Informative Cheap Talk in Elections

Navin Kartik Richard Van Weelden

September 2014
Motivation

- Candidates talk a lot during major elections
 - generally not concrete policy proposals
 - rather, broad statements about policy orientation

- Voters listen, even though talk is non-binding
 - hard to hold candidates accountable

- Why? If announcements are (largely) cheap talk:
 1. Can campaigns convey meaningful information?
 2. Wouldn’t politicians just say whatever gets them elected?
 3. Why might politicians admit non-congruent or minority views?
This Paper

- **Reputation concerns** \Rightarrow elected policymakers *pander*
 - re-election, post-political life, or legacy motives

- Pandering ↑ in voter uncertainty about PM’s preferences
 - sufficient pandering bad for voter welfare
 - “known devil better that unknown angel”

- Under suitable conditions, *informative cheap-talk campaigns*
 - claims of non-congruence believed; credible commitment to not pander
 - claims of congruence are only partially believed; anticipate pandering

- Welfare and comparative statics
 - greater reputation concerns ↑ scope for informative cheap talk
 - informative campaigns can ↑ or ↓ voter welfare
 - informative campaigns can “protect” voter welfare
Pronouncing non-congruence in elections

- Frequent slogan: “You may not always agree with me, but you will always know where I stand”
 - in practice, invoked to defend non-congruence
 - in our eqm, candidates effectively say this or “I share your values”

- Evidence that candidates are not punished for appearing non-centrist
 - e.g. Stone and Simas (2010)

- John McCain and straight talk; John Kerry and flip-flopping in 2004

Pandering mechanism: candidates with known, even non-centrist preferences, willing to take policy actions others wouldn’t

- Nixon goes to China
- Russ Feingold on Patriot act, Iraq war, Clinton impeachment
Related Literature: Reputational Distortions

- **Bad Reputation**

- **Pandering in politics**

- **Our work** emphasizes
 1. voter welfare as a function of prior
 - known devil better than unknown angel
 2. implications for and interaction with preceding electoral campaigns
Related Literature: Non-binding Campaigns

- **Cheap-talk campaigns**

- **Costly signaling**
 - Banks 1990, Callander and Wilkie 2007, Huang 2010

- **Our work**
 - different mechanism why voters value certainty about candidate’s type
 - post-election behavior affected by non-binding and costless campaign
Model
Model
Outline

- Representative voter

- Two candidates compete for office by making cheap-talk announcements of their policy preferences/orientation

- Elected official (PM) chooses policy after privately observing some state of the world

- Voter wants policy to match state

- Candidates care about
 1. being elected
 2. policy: may have congruent or non-congruent policy preferences
 3. reputation for being congruent
Model
Electoral Campaigns

- Two candidates, $i \in \{A, B\}$

- Candidates have policy types (private info): either congruent or non-congruent, $\theta_i \in \{0, b\}$

- Independent types; each candidate is congruent with prob. $p \in (0, 1)$

- Simultaenous non-binding and costless messages, $m_i \in \{0, b\}$

- Voter updates belief about each candidate to $p_i(m_i)$; then elects one
Model
Policymaking

- Elected candidate, PM, privately observes a state \(s \in \mathbb{R} \)

- \(s \sim F \) with density \(f \) and support \([s, \infty)\)
 - allow for \(s = -\infty \) or \(s > -\infty \)
 - on interior of support, \(f \) is differentiable and strictly positive

- PM chooses action \(a \in \{a, \bar{a}\} \subset \mathbb{R} \), where \(a < \bar{a} \)

- Voter observes \(a \) (but not \(s \)), updates her belief about PM's type

\[
\hat{p}(a, p_i) \equiv \Pr(\theta = 0|a, p_i),
\]

where \(p_i \in [0, 1] \) is prob. of congruence when elected
Voter only cares about policy-state match:

\[u(a, s) = -(a - s)^2 \]

Welfare = voter’s (ex-ante) expected utility

Welfare maximizing rule: choose \(\bar{a} \) if and only if

\[s > s_{FB} := \frac{\bar{a} + a}{2} \]

Let \(U(\tau) \) be exp. utility when \(\bar{a} \) chosen if and only if \(s > \tau \)
Model

Politicians' payoffs

- If a candidate is not elected, constant payoff normalized to 0
- If elected, a candidate of type $\theta \in \{0, b\}$ receives utility
 \[
 c - (a - s - \theta)^2 + kV(\hat{p}) + v_\theta
 \]
 - $c > 0$, $k > 0$
 - $V(\cdot)$ is cont. differentiable, strictly \uparrow; normalize $V(0) = 0$ and $V(1) = 1$

- Were $k = 0$, a PM’s cutoff would be
 \[
 s_\theta := \frac{\bar{a} + a}{2} - \theta
 \]
 So non-congruent type, $\theta = b$, biased toward action \bar{a}

- v_θ chosen to equate both types’ payoff from holding office were $k = 0$
Model
Interpreting reputational concern

- Reputational concern: legacy concerns or post-political-life benefits

- But also re-election motive

- One micro-foundation:
 - Second-period election between incumbent and random challenger
 - Voter’s belief about challenger, \(q \), is drawn from a cdf \(V(\cdot) \)
 - after incumbent has chosen his policy \(a \)
 - Game ends after second period, so 2nd period PM uses cutoff \(s_\theta \)
 - Hence, voter re-elects incumbent if and only if \(\hat{p} \geq q \)
 \[\implies \text{prob. of re-election is } V(\hat{p}) \]
 - \(k \) is the value to being re-elected (e.g. \(k = c \), perhaps discounted)
Solution concept: Perfect Bayesian Equilibrium

Assumptions

- The state distribution F and the bias b jointly satisfy:
 1. $s < \frac{\bar{a}+a}{2} - b$;
 2. On the domain $\left[\frac{\bar{a}+a}{2} - b, \infty\right)$, $f(\cdot)$ is log-convex;
 3. $\mathbb{E} \left[s \mid s \geq \frac{\bar{a}+a}{2} - b \right] > \frac{\bar{a}+a}{2}$, or equiv, $U(\infty) < U(s_b)$.

- Office-holding is important relative to reputation: $c \geq k$.

Cheap Talk in Elections

Kartik and Van Weelden
Policymaking Stage
Policymaking Equilibrium

- PM is congruent with pr. $p \in [0, 1]$; will be endogenized
- PM observes s and then (ignoring constants) chooses a to maximize
 $$-(a - s - \theta)^2 + kV(\hat{p}(a))$$

- Any eqm is in cutoffs: PM of type θ chooses \bar{a} if and only if $s > s^*_\theta$
 - necessarily, $s^*_0 < \infty$ and $s^*_b < \infty$
 - we focus on interior eqa: either $s^*_0 > s$ or $s^*_b > s$

- Voter updates belief by Bayes’ rule:
 $$\hat{p}(a) = \Pr(\theta = 0|a) = \frac{pF(s^*_0)}{pF(s^*_0) + (1 - p)F(s^*_b)}$$
 $$\hat{p}(\bar{a}) = \Pr(\theta = 0|\bar{a}) = \frac{p(1 - F(s^*_0))}{p(1 - F(s^*_0)) + (1 - p)(1 - F(s^*_b))}$$
Pandering

Cutoff s_{θ}^* is solution to

$$-(\bar{a} - s_{\theta}^* - \theta)^2 + kV(\hat{p}(\bar{a})) = -(a - s_{\theta}^* - \theta)^2 + kV(\hat{p}(a))$$

Eqm reduces to following equations:

$$s_b^* = s_0^* - b,$$

$$s_0^* - \frac{\bar{a} + a}{2} = k \left[V(\hat{p}(a)) - V(\hat{p}(\bar{a})) \right] \frac{2}{2(\bar{a} - a)}.$$

Proposition

The policymaking stage has a unique equilibrium.

1. **Pandering**: If $p \in (0, 1)$, then $s_0^*(p, k) > s_0 = s_0^*(0, k) = s_0^*(1, k)$.

2. **Comp stats**: $\forall p \in (0, 1)$, $s_0^*(p, k)$ is strictly \uparrow in k, with

$$\lim_{k \to 0} s_0^*(p, k) = s_0 \text{ and } \lim_{k \to \infty} s_0^*(p, k) = \infty.$$
Welfare Effects of Changes in Reputation Concern

- Voter’s welfare when PM is congruent is with prob. \(p \) is

\[
U(p, k) = pU(s_0^*(p, k)) + (1-p)U(s_b^*(p, k))
\]

- For any \(p \in (0, 1) \), small amount of reputation concern helps:

\[
\frac{\partial U(p, 0)}{\partial k} > 0
\]

 - small \(k \) induces pandering by both types
 \(\Rightarrow \) 1st-order benefit from \(\theta = b \), 2nd-order loss from \(\theta = 0 \)

- But eventually, \(\uparrow k \) is harmful: eventually, \(s_\theta^* > s_{FB} \) for both types

Lemma

\(\forall p \in (0, 1), U(p, k) \) str. quasi-concave in \(k \), and so has unique maximizer.
Voter Welfare as a Function of k

\[U(p, k) \]

Graph showing functions p_1, p_2, and p_3 as a function of k. The graph illustrates how voter welfare changes with different values of k. The axes are labeled k (horizontal) and $U(p, k)$ (vertical).
Welfare Effects of PM’s Congruence Probabability

- For any k, $U(p, k)$ maximized when $p = 1$

- For any k, a little uncertainty is beneficial when p is low:
 \[
 \frac{\partial U(0, k)}{\partial p} > 0
 \]

- However, if k sufficiently large, $p = 0$ is not global minimizer

- For any $p \in (0, 1)$, $U(p, k) < U(0, 0)$ when k sufficiently large
 - because for both θ, $s_\theta^*(p, k) \to \infty$ as $k \to \infty$
 - uses asm. that $U(\infty) < U(s_b)$
Proposition

The voter’s welfare, $\mathcal{U}(\cdot)$, has the following properties:

1. For all $k > 0$, $\mathcal{U}_p(0, k) > 0$ and $\mathcal{U}(1, k) > \mathcal{U}(p, k)$ for all $p \in [0, 1)$.

2. $\forall p \in (0, 1)$, there is a unique $\hat{k}(p) > 0$ s.t. $\mathcal{U}(p, \hat{k}(p)) = \mathcal{U}(0, 0)$, and

 (a) $\mathcal{U}(p, k) < \mathcal{U}(0, 0)$ if and only if $k > \hat{k}(p)$, and

 (b) $\hat{k}(p) \to \infty$ as either $p \to 0$ or $p \to 1$.

3. Consequently, if $k > k^* := \min_{p \in (0, 1)} \hat{k}(p)$ then $\mathcal{U}(p, k) = \mathcal{U}(0, 0)$ for at least two values of $p \in (0, 1)$; while if $k < k^*$ then $\mathcal{U}(p, k) > \mathcal{U}(0, 0)$ for all $p > 0$.
Welfare as a Function of the Prior

- Better pool can harm voter
- $U(p, k) < U(0, 0) \implies$ eqm preference reversal over types
PM’s Expected Utility

- Let $W(\theta, p, k)$ be expected utility of type θ (not incl. c)

Lemma

1. For any $\theta \in \{0, b\}$, $p \in (0, 1)$, and $k > 0$,

\[0 = W(\theta, 0, k) < W(\theta, p, k) < W(\theta, 1, k) = k. \]

2. Moreover, for all $p \in (0, 1)$ and $k > 0$, $W(0, p, k) > W(b, p, k)$, and hence

\[W(0, p, k) - W(0, 0, k) > W(b, p, k) - W(b, 0, k). \]

- A limited single-crossing condition
 - for any $p \in (0, 1)$, congruent type expects to end with higher reputation

- Similar condition doesn’t hold for arbitrary increase in prior
 - $p \in (0, 1) \implies W(0, 1, k) - W(0, p, k) < W(b, 1, k) - W(b, p, k)$
Campaign Stage
Cheap-Talk Campaigns

Preliminaries

■ Each candidate i knows $\theta_i \in \{0, b\}$ and picks $m_i \in \{0, b\}$
 - play in policymaking stage will be as characterized earlier

■ Uniformative eqa exist. Do informative eqa?

■ A candidate’s payoff if elected with belief p_i is

$$c + W(\theta_i, p_i, k)$$

■ Focus on symmetric eqa. For each $i \in \{1, 2\}$ and $\theta \in \{0, b\}$,

$$\mu^i := \Pr(m_i = 0|\theta_i = \theta)$$

and, for voter,

$$\sigma := \Pr(\text{electing } i \text{ with } m_i = 0|m_1 \neq m_2).$$

■ Let $p^m := \Pr(\theta_i = 0|m_i = m)$ denote voter belief

■ WLOG, $\mu^0 \geq \mu^b$. An eqm is informative if $\mu^0 > \mu^b$ ($\iff p^0 > p^b$).
Voter Indifference in Informative Equilibria

- If voter not indifferent between candidates who announce different messages, one message will lead to “much larger” winning prob.

- When c sufficiently large, this cannot be the case
 - recall assumption $c \geq k$

Lemma

In any informative equilibrium, $U(p^0, k) = U(p^b, k)$.

- A separating equilibrium does not exist

- A semi-separating equilibrium (either $p^0 = 1$ or $p^b = 0$) must have

$$1 = \mu^0 > \mu^b > 0 \text{ and hence } 1 > p^0 > p > p^b = 0$$
The Main Idea

\[U(p, k) \]

\[U(0, 0) \]

\[p^{*}(k) \]

Cheap Talk in Elections

Kartik and Van Weelden
Existence of Semi-Separating Equilibrium (1)

- A semi-separating eqm exists if and only if there is $p^0 > p$ s.t.
 \[\mathcal{U}(p^0, k) = \mathcal{U}(0, 0) \]

 - $m = b$ is a credible commitment to not pander
 - $m = 0$ increases prob. of being congruent, but will entail pandering

- Non-congruent type made indifferent by voter’s randomization, σ
 \[\implies \sigma < 1/2 \text{ because } W(b, 0, k) < W(b, p^0, k) \]

- Congruent type strictly prefers $m = 0$ by limited single-crossing result

- Necessary and sufficient that $p < p^*(k)$, where
 \[p^*(k) \in [0, 1) \text{ is the largest solution to } \mathcal{U}(p, k) = \mathcal{U}(0, 0) \]

- There is $k^* > 0$ s.t. $k \geq k^* \iff p^*(k) > 0$
Existence of Semi-Separating Equilibrium (2)

Proposition

Semi-sep eqm exists if and only if $k \geq k^*$ and $p \in (0, p^*(k))$. Moreover:

1. $k \uparrow \implies$ set of priors for which a semi-sep eqm exists \uparrow.
2. For any p, there is a semi-sep eqm if and only if k is sufficiently large.
Semi-sep eqm may not be unique, but welfare in any is $\mathcal{U}(0, 0)$

In uninformative eqm, welfare is $\mathcal{U}(p, k)$

Inf. campaigns not always good: affect policymaking incentives
Campaign Welfare (2)

\[P^k := \{ p : U(p, k) < U(0, 0) \} \]

- semi-sep eqm benefits welfare \(\iff \) \(p \in P(k) \)

Proposition

1. For any \(k \) and \(p \), there is an eqm in which welfare \(\geq U(0, 0) \).
2. Above \(k^* \), \(P^k \uparrow \) in \(k \), and \(P^k \to (0, 1) \) as \(k \to \infty \).
3. If \(p \in P^k \), then \(\frac{\partial}{\partial k} [U(0, 0) - U(p, k)] > 0 \).

- campaigns protect voters from too much policy pandering
- greater \(k \uparrow \) scope for beneficial inf. campaigns
- greater \(k \uparrow \) benefits from inf. campaigns
Focus on most-informative semi-sep eqm, i.e. $p^0 = p^*(k)$.

- $\Pr(m = b)$ is
 - decreasing in p
 - direct and indirect channel, as μ^b increases
 - increasing in k
 - \uparrow pandering distortions \uparrow benefit from no-pandering commitment

- Effects on heterogeneity of announcements can go either way
Extensions

- Other informative equilibria
- A limiting case
- More types and/or policy actions
- The reputation function
Recap

- Politicians’ reputation concerns create non-monotonicprefs for voter
 - known devil can be better than unknown angel

- Allows for informative cheap-talk campaigns about policy orientation

- Candidates can reveal themselves to be non-congruent in election
 - credible commitment to not pander in office

- Informative campaigns can increase or decrease voter welfare

- Greater reputation concerns increase scope for and welfare benefits from informative campaigns
Extensions
Equilibria in which Both Types Randomize

- Any non-semi-sep but inform eqm must have both types randomizing

- Cannot rule out because no global single-crossing property:
 \[W(0, p', k) - W(0, p'', k) - [W(b, p', k) - W(b, p'', k)] \]
 is not necessarily positive for \(p' > p'' \)

- Yet, main themes hold for any informative equilibrium

 - Let \(\Pi^k \) be set of priors for which some inform eqm exists:
 \[\forall k, \exists k' > k : \Pi^k \not\subseteq \Pi^{k'} \]

 - Best inform eqm can yield higher or lower welfare than uninform eqm
A limiting case

- Suppose candidates solely max electoral probability
 - if elected into office, policy behavior as before
- As if $c = \infty$

Proposition

In this limiting case,

1. Inform eqm $\iff \exists p', p'' \text{ s.t. } p \in (p', p'')$ and $U(p', k) = U(p'', k)$.

2. For any p, as $k \to \infty$ there are inform eqa with welfare $\to U(1, 0)$.
More Types and/or Actions

- Consider arbitrary finite number of types and actions
 - and more general preferences than quadratic loss

- Sufficient for non-monotonic voter preference in belief about PM:
 - sufficiently asymmetric prior on types
 - sufficiently symmetric prior on types

- Informative communication with three types \((\theta \in \{-b_1, 0, b_2\})\):
 - Two actions, asymmetric prior \((p(b_2) \gg p(b_1))\): two-message eqm in which \((-b_1, 0)\) announce one message, \(b_2\) randomizes over that message and revealing itself.
 - Three actions, symmetric setting: three-message eqm in which 0 announces 0, types \(-b_1\) and \(b_2\) randomize between announcing 0 and revealing.
Endogenizing Reputation Function

- Have assumed politicians want to signal congruence when in office
 - micro-found via a second term that is unaccountable due to term limits

- If second term not free from reputational pressure, voter welfare from re-election can be non-monotonic in belief

- In 1st term, politician may even have an incentive to engage in “anti-pandering”, analogous to current cheap-talk campaign

- Can illustrate in a simple two-period model in which the politician receives reputational payoff at the end of second period

- Ongoing work: “functional fixed point” of politicians’ reputational value and voter’s welfare