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Abstract

The infinite-server (IS) queueing model is more widely applicable than it
might seem. Given that queueing science is primarily concerned with con-
gestion (e.g., waiting and blocking) associated with limited resources, on the
surface the IS model may seem useless and uninteresting. However, it is re-
markable what a central role the IS model plays. First, both the classic and
transient versions of Little’s law can be expressed in terms of the IS model.
Second, IS models often serve as surprisingly good and useful approximations
for multi-server queueing systems. The idealized IS model with time-varying
arrival rate is useful for understanding the physics of corresponding many-
server queues. Third, asymptotic results for IS models can be useful tools
for proving corresponding asymptotic results for systems with only finitely
many servers. Finally, and arguably of greatest importance, for multi-server
systems with time-varying arrivals, the IS model serves as the basis for im-
portant offered-load analysis, which characterizes the total load faced by the
system, and serves as the basis for much useful engineering analysis.
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1. Introduction

If people in the field of operations research and management science were
asked to identify the most applicable and least applicable models of queueing
theory, surely many would fairly select L = λW (Little’s law, [14, 16]) as one

Preprint submitted to Operations Research Letters February 15, 2012



of the most applicable and unfairly select the infinite-server (IS) queueing
model as one of the least applicable.

First, the relation L = λW deserves its celebrity. The relation L = λW
states that the average number of customers (items) waiting in line (in a
system), L, is equal to the arrival rate λ multiplied by the average waiting
time (time spent in system) per customer, W . Under very general conditions,
the relation is valid for both long-run averages of individual sample paths
and expected values of stationary random variables in stochastic models; see
[1, 5, 37, 38, 39, 41, 42]. As emphasized by [16], the relation L = λW has
been widely applied; also see [15, 21, 23].

In contrast, performance results for the infinite-server (IS) queueing model
would surely be on few people’s short list of general widely applicable results.
Indeed, given that queueing science is primarily concerned with congestion
(e.g., waiting and blocking) associated with limited resources, on the surface
the IS model may seem useless and uninteresting. However, it is remarkable
what a central role the IS model plays.

We mention the IS model together with L = λW to make a point: Ac-
tually, the relation L = λW can be viewed as a consequence of the IS model
theory. Both Little’s law and its time-varying generalization can be expressed
in the setting of the IS model. They can be viewed as applications of IS the-
ory. The essential point here is that there are important connections between
Little’s law and the IS model. Establishing connections between existing
theories may be just as important as establishing the theories themselves.
Certainly, connections are a key part of understanding.

In this paper we make the case that the IS model is more useful than it
might appear. First, in §2 we indicate that both the classic and transient
versions of the relation L = λW can be expressed in the setting of the
IS model. Second, in §3 we indicate that the IS model often serves as a
useful approximation for the more obviously appropriate queueing models
with only finitely many servers. Third, we point out that IS models provide
important tools for proving theorems for many-server queues, such as heavy-
traffic limit theorems. Finally, and arguably of greatest importance, for
multi-server systems with time-varying arrivals, the IS model serves as the
basis for important offered-load analysis, which characterizes the total load
faced by the system, which serves as the basis for much useful engineering
analysis.
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2. The Connections to Little’s Law

Theorem 1. The results for Little’s law can be recast in terms of the IS
model.

For recent papers, focusing on the applied value of Little’s law, see [16, 21].
For a review of Little’s law, see [39]; for the connection mentioned above, see
the statement in italics on p. 238. For more, see [1, 5, 37, 38, 39, 41, 42].

Theorem 2. The results for the transient Little’s law can be recast in terms
of the IS model with an arrival process having time-varying rate.

For papers on time-varying Little’s law, see [2, 7, 28, 29]. None of this
mentions the IS model. However, to see the key connection, see Remark 2.3
of [24] and §4 of [17].

3. Approximations for Multi-Server Queues

3.1. Basic Theory for IS Models

1. Exact results with nonhomogeneous Poisson arrival processes [3, 4, 24]

2. Heavy-traffic limits for Gt/GI/∞ [12, 31] and references therein.

3. Heavy-traffic limits for Gt/G/∞ and with dependent service times [32,
33, 34]

We will concentrate on the paper [3]. This paper discusses the applied sig-
nificance of the basic IS theory, emphasizing the case of time-varying arrival
rates. It considers the basic Mt/GI/∞ model with nonhomogeneous Poisson
arrival process and i.i.d. service times that are independent of the arrival
process. The theory for this IS model was developed long before [3]; the
paper [3] reviews a classic proof and discusses the engineering implications
of the key results.

Eleven things to note in Theorem 1:

1. Q(t) has a Poisson distribution for each t, and so has one parameter,
its mean m(t).

2. The stochastic process {Q(t) : t ≥ 0} is not a Poisson process.

3. The mean m(t) has a simple expression as an integral (or a double
integral); see the first lines display on p. 733.
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4. From (3), the mean can be expressed as the integral of the arrival rate
over a random service time, S, prior to time t.

5. From (3), the mean can be expressed as the PSA OL mPSA(t) ≡
λ(t)E[S] plus a random time lag by Se (Se in (1) instead of S).

6. The departure process is also a nonhomogeneous Poisson process.

7. From (4), the departure rate is the arrival rate with a random time lag,
equal to a random service time S (S, not Se).

8. Remarkably, Q(t) is independent of {D(s) : s ≤ t}.
9. The proof of Theorem 1 follows from Figure 1.

10. The Poisson arrival process and i.i.d. service times leads to a Poisson
random measure representation.

11. The formula for the mean does not actually depend on the Poisson
property, yielding the so-called time-varying Little’s law. (This is ob-
served in Remark 2.3 of [24].)

Other things to note:

1. Theorem 2 (Fig. 3): joint distribution of Q(t) and Q(t + u)

2. Corollary 4: The simple relation between m(t) and PSA mPSA(t) ≡
λ(t)E[S] with M service

3. Theorem 9: The quadratic approximation (e.g., Taylor): (14) showing
the time lag and space shift.

4. (20): The approach to steady state in a stationary model starting
empty: m(t)/m(∞) = P (Se ≤ t)

3.2. Where the Model Directly Captures the Main Issues

1. movement through space, network structure [24, 43]

2. The Poisson Arrival Location Model (PALM) [26]

3. produce life cycle dynamics [22]

4. wireless communication [13] (conversations by people moving through
space)

4. A Tool for Proofs for Multi-Server Models

1. Reed’s approach to G/G/N [36]

2. The new FWLLN and FCLT for the Gt/GI/st + GI model in [19, 20].
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5. Offered Load Analysis to Cope with Time-varying Arrivals

See [9] for survey of ways to cope with time-varying arrival rates in service
systems.

1. Modified Offered Load Approximations §4.3 of [9] and [25, 27, 43]

2. Stabilizing Performance [6, 10, 18, 43]
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