, where p, q are PMFs

 \blacksquare SCED \implies every such linear combination is SC

• Linear Combinations Prop
$$\implies \exists i, j :$$

 $(\forall a) \ v(a, \cdot) = g_1(a)v(a_i, \cdot) + g_2(a)v(a_j, \cdot)$, with RO (and SC)

SCD on Distributions

Theorem

v has SCED if and only if

$$v(a,\theta) = g_1(a)f_1(\theta) + g_2(a)f_2(\theta) + c(\theta),$$

with f_1, f_2 each SC and ratio ordered.

While SCED is restrictive, it is satisfied in some familiar cases

- **screening/mech design**: $v((q,t),\theta) = g_1(q)f(\theta) g_2(t)$, f monotonic
 - unless g_1 is constant, $f(\cdot)$ must be monotonic
- voting/communication: $v(a, \theta) = -(a \theta)^2 = -a^2 + 2a\theta \theta^2$
 - for $v(a,\theta) = -|a-\theta|^d$ with d > 0, only d = 2 satisfies SCED

signaling: $v((w, e), \theta) = w - e/\theta$ (usually $e, \theta > 0$)

• in all these cases, one $f_i(\cdot) = 1$

SCD on Distributions

Theorem

v has SCED if and only if

$$v(a,\theta) = g_1(a)f_1(\theta) + g_2(a)f_2(\theta) + c(\theta),$$

with f_1, f_2 each SC and ratio ordered.

Theorem

Assume some agreement: $(\exists P, Q) \ (\forall \theta) \ V(P, \theta) > V(Q, \theta)$.

 \boldsymbol{v} has SCED if and only if prefs have a representation

$$\tilde{v}(a,\theta) = g_1(a)f_1(\theta) + g_2(a),$$

with f_1 monotonic.

SCD on Distributions

An MCS Characterization

Let $f:X\times\Theta\to\mathbb{R}$ with (X,\succeq) an ordered set and (Θ,\leq) a directed set

Assume X is minimal wrt f: $(\forall x \neq x')(\exists \theta) f(x, \theta) \neq f(x', \theta)$

Definition

П

f has Monotone Comparative Statics on (X, \succeq) if

 $(\forall S \subseteq X, \theta \le \theta') \ \arg\max_{x \in S} f(x, \theta') \succeq_{SSO} \arg\max_{x \in S} f(x, \theta).$

$$Y \succeq_{SSO} Z \text{ if } (\forall y \in Y, z \in Z) \ (y \lor z \in Y, y \land z \in Z)$$

Cf. MS '94: X need not be lattice; monotonicity only in θ but $\forall S\subseteq X$ (not only all sublattices)

An MCS Characterization

Let $f:X\times\Theta\to\mathbb{R}$ with (X,\succeq) an ordered set and (Θ,\leq) a directed set

Assume X is minimal wrt f: $(\forall x \neq x')(\exists \theta) f(x, \theta) \neq f(x', \theta)$

Definition

f has Monotone Comparative Statics on (X, \succeq) if

$$(\forall S \subseteq X, \theta \le \theta') \ \arg\max_{x \in S} f(x, \theta') \succeq_{SSO} \arg\max_{x \in S} f(x, \theta).$$

• Define a reflexive relation \succeq_{SCD} on X:

 $x \succ_{SCD} x'$ if $f(x, \theta) - f(x', \theta)$ is SC from *only* below

• If f has SCD, \succeq_{SCD} is an order

Proposition

f has MCS on $(X, \succeq) \iff f$ has SCD and \succeq refines \succeq_{SCD} .

SCD on Distributions

SCED and MCS

Apply MCS result to our setting; recall $D_{P,Q}(\theta) \equiv V(P,\theta) - V(Q,\theta)$

Definition $P \succ_{SCED} Q$ if $D_{P,Q}(\cdot)$ is SC from only below; $P \sim_{SCED} Q$ if $D_{P,Q}(\cdot) = 0$.

Let $\widetilde{\Delta}A$ be the quotient space defined by \sim_{SCED}

Corollary

$$V$$
 has MCS on $(\widetilde{\Delta}A, \succeq) \iff v$ has SCED and \succeq refines \succeq_{SCED} .

A strict version of SCED yields a monotone selection result

SCD on Distributions

Applications

Cheap Talk

- \blacksquare Sender with type $\theta \in \Theta$ chooses cheap-talk message $m \in M$
- Receiver with type ψ observes m and takes action $a \in A$
- \blacksquare vNM payoffs $v(a,\theta)$ for S and $u(a,\theta,\psi)$ for R
- θ and ψ are independently drawn, private info

• E.g.:
$$v(\cdot) = -(a-\theta)^2$$
, and $u(\cdot) = -(a-\psi_1-\psi_2\theta)^2$

What assures "interval cheap talk"? In CS, concavity of u and SCD of v.

Focus on Bayesian Nash equilibria in which:

- $\blacksquare~S$ plays a pure strategy, $\mu:\Theta\to M$
- (Minimality.) If m,m' are on path, then $(\exists \theta) \ m \not\sim_{\theta} m'$

Claim

If v has strict SCED, then every eqm has interval cheap talk. If v strictly violates SCED, then \exists params under which \exists a non-interval "strict" eqm.

SCD on Distributions

Collective Choice (1)

- Finite group, $\{1, 2, \dots, N\}$, must choose from $\mathcal{A} \subseteq \Delta A$
- \blacksquare For simplicity, N odd and A finite; let $M\equiv (N+1)/2$
- Each i has vNM utility $v(a, \theta_i)$, where $\theta_i \in \Theta \subset \mathbb{R}$, $\theta_1 \leq \cdots \leq \theta_N$
- Majority preference relation:

$$P \succeq_{maj} Q \text{ if } |\{i: V(P, \theta_i) \ge V(Q, \theta_i)\}|] \ge M$$

Is this transitive (i.e., would majority rule yield "rational choices")?

Claim

If v has strict SCED, then \succeq_{maj} is transitive and rep. by. $V(\cdot, \theta_M)$

Characterization of SSCED + Gans and Smart (1996)

SCD on Distributions

Collective Choice (2)

Claim

If v has strict SCED, then \succeq_{maj} is transitive and rep. by. $V(\cdot, \theta_M)$.

• Let
$$\{\theta_M\} = \operatorname{argmax}_{a \in A} v(a, \theta_M)$$

- \blacksquare Two office-seeking politicians can offer lotteries from ΔA
- Voters vote "sincerely"

Corollary

If v has strict SCED, political competition with lotteries has a unique Nash equilibrium: convergence to $a = \theta_M$.

- Compatible with voters being risk loving on subsets of policy space
- There is a sense in which SCED is necessary

SCD on Distributions

Literature Connections

Literature Connections (1)

Definition

 $v:A\times\Theta\rightarrow\mathbb{R}$ has Monotonic Expectational Differences if

 $(\forall P, Q \in \Delta A) \ D_{P,Q}(\theta)$ is monotonic in θ .

Equiv., $V : \Delta A \times \Theta \rightarrow \mathbb{R}$ has Monotonic Differences, not just SCD

Proposition

v has MED if and only $v(a, \theta) = g_1(a)f_1(\theta) + g_2(a) + c(\theta)$, with $f_1: \Theta \to \mathbb{R}$ monotonic.

- SCED characterization but with $(\forall \theta) f_2(\theta) = 1$
- SCED is strictly more general than MED
 - Paper characterizes when SCED prefs have MED representation
 - sufficient if $\exists P, Q \in \Delta A$ over which all types share same strict pref
- Kushnir and Liu (2016), for a subset of environments

SCD on Distributions

Literature Connections (2)

Definition (Quah and Strulovici 2012)

 f_1 and f_2 are signed ratio monotonic if for each $i, j \in \{1, 2\}$,

 $(\forall \theta_l \le \theta_h) \quad f_j(\theta_l) < 0 < f_i(\theta_l) \implies f_i(\theta_h) f_j(\theta_l) \le f_i(\theta_l) f_j(\theta_h).$

Proposition (Quah and Strulovici 2012)

Let f_1, f_2 both be SC from below (resp., above). $\alpha_1 f_1(\theta) + \alpha_2 f_2(\theta)$ is SC from below (resp., above) $\forall \alpha \in \mathbb{R}^2_+$ $\iff f_1$ and f_2 (resp., $-f_1$ and $-f_2$) are signed ratio monotonic.

SCD on Distributions

Literature Connections (2)

• f_1 and f_2 could be SC from below and ratio ordered, yet $f_1 + f_2$ could be SC from **only above**! (Only if f_1 and f_2 are not SRM)

• E.g.:
$$\Theta = [0, 1], f_1(\theta) = 1, f_2(\theta) = -1 - \theta$$

• Ratio ordering $\implies (f_1, f_2)$ or $(-f_1, -f_2)$ are SRM

we allow the pair of SC functions to cross in opposite directions

■ If *f*₁ and *f*₂ are both SC in same direction, ratio ordering is stronger than (*f*₁, *f*₂) or (−*f*₁, −*f*₂) are SRM

• we get / require all linear combinations to be SC

SCD on Distributions

Recap

1 Characterized when set of SC fns. preserves SC \forall linear combinations

- Necessary and sufficient for a form of MCS on ΔA

3 Useful for applications

Ratio Ordering

Definition

- Let $f_1, f_2: \Theta \to \mathbb{R}$ each be SC.
 - **1** f_1 ratio dominates f_2 if

(i)
$$(\forall \theta_l \le \theta_h) \quad f_1(\theta_l) f_2(\theta_h) \le f_1(\theta_h) f_2(\theta_l)$$

(ii)
$$(\forall \theta_l \le \theta_m \le \theta_h)$$

 $f_1(\theta_l) f_2(\theta_h) = f_1(\theta_h) f_2(\theta_l) \iff \begin{cases} f_1(\theta_l) f_2(\theta_m) = f_1(\theta_m) f_2(\theta_l) \\ f_1(\theta_m) f_2(\theta_h) = f_1(\theta_h) f_2(\theta_m) \end{cases}$

2 f_1 and f_2 are ratio ordered if f_1 ratio dominates f_2 or vice-versa.

✓ return

SCD on Distributions

Point (ii) of ratio ordering

$$(\forall \theta_l \le \theta_m \le \theta_h) \ f_1(\theta_l) f_2(\theta_h) = f_1(\theta_h) f_2(\theta_l) \iff \begin{cases} f_1(\theta_l) f_2(\theta_m) = f_1(\theta_m) f_2(\theta_l) \\ f_1(\theta_m) f_2(\theta_h) = f_1(\theta_h) f_2(\theta_m) \end{cases}$$

SCD on Distributions

Intuition for Necessity

 \blacksquare Consider completely ordered Θ

 \blacksquare If $\{f_1(\cdot), f_2(\cdot), f_3(\cdot)\}$ are linearly independent,

 $(\exists \theta_1 < \theta_2 < \theta_3) \quad \{f(\theta_1), f(\theta_2), f(\theta_3)\} \text{ spans } \mathbb{R}^3.$

$$\bullet \ (\alpha \cdot f)(\theta_1) = (\alpha \cdot f)(\theta_3) = 0 \neq (\alpha \cdot f)(\theta_2) \implies \alpha \cdot f \text{ is not SC}$$

SCD on Distributions

Kartik, Lee, Rappoport

◄ return

Variation of Lemma

Definition

$$\begin{split} f: \Theta \to \mathbb{R} \text{ is strictly SC if either} \\ & \textcircled{1} \ (\forall \theta < \theta') \ f(\theta) \geq 0 \implies f(\theta') > 0; \text{ or} \\ & \textcircled{2} \ (\forall \theta < \theta') \ f(\theta) \leq 0 \implies f(\theta') < 0. \end{split}$$

Definition

 $f_1:\Theta\to\mathbb{R}$ strictly ratio dominates $f_2:\Theta\to\mathbb{R}$ if

$$(\forall \theta_l < \theta_h) \quad f_1(\theta_l) f_2(\theta_h) < f_1(\theta_h) f_2(\theta_l).$$

 f_1 and f_2 are strictly ratio ordered if f_1 strictly RD f_2 or vice-versa.

Lemma (Strict Version)

 $\alpha_1 f_1(\theta) + \alpha_2 f_2(\theta)$ is strictly SC $\forall \alpha \in \mathbb{R}^2 \setminus \{0\} \iff f_1, f_2$ are strictly RO.

• Strict RO \implies each function is strictly SC

 \blacksquare New characterization of strict MLRP \forall densities

SCD on Distributions

✓ SC Lemma

Strict SCED

Definition

 $v: A \times \Theta \to \mathbb{R}$ has Strict SCED if

 $(\forall P, Q \in \Delta A) \ D_{P,Q}$ is a zero function or strictly SC.

Theorem (Strict Version)

 $v:A\times\Theta\rightarrow\mathbb{R}$ has Strict SCED if and only if

$$v(a,\theta) = g_1(a)f_1(\theta) + g_2(a)f_2(\theta) + c(\theta),$$

with f_1, f_2 strictly ratio ordered.

SCD on Distributions