Single-Crossing Differences on Distributions

Navin Kartik SangMok Lee Daniel Rappoport

September 2017

Introduction (1)

■ Single Crossing Differences is central to MCS

$$
\forall a, a^{\prime} \in A: v(a, \theta)-v\left(a^{\prime}, \theta\right) \text { is single crossing in } \theta
$$

\Longleftrightarrow choices are $\underbrace{\text { monotonic }}_{\text {strong set order }}$ in type $\forall A^{\prime} \subseteq A$

- Agent may be faced with lotteries over A
- directly or indirectly (e.g., in a game)
- e.g., Crawford and Sobel '82: what if S does not know R 's prefs?

■ For vNM agent, Single Crossing Expectational Differences

$$
\forall P, Q \in \Delta A: \mathbb{E}_{P}[v(a, \theta)]-\mathbb{E}_{Q}[v(a, \theta)] \text { is } \mathrm{SC} \text { in } \theta
$$

■ Not assured by SCD over A

Introduction (2)

Our results:
(1) Characterize $v(a, \theta)$ that have SCED

A Takeaway
$\operatorname{SCED} \underset{\text { often }}{\Longleftrightarrow} v(a, \theta) \sim u(a)+f(\theta) w(a)$, with f monotonic
(2) Establish SCED \Longleftrightarrow MCS on ΔA
(3) Applications

In achieving (1):

- Characterize sets of functions whose linear combinations are SC
- A characterization of MLRP (known, but apparently not well)

Literature

More related (elaborate later):
■ Kushnir and Liu 2017
■ Quah and Strulovici ECMA 2012, Choi and Smith JET 2016
■ Karlin 1968 book

■ Milgrom and Shannon ECMA 1994

Less related:

- Milgrom RAND 1981
- Athey QJE 2002

Main Results

Setting

- A is some space (outcomes/allocations)
- talk as if A finite; avoiding technical details
- ΔA is set of all prob. measures
- ($\Theta, \leq)$ is a partially-ordered space (types)
- \leq is reflexive, transitive, antisymmetric
- contains upper and lower bounds for all pairs
- some results are trivial when $|\Theta| \leq 2$
- $v: A \times \Theta \rightarrow \mathbb{R}$ (payoff fn$)$
- Expected Utility: $V(P, \theta) \equiv \int_{A} v(a, \theta) \mathrm{d} P$

■ Expectational Difference: $D_{P, Q}(\theta) \equiv V(P, \theta)-V(Q, \theta)$

Single Crossing

Definition

$f: \Theta \rightarrow \mathbb{R}$ is
(1) single crossing from below if

$$
\left(\forall \theta_{l}<\theta_{h}\right) \quad f\left(\theta_{l}\right) \geq(>) 0 \Longrightarrow f\left(\theta_{h}\right) \geq(>) 0 .
$$

(2) single crossing from above if

$$
\left(\forall \theta_{l}<\theta_{h}\right) \quad f\left(\theta_{l}\right) \leq(<) 0 \Longrightarrow f\left(\theta_{h}\right) \leq(<) 0 .
$$

(3) single crossing if it is SC from below or from above.
E.g., $f(\cdot)>0$ is SC from below and above.

SC Expectational Differences

Definition

Let X be arbitrary.
$f: X \times \Theta \rightarrow \mathbb{R}$ has SC Differences (SCD) if

$$
\forall x, x^{\prime} \in X: f(x, \theta)-f\left(x^{\prime}, \theta\right) \text { is single crossing in } \theta .
$$

■ Not quite the usual definition; X need not be ordered

Definition
 v has SC Expectational Differences (SCED) if $V: \Delta A \times \Theta \rightarrow \mathbb{R}$ has SCD.

- $D_{P, Q}(\theta)$ is SC for all lotteries P, Q

■ SCED is an ordinal property of prefs over ΔA
$■$ When $|A|=2$, equiv. to v having SCD

$S C D \nRightarrow S C E D$

Main Result

Theorem
v has SCED if and only if

$$
\begin{equation*}
v(a, \theta)=g_{1}(a) f_{1}(\theta)+g_{2}(a) f_{2}(\theta)+c(\theta) \tag{1}
\end{equation*}
$$

with f_{1}, f_{2} each SC and ratio ordered.

- If $f_{1}, f_{2}>0$, then $\mathrm{RO} \Longleftrightarrow f_{1} / f_{2}$ monotonic; and SC trivial
- Then interpret as: two prefs s.t. each θ 's pref is a convex combination, with weight shifting monotonically in θ

■ But f_{1}, f_{2} need not be positive (nor single-signed)

$$
(1) \Longrightarrow D_{P, Q}(\theta)=\alpha_{1} f_{1}(\theta)+\alpha_{2} f_{2}(\theta) \text { for some } \alpha \in \mathbb{R}^{2}
$$

Is such $D_{P, Q}$ single crossing?

Ratio Ordering

Definition

Let $f_{1}, f_{2}: \Theta \rightarrow \mathbb{R}$ each be SC .
(1) f_{1} ratio dominates f_{2} if
(i) $\left(\forall \theta_{l} \leq \theta_{h}\right) \quad f_{1}\left(\theta_{l}\right) f_{2}\left(\theta_{h}\right) \leq f_{1}\left(\theta_{h}\right) f_{2}\left(\theta_{l}\right)$,
(ii) omitted nuances.
(2) f_{1} and f_{2} are ratio ordered if f_{1} ratio dominates f_{2} or vice-versa.

■ If both are (str. +) densities, simply likelihood ratio ordering

- Defn does not assume either f_{i} has constant sign
- $(\forall f) f$ and $-f$ are ratio ordered

Geometric Interpretation

- $f_{1} \mathrm{RD} f_{2} \Longrightarrow\left(\forall \theta_{l}<\theta_{h}\right) f\left(\theta_{l}\right)$ rotates clockwise $\left(\leq 180^{\circ}\right)$ to $f\left(\theta_{h}\right)$

$$
\left(f\left(\theta^{\prime}\right), 0\right) \times\left(f\left(\theta^{\prime \prime}\right), 0\right)=\left\|f\left(\theta^{\prime}\right)\right\|\left\|f\left(\theta^{\prime \prime}\right)\right\| \sin (r) e_{3}=\left(f_{1}\left(\theta^{\prime}\right) f_{2}\left(\theta^{\prime \prime}\right)-f_{1}\left(\theta^{\prime \prime}\right) f_{2}\left(\theta^{\prime}\right)\right) e_{3}
$$

■ Ratio ordering $\Longrightarrow f(\theta)$ rotates monotonically $\left(\leq 180^{\circ}\right)$
\Longleftarrow modulo nuances

Linear Combinations Lemma

Lemma

Let $f_{1}, f_{2}: \Theta \rightarrow \mathbb{R}$ each be $S C$.
$\alpha_{1} f_{1}(\theta)+\alpha_{2} f_{2}(\theta)$ is $S C \forall \alpha \in \mathbb{R}^{2} \Longleftrightarrow f_{1}, f_{2}$ are ratio ordered.

- A characterization of LR ordering (for str. + densities)
- Coeffs of opp signs are key
- f_{1} and f_{2} need not be SC in the same direction (e.g., $f_{1}=-f_{2}$)

Linear Combinations Lemma

Lemma

Let $f_{1}, f_{2}: \Theta \rightarrow \mathbb{R}$ each be $S C$.
$\alpha_{1} f_{1}(\theta)+\alpha_{2} f_{2}(\theta)$ is $S C \forall \alpha \in \mathbb{R}^{2} \Longleftrightarrow f_{1}, f_{2}$ are ratio ordered.
Intuition: (\Longleftarrow)

Linear Combinations Lemma

Lemma

Let $f_{1}, f_{2}: \Theta \rightarrow \mathbb{R}$ each be $S C$.
$\alpha_{1} f_{1}(\theta)+\alpha_{2} f_{2}(\theta)$ is $S C \forall \alpha \in \mathbb{R}^{2} \Longleftrightarrow f_{1}, f_{2}$ are ratio ordered.
Intuition: (\Longrightarrow)

Linear Combinations of Multiple Functions

■ Necess. direction of Thm requires aggregating many SC functions

Proposition

Consider $\left\{f_{i}\right\}_{i=1}^{n}$, where each $f_{i}: \Theta \rightarrow \mathbb{R}$ is SC.
$\sum_{i} \alpha_{i} f\left(x_{i}, \theta\right)$ is SC $\forall \alpha \in \mathbb{R}^{n}$ if and only if $\exists i, j$ s.t.
(1) Ratio Ordering: f_{i} and f_{j} are ratio ordered;
(2) Spanning: $(\forall k) f_{k}(\cdot)=\lambda_{k} f_{i}(\cdot)+\gamma_{k} f_{j}(\cdot)$.

Main Result: SCED Characterization

Theorem

v has SCED if and only if

$$
v(a, \theta)=g_{1}(a) f_{1}(\theta)+g_{2}(a) f_{2}(\theta)+c(\theta)
$$

with f_{1}, f_{2} each SC and ratio ordered.

- Sufficiency follows from Linear Combinations Lemma:

$$
D_{P, Q}(\theta)=\left[\int g_{1} \mathrm{~d} P-\int g_{1} \mathrm{~d} Q\right] f_{1}(\theta)+\left[\int g_{2} \mathrm{~d} P-\int g_{2} \mathrm{~d} Q\right] f_{2}(\theta)
$$

Main Result: SCED Characterization

Theorem

v has SCED if and only if

$$
v(a, \theta)=g_{1}(a) f_{1}(\theta)+g_{2}(a) f_{2}(\theta)+c(\theta)
$$

with f_{1}, f_{2} each SC and ratio ordered.

Idea underlying necessity:

- Consider $A=\left\{a_{0}, \ldots, a_{n}\right\}$ and $v\left(a_{0}, \cdot\right)=0$.
\square SCED $\Longrightarrow \quad(\forall a) v(a, \theta)$ is SC $\quad\left(\because \delta_{a}\right.$ and $\left.\delta_{a_{0}}\right)$
- $\forall \lambda \in \mathbb{R}^{n}, \sum_{i} \lambda_{i} v\left(a_{i}, \theta\right) \propto \sum_{i}\left(p\left(a_{i}\right)-q\left(a_{i}\right)\right) v\left(a_{i}, \theta\right)$, where p, q are PMFs
- SCED \Longrightarrow every such linear combination is SC

■ Linear Combinations Prop $\Longrightarrow \exists i, j$:

$$
(\forall a) v(a, \cdot)=g_{1}(a) v\left(a_{i}, \cdot\right)+g_{2}(a) v\left(a_{j}, \cdot\right) \text {, with RO (and SC) }
$$

Main Result: SCED Characterization

Theorem

v has SCED if and only if

$$
v(a, \theta)=g_{1}(a) f_{1}(\theta)+g_{2}(a) f_{2}(\theta)+c(\theta)
$$

with f_{1}, f_{2} each SC and ratio ordered.

While SCED is restrictive, it is satisfied in some familiar cases
■ screening/mech design: $v((q, t), \theta)=g_{1}(q) f(\theta)-g_{2}(t), \quad f$ monotonic

- unless g_{1} is constant, $f(\cdot)$ must be monotonic
- voting/communication: $v(a, \theta)=-(a-\theta)^{2}=-a^{2}+2 a \theta-\theta^{2}$
- for $v(a, \theta)=-|a-\theta|^{d}$ with $d>0$, only $d=2$ satisfies SCED

■ signaling: $v((w, e), \theta)=w-e / \theta \quad$ (usually $e, \theta>0$)

■ in all these cases, one $f_{i}(\cdot)=1$

Main Result: SCED Characterization

Theorem

v has SCED if and only if

$$
v(a, \theta)=g_{1}(a) f_{1}(\theta)+g_{2}(a) f_{2}(\theta)+c(\theta)
$$

with f_{1}, f_{2} each SC and ratio ordered.

Theorem

Assume some agreement: $(\exists P, Q)(\forall \theta) V(P, \theta)>V(Q, \theta)$.
v has SCED if and only if prefs have a representation

$$
\tilde{v}(a, \theta)=g_{1}(a) f_{1}(\theta)+g_{2}(a),
$$

with f_{1} monotonic.

An MCS Characterization

Let $f: X \times \Theta \rightarrow \mathbb{R}$ with (X, \succeq) an ordered set and (Θ, \leq) a directed set

- Assume X is minimal wrt $\mathrm{f}:\left(\forall x \neq x^{\prime}\right)(\exists \theta) f(x, \theta) \neq f\left(x^{\prime}, \theta\right)$

Definition

f has Monotone Comparative Statics on (X, \succeq) if

$$
\left(\forall S \subseteq X, \theta \leq \theta^{\prime}\right) \arg \max _{x \in S} f\left(x, \theta^{\prime}\right) \succeq_{S S O} \arg \max _{x \in S} f(x, \theta)
$$

- $Y \succeq_{\text {SSO }} Z$ if $(\forall y \in Y, z \in Z)(y \vee z \in Y, y \wedge z \in Z)$
- Cf. MS '94: X need not be lattice; monotonicity only in θ but $\forall S \subseteq X$ (not only all sublattices)

An MCS Characterization

Let $f: X \times \Theta \rightarrow \mathbb{R}$ with (X, \succeq) an ordered set and (Θ, \leq) a directed set

- Assume X is minimal wrt $\mathrm{f}:\left(\forall x \neq x^{\prime}\right)(\exists \theta) f(x, \theta) \neq f\left(x^{\prime}, \theta\right)$

Definition

f has Monotone Comparative Statics on (X, \succeq) if

$$
\left(\forall S \subseteq X, \theta \leq \theta^{\prime}\right) \arg \max _{x \in S} f\left(x, \theta^{\prime}\right) \succeq S S O \text { arg } \max _{x \in S} f(x, \theta)
$$

- Define a reflexive relation $\succeq_{S C D}$ on X :

$$
x \succ_{S C D} x^{\prime} \text { if } f(x, \theta)-f\left(x^{\prime}, \theta\right) \text { is SC from only below }
$$

- If f has $\mathrm{SCD}, \succeq_{S C D}$ is an order

Proposition
 f has MCS on $(X, \succeq) \Longleftrightarrow f$ has SCD and \succeq refines $\succeq_{S C D}$.

SCED and MCS

Apply MCS result to our setting; recall $D_{P, Q}(\theta) \equiv V(P, \theta)-V(Q, \theta)$

Definition

$P \succ_{S C E D} Q$ if $D_{P, Q}(\cdot)$ is SC from only below;
$P \sim_{S C E D} Q$ if $D_{P, Q}(\cdot)=0$.

Let $\widetilde{\Delta} A$ be the quotient space defined by $\sim_{S C E D}$

Corollary

V has MCS on $(\widetilde{\Delta} A, \succeq) \Longleftrightarrow v$ has $S C E D$ and \succeq refines $\succeq_{S C E D}$.

A strict version of SCED yields a monotone selection result

Applications

Cheap Talk

■ Sender with type $\theta \in \Theta$ chooses cheap-talk message $m \in M$
■ Receiver with type ψ observes m and takes action $a \in A$

- vNM payoffs $v(a, \theta)$ for S and $u(a, \theta, \psi)$ for R

■ θ and ψ are independently drawn, private info
■ E.g.: $v(\cdot)=-(a-\theta)^{2}$, and $u(\cdot)=-\left(a-\psi_{1}-\psi_{2} \theta\right)^{2}$
What assures "interval cheap talk"? In CS, concavity of u and SCD of v.
Focus on Bayesian Nash equilibria in which:
■ S plays a pure strategy, $\mu: \Theta \rightarrow M$
■ (Minimality.) If m, m^{\prime} are on path, then $(\exists \theta) m \not \varkappa_{\theta} m^{\prime}$

Claim

If v has strict SCED, then every eqm has interval cheap talk. If v strictly violates SCED, then \exists params under which \exists a non-interval "strict" eqm.

Collective Choice (1)

■ Finite group, $\{1,2, \ldots, N\}$, must choose from $\mathcal{A} \subseteq \Delta A$
■ For simplicity, N odd and A finite; let $M \equiv(N+1) / 2$
■ Each i has $v N M$ utility $v\left(a, \theta_{i}\right)$, where $\theta_{i} \in \Theta \subset \mathbb{R}, \theta_{1} \leq \cdots \leq \theta_{N}$

■ Majority preference relation:

$$
\left.P \succeq_{\operatorname{maj}} Q \text { if }\left|\left\{i: V\left(P, \theta_{i}\right) \geq V\left(Q, \theta_{i}\right)\right\}\right|\right] \geq M
$$

Is this transitive (i.e., would majority rule yield "rational choices")?

Claim

If v has strict SCED, then $\succeq_{m a j}$ is transitive and rep. by. $V\left(\cdot, \theta_{M}\right)$

■ Characterization of SSCED + Gans and Smart (1996)

Collective Choice (2)

Claim

If v has strict SCED, then $\succeq_{m a j}$ is transitive and rep. by. $V\left(\cdot, \theta_{M}\right)$.

■ Let $\left\{\theta_{M}\right\}=\operatorname{argmax}_{a \in A} v\left(a, \theta_{M}\right)$
■ Two office-seeking politicians can offer lotteries from ΔA
■ Voters vote "sincerely"

Corollary

If v has strict SCED, political competition with lotteries has a unique Nash equilibrium: convergence to $a=\theta_{M}$.

- Compatible with voters being risk loving on subsets of policy space
- There is a sense in which SCED is necessary

Literature Connections

Literature Connections (1)

Definition

$v: A \times \Theta \rightarrow \mathbb{R}$ has Monotonic Expectational Differences if

$$
(\forall P, Q \in \Delta A) D_{P, Q}(\theta) \text { is monotonic in } \theta
$$

■ Equiv., $V: \Delta A \times \Theta \rightarrow \mathbb{R}$ has Monotonic Differences, not just SCD

Proposition

v has MED if and only $v(a, \theta)=g_{1}(a) f_{1}(\theta)+g_{2}(a)+c(\theta)$, with $f_{1}: \Theta \rightarrow \mathbb{R}$ monotonic.

- SCED characterization but with $(\forall \theta) f_{2}(\theta)=1$

■ SCED is strictly more general than MED

- Paper characterizes when SCED prefs have MED representation
- sufficient if $\exists P, Q \in \Delta A$ over which all types share same strict pref

■ Kushnir and Liu (2016), for a subset of environments

Literature Connections (2)

Definition (Quah and Strulovici 2012)
f_{1} and f_{2} are signed ratio monotonic if for each $i, j \in\{1,2\}$,

$$
\left(\forall \theta_{l} \leq \theta_{h}\right) \quad f_{j}\left(\theta_{l}\right)<0<f_{i}\left(\theta_{l}\right) \Longrightarrow f_{i}\left(\theta_{h}\right) f_{j}\left(\theta_{l}\right) \leq f_{i}\left(\theta_{l}\right) f_{j}\left(\theta_{h}\right)
$$

Proposition (Quah and Strulovici 2012)

Let f_{1}, f_{2} both be SC from below (resp., above).
$\alpha_{1} f_{1}(\theta)+\alpha_{2} f_{2}(\theta)$ is SC from below (resp., above) $\forall \alpha \in \mathbb{R}_{+}^{2}$ $\Longleftrightarrow f_{1}$ and f_{2} (resp., $-f_{1}$ and $-f_{2}$) are signed ratio monotonic.

Literature Connections (2)

- f_{1} and f_{2} could be SC from below and ratio ordered, yet $f_{1}+f_{2}$ could be SC from only above! (Only if f_{1} and f_{2} are not SRM)
- E.g.: $\Theta=[0,1], f_{1}(\theta)=1, f_{2}(\theta)=-1-\theta$

■ Ratio ordering $\nRightarrow\left(f_{1}, f_{2}\right)$ or $\left(-f_{1},-f_{2}\right)$ are SRM

- we allow the pair of SC functions to cross in opposite directions

■ If f_{1} and f_{2} are both SC in same direction, ratio ordering is stronger than $\left(f_{1}, f_{2}\right)$ or $\left(-f_{1},-f_{2}\right)$ are SRM

- we get / require all linear combinations to be SC

Recap

(1) Characterized when set of SC fns. preserves SC \forall linear combinations
(2) Given $v: A \times \Theta \rightarrow \mathbb{R}$ with \exp utility $V: \Delta A \times \Theta \rightarrow \mathbb{R}$,

$$
\begin{array}{r}
V(P, \theta)-V(Q, \theta) \text { is SC in } \theta(\forall P, Q \in \Delta A) \\
\Longleftrightarrow v(a, \theta)=g_{1}(a) f_{1}(\theta)+g_{2}(a) f_{2}(\theta)+c(\theta), \\
\quad \text { with } f_{1}, f_{2} \mathrm{SC} \text { and ratio ordered }
\end{array}
$$

- Necessary and sufficient for a form of MCS on ΔA
(3) Useful for applications

Ratio Ordering

Definition

Let $f_{1}, f_{2}: \Theta \rightarrow \mathbb{R}$ each be SC .
(1) f_{1} ratio dominates f_{2} if
(i) $\left(\forall \theta_{l} \leq \theta_{h}\right) \quad f_{1}\left(\theta_{l}\right) f_{2}\left(\theta_{h}\right) \leq f_{1}\left(\theta_{h}\right) f_{2}\left(\theta_{l}\right)$,
(ii) $\left(\forall \theta_{l} \leq \theta_{m} \leq \theta_{h}\right)$

$$
f_{1}\left(\theta_{l}\right) f_{2}\left(\theta_{h}\right)=f_{1}\left(\theta_{h}\right) f_{2}\left(\theta_{l}\right) \Longleftrightarrow\left\{\begin{array}{c}
f_{1}\left(\theta_{l}\right) f_{2}\left(\theta_{m}\right)=f_{1}\left(\theta_{m}\right) f_{2}\left(\theta_{l}\right) \\
f_{1}\left(\theta_{m}\right) f_{2}\left(\theta_{h}\right)=f_{1}\left(\theta_{h}\right) f_{2}\left(\theta_{m}\right)
\end{array}\right.
$$

(2) f_{1} and f_{2} are ratio ordered if f_{1} ratio dominates f_{2} or vice-versa.

Point (ii) of ratio ordering

$$
\left(\forall \theta_{l} \leq \theta_{m} \leq \theta_{h}\right) f_{1}\left(\theta_{l}\right) f_{2}\left(\theta_{h}\right)=f_{1}\left(\theta_{h}\right) f_{2}\left(\theta_{l}\right) \Longleftrightarrow\left\{\begin{array}{c}
f_{1}\left(\theta_{l}\right) f_{2}\left(\theta_{m}\right)=f_{1}\left(\theta_{m}\right) f_{2}\left(\theta_{l}\right) \\
f_{1}\left(\theta_{m}\right) f_{2}\left(\theta_{h}\right)=f_{1}\left(\theta_{h}\right) f_{2}\left(\theta_{m}\right)
\end{array}\right.
$$

(a) Failure of \Longrightarrow

(b) Failure of \Longleftarrow

Intuition for Necessity

- Consider completely ordered Θ

■ If $\left\{f_{1}(\cdot), f_{2}(\cdot), f_{3}(\cdot)\right\}$ are linearly independent,

$$
\left(\exists \theta_{1}<\theta_{2}<\theta_{3}\right) \quad\left\{f\left(\theta_{1}\right), f\left(\theta_{2}\right), f\left(\theta_{3}\right)\right\} \text { spans } \mathbb{R}^{3} .
$$

■ $(\alpha \cdot f)\left(\theta_{1}\right)=(\alpha \cdot f)\left(\theta_{3}\right)=0 \neq(\alpha \cdot f)\left(\theta_{2}\right) \Longrightarrow \alpha \cdot f$ is not SC

Variation of Lemma

Definition

 $f: \Theta \rightarrow \mathbb{R}$ is strictly $\mathbf{S C}$ if either(1) $\left(\forall \theta<\theta^{\prime}\right) f(\theta) \geq 0 \Longrightarrow f\left(\theta^{\prime}\right)>0$; or
(2) $\left(\forall \theta<\theta^{\prime}\right) f(\theta) \leq 0 \Longrightarrow f\left(\theta^{\prime}\right)<0$.

Definition

$f_{1}: \Theta \rightarrow \mathbb{R}$ strictly ratio dominates $f_{2}: \Theta \rightarrow \mathbb{R}$ if

$$
\left(\forall \theta_{l}<\theta_{h}\right) \quad f_{1}\left(\theta_{l}\right) f_{2}\left(\theta_{h}\right)<f_{1}\left(\theta_{h}\right) f_{2}\left(\theta_{l}\right) .
$$

f_{1} and f_{2} are strictly ratio ordered if f_{1} strictly $\mathrm{RD} f_{2}$ or vice-versa.

Lemma (Strict Version)

$\alpha_{1} f_{1}(\theta)+\alpha_{2} f_{2}(\theta)$ is strictly $S C \forall \alpha \in \mathbb{R}^{2} \backslash\{0\} \Longleftrightarrow f_{1}, f_{2}$ are strictly $R O$.

- Strict RO \Longrightarrow each function is strictly SC

■ New characterization of strict MLRP \forall densities

Strict SCED

Definition

$v: A \times \Theta \rightarrow \mathbb{R}$ has Strict SCED if

$$
(\forall P, Q \in \Delta A) D_{P, Q} \text { is a zero function or strictly } \mathrm{SC} \text {. }
$$

Theorem (Strict Version)
$v: A \times \Theta \rightarrow \mathbb{R}$ has Strict SCED if and only if

$$
v(a, \theta)=g_{1}(a) f_{1}(\theta)+g_{2}(a) f_{2}(\theta)+c(\theta)
$$

with f_{1}, f_{2} strictly ratio ordered.

