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Customer B overtakes customer A in a queueing system if A arrives before B but
B departs first. To understand the phenomenon of overtaking in & network of
queues and its impact on sojourn times, it is important to develop concepts of the
amount of overtaking. In this paper, two stochastic measures of the amount over-
taking are defined: the random number of customers overtaken by an arbitrary
customer and the random permutation of the original order of n customers upon
departure.  Describing these measures, however, often presents rather difficult
combinatorial and probabilistic problems. In this paper, we make several conjec-
tures about the amount of overtaking in open Jackson networks and its impact on
sojourn times. Then we desctibe the amount of overtaking in several smaller net-
works, for example, a single node with the first-come first-served discipline and instan-
taneous Bernoulli feedback.

1. INTRODUCTION AND SUMMARY

We say that customer B overtakes customer A in a queueing system if A arrives
before B but B departs first. The queueing systems we have in mind are networks
of queues or associated subnetworks, Overtaking is of interest, for example, in packet-

switched communication networks because real time is required to reassemble pack- -

ets into messages when the order of the packets can be altered in transmission. Over-
taking is also of interest in networks of queues because of its impact on sojourn
times (the time spent at each node in the network). In an open Jackson network of
M/M/1 queues with one customer type, if a customer traveling through the network
along some path cannot be overtaken, then given that the customer follows this
path the successive sojourn times at the nodes along the way are independent; see
Reich [17, 18], Walrand and Varaiya [21], and Melamed [16]. On the other hand
when overtaking is possible, the sojourn times-are in general dependent; see Burke [3]
and Simon and Foley [19].
In a single-server queue, overtaking is mtnnately connected to the queue discipline.

. There is no overtaking with the FIFQ (first-in first-out) discipline and maximum over-
" taking with the LIFO (last-in first-out) discipline (within the class of work-conserving
disciplines that do not allow the server to be idlé when a customer is present). Other
" intermediate disciplines such as ROS {random order of service) differ to a large extent
by the degree of overtaking; see Kingman [13, 14] and Vasicek [20].
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We beheve that overtakmg is an lmpOrtant property of queuemg systems that de-

serves systematic study. The purpose of this paper is to begin such a study. The goal
is to develop useful quantitative measures of the. amount of overtaking.” We want to
know how miodel structure affects overtaking and how in turn, overtaking affects the
standard measures of congestion, in particular, sojourn times. We believe that sojourn
times often become more variable as overtaking increases. In. this paper we indicate

ways to make this statement (the conditions and the conclusion) more precise.
" The principal queueing systemis we consider are open Jackson [8, 9] networks.
(See Disney [4] and Kelly {11] for background on networks of queues.) However,
we have few results at this level of generality.. We make several conjectures about Jack-
son networks, which should hold more generally, and establish results for various spe-
cial cases.

The basic apen Jackson network has one type of customer, unlimited waiting space
customers served in order of their arrival at each node at rates that may depend on the

number of customers at the node (thus covering the standard multiserver queue as a.

special case), arrivals from outside at a rate that may depend on the total number of
customers in the network, and a probability distribution on the entering node indepen-
dent of the network history; see pp. 456-464 of Heyman and Sobel [7]. In a Jackson
network ‘there is Markovian routing: a customer departing node. 7 goes next to node j
with probability g, independently of the history of the network and past routing. In
a Jackson network the vector descrlbmg the number of customers at each node is a
continuous-time Markov chain,’

- Qur first conjecture is about sojourn tlmes in Jackson networks for which overtaking
is possible. -

Conjecture 1.1. In an open Jackson network, the sojourn times of a customer at the
different nodes on his route through the network. are positively dependent, for exam-
~ ple, associated (see Barlow and Proschan [1]).

‘When random variables are associated, the correlations are nonnegative, but also the
correlations between all nondecreasing functions of the random variables are nonnega-
tive. All experimental results known to us are consistent with Conjecture 1.1. For ex-
ample, Kiessler [12] reported that he found positive correlations by simulation in the
Simon-Foley network (Section 2). However, the correlations are so small, they are
often hard to detect. (Ralph Disney and Benjamin Melamed indicate that they have
also done other work with alt results being consistent with Conjecture 1.1.)

Before proceeding, we point out that in multitype Jackson networks the sojourn
times can be dependent without the direct overtaking we are considering. To obtain
independence, it is necessary to rule out indirect overtaking as well, in which the in-

fluence of later customers can overtake the designated customer; see Walrand and
Varaiya [21] and Melamed [16]. For example, a customer of type 1 can be over-
taken indirectly on the path (1, 2, 3) if a customer of type 2 can go from node 1 to
‘node 4 and a customer of type 3 can go from node 4 to node 3. We do not consider
such indirect overtaking here, but is obviously worth studying. :

The next two conjectures express the idea that the sojourn times should become
more variable as the overtaking increases. They involve an undeﬁned measure of over-
takmg, but the idea should be clear .
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Conjecture 1.2. Inan open Jackson network the correlatlons between sojourn times
increase as the overtakmg increases.

Conjecture 1.3. In an open Jackson network, the total soloum time dlstnbutlon be-
- comes more variable, for example, increases in the ordering determined by the ex-
pected value of all nondecreasing convex real-valued functmns (see Wtht [22]) when
the overtaking increases.

In this paper we consider only a smgle customer type. Moreover, we consuler over-
taking for customers that enter and leave the network at common designated nodes.
-This is not as much of a restriction as it might appear because we can add two extia
single-server FIFO nodes to the network and let all external arrivals enter via one of
these nodes and let all departures from the network be routed through the other node.
These extra nodes do not change the overtaking. If ail external arrival processes were
originally independent Poisson processes, then this is maintained in the modified net-
work by having a single Poisson arrival process to an exponential server with Markov-
ian routing. However, we actually consider more general arrival processes, such as the

general stationary point processes of Franken et al. [6}. We also assume Markovian .

routing throughout, that is, that each departure from node 7 is routed to node j with
probability q;; independently. of the history of the network. For general arrival pro-
cesses, we cannot add an extra node with Markovian routmg at the front end without
loss of generality.

We consider two measures of overtakmg The first counts the number of customers
overtaken, without regard to their identity. The second focuses on how the order of
particular customers is altered, for example, whether or not the order of two succes-
sive arrivals is reversed upon departure. We assume throughout that the system is in
equilibrium, that is, that we have appropriate stationary processes; see [6].

The first measure of overtaking can be defined in two related ways: Let N be the
number of customers that an arbitrary customer overtakes (active or optimisti¢ view)
and let NV be the number of customers that overtake an arbitrary customer (passive or
pessimistic view). It appears that V is often much easier to analyze than ¥, and we
focus on it in this paper. However, if we are interested in /V, it is important to observe
- that in the reversed network (with time reversed) the pair (, V) is just (V, N) for the
original net_work.' Hence, if. the network is reversible (the finite-dimensional distribu-
tions of the reversed processes are the same as the original processes, see p. 5 of Kelly
- [11]), then N and N have the same distribution. Even if ¥ and N do not have the
same distribution, under considerable generality we have EN = EN. The idea of course
is that every overtaking event is counted once by the overtaking customer and once by
the overtaken customer, but the timing is not identical because the overtaken cus-
tomer arrives first.

We now show that typically EN=EN. With stationary versions, it is possible to
define a stationary process {X(7, /), -co < i, j < +oo} where X(i, ) is 1 if customer i
overtakes customer j, i < f, and 0 otherwise. Then let

™ ) i=j-n ‘
> XG0, Na= X XG0, (1.1)

j=i+n - i{=-—o

N;=Ny, and N;=Nj,. Then N; and A are distributed as N and N for each i, /. If
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{N}]: and {V}} are metrically trax_'_lsiﬁvé as well as sfatiohéry (s_eé _[6].), then

CEN=tim 23 N, and EN= lim ZN, . '(1.2)

: u--ree n i=1 n—>w N j=1

We obviously have £EN = EN if the tails of the series N} and Nj in (1.1) are appropn-
ately negligible, that is, if Ny, - 0 and Njy — 0 as n oo uniformly in i and j.
The second measure of overtaking focuses on changes. in- order. The network of

‘queues maps the original order (1, 2, .. ., #) of any #n successive customers into one of

the n! permutations of the vector (1, 2, ..., 7). The second measure of overtaking is

the probability distribution (one for each 1) on this space If,, of permutations =, repre- -

senting the distributions of the order of these customers upon departure. We can com-
pare to such probability distributions, say P, and P,, using stochastic order after de-
fining a partial order on the space of permutations; see Kamae et al. [10]. We define a
partial order on the space of permutations by saying that m, <, if m, can be ob-
tained from 7, by successive switches of ordered adjacent elements, that is, by switch-
ing (7, j) into (f, {)} if i>]. See p. 159 of Marshall and Olkin [15] for a discussion of
this and related orderings of permutations. A diagram of the partial order in the case
n =3 appears in Figure 1. The degree of overtaking can be conveniently summarized
by the number & of pairwise switches required to bring the permutation to the original
order (1, 2,...,n). From Figure 1, we see that d(3, 1, 2)=2>1=d(2, 1, 3), but
(3, 1, 2) and (2, 1, 3) are not comparable in the partial order. We say that probability
measure P, is stochastically less than or equal to probability measure P, on II,,, and
write Py gy Py, if E(f, Py) < E(/, P;) for all nondecreasing real-valued functlons fon
(I1,, <), where E(f, P) is the expected value of fwith respect to P.

We say that a network is order preserving if there can be no overtaking. We say that

1,2,3)

1,32 ' 2,1,3)

(3.4.2) (2.3

(3,21

FIG. 1. The diagram of the partial order on the space II,, of permutations: the case
n=3. ’
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7a network is stochastzcalb; order preservmg if the order is more likely to be preserved
than reversed or, more specifically, if the probability distribution on the departure
permutation is stochastically greatér or équal to the uniform distribution. The LIFO
dlsc1phne yields simple examples of networks that are not stochastlcally order preserv-, .
ing. However, we make the following conjecture.

Conjecture 1.4. All open Jackson networks ai_e stochastically order preserving.

There are certain obvious deficiencies in considering only the permutation of n.suc-
cessive arrivals. We do-not account for other arrivals, so we cannot consider the effect
of two networks in succession operating on a given arrival sequence, that is, where the
departures from the first network are the arrivals to the second. Related measures of
overtaking might be defined by letting an arbitrary arrival have the fixed label 0 and
then considering other customers’ position relative to this special customer. The net-
work permutes the sequence (...,-n,- (n-1),...,-1,0, 1, 2,...)into the order
of departures relative to the designated customer. If the output of one network is the
input to another network, then the output of the second is just the composition of the
two network permutations. However, the distribution of the departure process is no
doubt dependent on the permutation, making further anatysis difficult. .

" In the remainder of this paper we focus on a special case of permutations: the simple
switch. Let ¥(k) be the probability that an arbitrary customer does not overtake the
kth previous customer. As z special case of Conjecture 1.4, we have

Conjecture 1.5. For all open Jaékson networksand all k2> 1,
yk) = ‘I /2.
Another natural conjecture is
Conjécture 1.6. For all open Jackson networks, ;y(k) is nondecreasing in k.

Since the system is assumed to be in equilibrium, the probability that an arbitrary
customer has departed before & more customers arrive approaches 1 as k ~<c. Hence,
y(k)— 1 as k +oo, Examples 2.1 and 4.1 show that, for any &, y(X) can be arbitrarily
close to 1 3 in a large network of smgle-server FIFO nodes or in a single multiserver
node:

Our definition of overtaking allows only a single comparison: We compare the order
of customers upon arrival and departure. To understand complex networks, we can of
course apply this single-comparison definition to subnetworks as well as the entire net-
work, but more detailed concepts of overtaking may also be useful. If we can order
the nodes and the waiting positions at each node, we can also define the number of
times customers A and B switch order before departure. Instead of (%), we could
work with §(k), the probability that an arbitrary customer never overtakes the kth
. previous customer during his stay in the network. Obviously the lower bound of 1 zin
- Conjecture 1.5 does not apply to 4(k). A minor modification of Example 2.1 shows

" that (k) can be arbitrarily close to 0.
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In the rest of the paper, we study the amount of overtaking in several small net-

* works. In Section 2 we consider the. simple three-node network used by Simon and

Foley [19] to show that sojourn times at-different nodes in an acyclic network can be

dependent. (See Fig. 2,) In Section 3 we consider a symme_tnc‘ generalization in *
‘which departures from the first node are split and recombined after going through one

of two or more intermediate nodes. (See Figs. 4 and 5.) In Section 4, we consider the
standard multiserver queue with the first-come first-served discipline. Finally, in Sec-
tion S, we cons1der a single FIFO server with instantaneous Bernoullj feedback. (See
Fig. 6.) :

We reiterate that this study isa bare beginning. The conjectures remain unresolved
and, even for the small network examples, useful relationships between the amount of
overtaking and sojourn-time distributions remain to be determined.

2. THE SIMON-FOLEY NETWORK

In this section we investigate the simple three-node network used by Simon and

Foley {19] and Walrand and Varaiya [21, Fig. 2] to show that sojourn times at the.

different nodes in acyclic networks are not all independent when there can be overtak-
ing. See Figure 2. This network has three single-server nodes, each with the FIFQ dis-
cipline and unlimited waiting space. Let all external arrivals come to node 1. Let suc-
cessive departures be routed from node 1 independently (of the history of the network
and past routing) to node 2 with probability p and to node 3 with probability 1 - p.
Let all departures from node 2 go to node 3 and let all departures from node 3 leave
the system.

For the moment, the arrival process at node ] and the three service processes can be
general stationary point processes as in Franken et al. [6]. We assume that equilib-
futn exists and that the network is in equilibrium, that is, we have a stationary version
of the vector queue-length process.

Let O, be the queue-length (number in system) at node 2 seen by a departure from
node 1. (This need not agree with the queue-ength at node 2 seen by an arrival to
node 1.)

For an arbitrary customer to overtake other customers it is necessary and sufficient
that two conditions be satisfied: (i) the customer must be routed from node 1 to node

"3, and (ii) upon departure from node I, node 2 must not be empty. The probability a

customer overtakes exactly &k customers is just (1 - p) P(Q, = k).
In this general framework it is possible to bound the probability of a switch, that is,
that an arbitrary customer will overtake any specific previous arrival. As before, let

m(2)
'_-;.m® ﬁ ."“’ » ~ >_|—_n_|®—»

FIG. 2. The Simon-Foley acyclic network: Customers going directly from node 1 to
nqde 3 overtake customers at node 2,
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(k) be the probability that the customer does not overtake the kth previous arrival.
For. overtaking, the arbitrary customer must go to 3 and the previous customer must
go to 2, for which the probability is p(1 - <l - Given this, the. previous arrival may
depart before the designated customer arrives. Thls gives 1 - y(k) <  for all k. With
jid exponential service times, independent of the arrival process, ¥(k)> 2. For this
model, it is easy to show that v(k) is nondecreasing in k. As & increases, the previous
arrival is more likely to have departed before the designated customer arrives.

For the Simon-Foley network, y(k) > %.' However, we can use the Simon-Foley net-
work as a component in a larger network to make y(k) arbitrarily close to  for any .

Example 2.1. The following open Jackson network of a single-server FIFO queues is
a sequence of Simon-Foley networks. Let there be 2n+ I nodes. From nodes 2k + 1,
0<k<n- 1, let the probability be 1 of going to node 2k + 2 and 4 of going to node
2k +3. Let all departures from node 2k, 1 k< n, go to node 2k + 1. Let all de-
partures from node 2#x + 1 leave the system. (See Fig.3.) Let all arrivals enter node 1
in a Poisson process at rate 1. Let the service rates be p =2 at nodes 2% + 1, so that
the traffic intensity is 2 at each of these nodes. Let the service rates at nodes 2k be
just slightly larger than 1 3 S0 that the traffic intensities are only slightly less than 1. In
particular, let the service rate be [2(1 - e @~ 1)1 at node 2k, so that the traffic in-
tensity at node 2k is 1 - e"®~%), By heavy traffic theory, this guarantees that the
equilibrium queue length at node 2k is much larger than the equilibrium queue length
at node 2(k + 1) for 1 <k < n- 1. For any k, for sufficiently small e, the probability
_is therefore approximately % that an arbitrary customer overtakes the kth previous
customer by node 3. This occurs if the Xth previous customer is routed from 1 to 2
while the arbitrary customer is routed from 1 to 3. Since the queue-length at 2 is
much larger than at any other node, the probability of reovertaking later is negligible.
The probability that both customers are routed the same way from node 1 is % The
experiment is then repeated at node 3, etc. Hence, 1 - (k) is approximately

@~ i@+ @G- G e

In other words, for e sufﬁciently small and # sufficiently large, y(k) is arbitrarily close
to 1
2
If, instead, we let the traffic intensities at nodes 2k be increasing by making the ser-
vice rate by [2(1 - €¥)]™! at node 2k (which is equivalent to reversing time in the
original network), then the probability of reovertakmg is significant at each opportu-
nity and ¥(%), the probability of never overtaking the kth previous customer (intro-

duced toward the end of Section 1), can be made arbitrarily close to 0. n
()
172 :
12
-:1® :@m X 6

FIG 3. A sequence of S]mon—Foley networks.
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We now return to the th;éeihbde ‘Simon-Foley network (Fig. 2) and consider the
special case of a Jackson network: Let the arrival process be Poisson at rate A and let

" the service times be iid at each node with rate 1y To have stablhty, we assume pq =

Ny <1, p2 = Aol <1,dnd py =0(1 - p)us < 1.

Since the departure process from node 1 is Poxsson see Burke [2], and sincé Poisson

departures see time averages, see Wolff [23], @, has the geometric distribution with
parameter p,. The expected number of customers overtaken by an arbitrary customer
is thus . o ' :

=(1-p)EQ, =(1 - p) pal(l-p2)=p(-p)x/(L-p%),  (22)

where x = Afu,.  Thus, EN depends on just two parameters p and x, where p and x
must satisfy x < 1/p for stab111ty The followmg properties of EN(x, p) are easily
established.

Theorem 2.1. EN(x, p) is increasing in x and a concave function of p with minima at

p=0and 1 and a maximum at

Pmax.= (1 -v1-x)x, 0<x<1. _(2.3)
When 0 <x < 1, the possible values qf EN range from 0 to p, with
2(1-4T-x '
maxEN='(_T__)_I=2pmax-l, 0<x<1. (2-4)

P

For x> 1, EN can be made arbitrarily large by letting p + x™'. Forx=1,EN—~1a1s
p>1L

A next step for this example, which we have not completed, is to examine the jomt
distribution of the sojourn times at nodes 1 and 3. In support of Conjectures 1.1 and
1.2, we would like to show that the correlation between the sojourn times is nonnega-
tive, increasing in x and concave in p with a maximum at ppy., in (2.3).

'3. SPLITTING AND RECOMBINING

Consider the network in Figure 4 with four single-server nodes, each with the FIFO

discipline and unlimited waiting space. Successive departures from node 1 are routed

independently (of the history of the network and past routing) to node 2 with prob-
ability p and to node 3 with probability 1 ~ p. Departures from nodes 2 and 3 pro-

- ceed to node 4 and from there out of the system. Thus, customers going to node 2

(3) can overtake customers going to node 3 (2). However, unlike the Simon-Foley net-
work, a customer who goes to node 3 will typically not pass some of the customers at

" node 2. Some of the customers at node 2 that the designated customer sees upon his

arrival at node 3 may still depart from node 2 and arrive at node 4 before he does.
Moreover, some of the customers that this customer sees at node 2 when he departs
from node 3 may have arrived in the network after him. Hence, the distribution of the
number N of customers overtaken is more complicated here.
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FIG. 4. Splitting and recombining: customers going to node 2 can overtake customers
going to node 3 and vice versa. ‘

We remark that this four-node network reduces to the Simon-Foley network when
the service times at node 3 are alt 0. Also nodes 2 and 3 together can be thought of
as a single two-server node in which customers are random]y assigned to one of the
Servers upon arrival.

It is useful to consider 2 new random quantity, C, related to the number N, defined
as the number of customers seen upon departure from node 1 at node 2 if he goes to
node 3 or at node 3 if he goes to node 2. Obviously, C is the maximum number of
customers that could be overtaken, so that

N<C. : (3.1)

' Begin by letting the arrival and service processes be general stationary point pro-
cesses and consider the network in equilibrium. Let Q; be the queue length at node j
seen by a departure from node 1. The probability distribution and mean of C are

PC=k)=pP(Q; =k)+(1 - P)f‘t'(Qz =k), k=0,
and '
EC=pEQ; +(1 - p)EQ,.

As in Section 2, in this genera] setting it is easy to bound the probability of a switch
of order for any two customers: ‘one must go to node 2 and the other must go to node
3 so that the probabxhty a customer passes the kth previous arrival is bounded as:

Y@ <2p(1-p)<3

Suppose that the sequences of service times at nodes 2 and 3 are each iid and inde-
pendent of the departure process from node 1. Then it is not difficult to obtain an ex-
pression for EN as-a functlon of p, the distribution of (Qz, @3), and the service rates
4z and 3

NG 2)= 5 5 PQ; =/,05 = k)[ 5 - myags,m,0)

i=0 k=0 - m=90

+(1-p) ); (- m) etk m, 1 - q)] (3.2)
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'where q =y /(]u2 + ,us) and oz(], m, q) is the probablhty in a sequence of Bernoulli
- trials with probability g of success' that exactly #n failures precede the jth success,
whlch of course has the negatwe binomial distribution

a(j, m, 4) = (’" " ) da-am 69

see Feller [5, p. 165]. Unfortunately, however, (3.2) is a bit cumbersome. -
Now consider the case of a Jackson network. Since Q; has a geometric distribution,

p(-p)xs  p(l-D)x _ (3'.4)

EC= ,
 1-(Q-p)xs 1-px,

where x; = Mu;. Suppose in addition that x; = x5 = x, so that £C in (3 .4) depends on
the two parameters x and p. For stability, 1 - x™! <p <x7!, which is binding for
x 2z 1. Solutions are possible if and only if 0 <x < 2. :

One might conjecture that in the symmetric case with x, = x3 = x that FC is always
maximized by p = %, but this is not the case.

Theorem 3.1. In the symmetric case, with x, =x; =x,

. oo, 1<x<2
sup EC(x,p) =y x/2 (3.5)
. 0<x<], :
? 1- (x/2) *

with the extreme approachéd asp tx™ or p § 1 - x7! for 1 <x < 2; the extreme at-
tained for all p, 0 <p <1, for x=1; and the extreme attained vniquely by p = %for
0<x<1. ' A

Proof. For x> 1, let p approach the indicated extreme values. For x < 1, differen-
‘tiate (3.4) with x, =x; =x and observe that the polynoinial must have zeroes less
than 0 and greater than 1 because EC(x, p) =0 for p = 0 and 1, so that there is at most
one zero for 0 < p < 1, this zero occurring at p = % u

We can apply Theorem 3.1 to deduce results for EN in the symmetrlc case. First we
estabhsh the following lower bound for EN.

~ Theorem 3.2. In the symmetric case,

 ENGLp) B p(l - ) (% - 2)'. (3.6)

Proof. The arbitrary customer goes to node 2 and finds it empty with probability

g P(Q; =0)=p(1 - p) x. If node 3 had infinitely many customers, the number of
departures from node 3 before the arbitrary customer at nede 2 departs would be geo-

. metrically distributed with parameter 1 and thus mean 2. Hence, we have (3.6). =

L PR S VU
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Theo}em 3.3. In the symmetric case;

0 e, 1<€x<2 :
-sup EN(x, p) = o . S £
- , 1,_ =1, ' ‘
and
sup ENGe, p) < 12 L p<x<, -.(3.8)
? ' 1-(x/2)

with the supremum approached asp T x™! forx > 1.

Proof. For x>1, apply Theorem 3.1: use the fact that EC(x, p)~>asp t x71.

For x € 1, combine (3.1) and (3.5) to obtain the upper bound

sup EN(x, p) < (3.9
) .

x/2
1-(xf2)
It is not difficult to show that EN(x, p) is strictly less than this upper bound for x <1
because there is positive probability that one of the C customers will not actuaily be
overtaken. For x = 1, apply Theorem 3.2 with (3.9). With x = I, the lower bound is
(1 - p)* - 2p, which approaches 1 asp > 0. . n
" Remark. From (3.8) and (2.3), we conclude that in the Jackson case sup, EN(x, p)
is strictly larger for the Simon-Foley network in Section 2 than for the four-node net-
work in Figure 4 for x just less than 1. The two agree for x > 1. We conjecture that
the strict ordering holds for all x, 0 < x < 1. '

It is also possible to split the departures from node 1 into more than 2 parts and re-
combine, as shown in Figure 5. If the maximum probability p; of going from node 1
to node j, 2<j<n+1, converges to 0 as n <o, then in the limit the nodes {2, 3,

., n+ 1} behave like an infinite-server system. With iid exponential service times,
with probability very close to 1,.the arbitrary customer finds a free server and then
passes each other customer with probability —;- Hence we have

Theorem 3.4. If n— o0 and max, < j< n+; 2j >0, then in the symmetric Jackson
case '

lim EN(x DPz,--Pp)=xf2, x>0 (3.10)

n—>w
" Proof. The expected number of customers in the system when the designated cus-
tomer arrives is £Q for an M/M/ee system, which is x. As noted above, in the limit the
. designated customer arrives at an empty node. He then passes each other customer
with probability 1. 7 , , =

Remark. Equation (3.10) is Strictly less than the supremum of ENover py,...,p,
for x = 1 and any »n with n> 2 because it is strictly less than (3.7). This shows that
= n~! does not cause the most overtaking in the symmetric case.



3 i
o
S0
e
me

FIG. 5. Splitting into n parts and recombining.

4, A MULTISERVER QUEUE

Consider the standard s-server queue with unlimited waiting room and the first-come
first-served discipline. Let the arrival process be a general stationary process but let
the service times be iid and independent of the arrival process. If the service times are
. exponentially distributed, then ‘

P> 1)(8' 1)

- Kk
2' gP(Q)

EN=

@1

where ( is the equilibrium number in system seen by an arrival. As 5o, this ap-
proaches EQf2. If the service-time distribution has increasing (decreasing) failure rate,
then (4.1} is an (upper) lower bound.

In the M/G/s case, Q has the time-stationary mstrlbutlon In this case the expected
number of busy servers seen by an arrival is

EB=Nu | | “2)
{see (423) of [6]}, so that '
ev=-EB_PQ=9) (4.3)
2 2
: _Henée, we have established:
Theorem 41 For the M{G/s_queue, '

sup EN(s) EN(oo) — (44)




PEAY

OVERTAKING IN A NETWORK OF QUEUES 423

7 For )\Ip? 1,4 4) is stnctly Iess than EN for the networks in Sectlons 2and 3. We
conjecture that this ordering holds for all x = Mu. :

If instead of a Poisson arrival process, we have a renewal arrival pmcess witha NBUE .~

(new better than used in expectation) or NWUE renewal interval distribution, then
- there is a stochastic order relation between Q as seen by the arrival and the time-
stationary number in system; see p. 114 of Franken et al. [6]. Hence, {4.1) holds as
an inequality with the time-stationary distribution and (4.4) is valid as an inequality.
 In the setting of (4.1), that is, with exponential service times, it is easy to find
bounds on ¥(k), the probability that an arbitrary customer does not overtake the k¥th
previous arrival. We give bounds for £ ='1.

Theorem 4.2. With exponential service times,

ro>9 () + 15; Po=1 (L) <1-+

<P<Q>s)( )+P(Q<s—1) <> @3)

Proof. If Q= s, then the previous arrival could not have departed yet. Given >
5, the previous arrival will still be in the system when the designated customer begins
service with probability (s - 1)fs. Once both customers are in service, overtaking oc-
curs with probability % The lower bound is attained by assuming the maximum num-
ber of departures since the previous customer arrived; the upper bound is attained as-
suming none: If (Q < s - 1), the previous customer might still be there. For the lower
bound, if @ =7, the previous customer is still in service with probability at least

LR ) () o
s \j+1/\j+2 s /7

We now give an example to show that y(k) can be arbitrarily close to 1 in a multi-
server node.

Example 4.1. Consider the standard M/M/s queue with fixed service rate . Let s oo
and let the arrival rate A = o so that the traffic intensity p = Msu is fixed. For large
- A and s, with probability near one, both customers will find free servers and thus enter
service immediately upon arrival. Since A >> u, with probability near one the later
customer will arrive before the earlier one departs Conditional on both being in ser-
_v1ce the probablhty of overtakmg is obvmusly 7

5. A SINGLE SERVER WIT_H |NSTANTANEOU_S BERNOULLI FEEDBACK

Consider a single-server queue with unlimited waiting room and the FIFQ discipline.
(See Fig. 6.) Let each departure be fed back to the end of the queue for another ser-
vice'with probability p, independent of ‘the history of the system. As before, assume
that equilibrium exists for the system, that is, there are time-stationary and customer-
stationary versions of the.queue length process; see [6] . '
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FIG. 6. -Single server with instantaneous Bernoulli feedback.

First, note that to calculate the distribution of ¥, the number of custorers over-
taken by an arbitrary customer, it suffices to consider the customers in the system
- upon the arrival of the arbitrary customer. A customer can only overtake other cus-
tomers that arrived earlier and only customers that have not already departed. Next,
note that overtaking refers only to the final order upon departures; with feedback, two
customers may switch order several times in the queue before departure; this prelimi-
nary switching is not counted. Hence, EN = p*EQ, where p™ is the probability that
the arbitrary customer overtakes a specific customer he finds upon arrival and @ is the
number of customers in the system seen by the arrival. (The events indicating that dif-
ferent customers will be overtaken are in general dependent, but the dependency does
not affect the expected value.) An arrival overtakes any customer it finds in the queue
upon arrival with probability ' '

- p _.p(l-p) = 2k +1
—_——= = 1_ s 5.
T+p 1-7° k_o( p)p | (5.1

_independently of the arrival and service brocesscs. Thus
EN = (EQ)p/(1 + p). (5.2

Note that EN is harder to compute directly. However, by the argument outlined in
(1.1) and (1.2), it is possible to show that EN = EN. It is also easy to compute EN and
verify that £V = EN in the case of Poisson arrivals, using the following argument, due
to D. R. Smith (personal communication). 'Each customer arriving during a test cus-
tomer’s stay has probability p/(1 + p) of overtaking it. The expected number arriving
during the stay is just the arrival rate times the expected length of stay or EQ, by
Little’s law; p. 399 of {7},

" In an M{M/1 queue with Bernoulli feedback, having parameters X (arrival rate), u
(service rate), and p, ‘ '

EQ=p/(1 - p), o 53)
where '
pENQHRU-B), | 4)

" which is increasing in A and p and decreasing in u. Hence, so is ENV.
Back in the general setting, the probability y(k) that an arbitrary customer does not
overtake the £ th previous customer is bounded below by

Y0 > 1(1 +p)> 1/2. 55)
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We would have 'y(k) = 1!(1 +p) 1f the kth precedmg customer were certain not to have
departed before the designated customer arrives. The probabmty of such z departure
‘can be made arbitrarily small by making the traffic intensity of the queue large.

In the M/M/1 setting, it is not difficult to show that ¥(k) is a decreasing function of

«y and p and an increasing function of p.

This work was ‘motivated by Alan Goldmaﬁ’s qu‘estions at one of Ralph Disney’s lec-
tures at Johns Hopkins University in June 1982. I am grateful to my colleague D. R.
Smith and the referees for helpful comments.
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