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ABSTRACT

We apply Tauberian theorems with known transforms to establish asymptotics
for the basic steady-state distributions in the BMAP/G/1 queue. The batch
Markovian arrival process (BMAP) is equivalent to the versatile Markovian point
process or Neuts (/) process; it generalizes the Markovian arrival process
(MAP) by allowing batch arrivals. We consider the waiting time, the workload
(virtual waiting time) and the queue lengths at an arbitrary time, just before an
arrival and just after a departure. We begin by establishing asymptotics for
steady-state distributions of M/G/1-type Markov chains. Then we treat steady-
state distributions in the BMAP/G/1 and MAP/MSP/1 queues. The MSP is a
MAP independent of the arrival process generating service completions during
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the time the server is busy. In great generality, but not always, the basic steady-
state distributions in these models have asymptotically exponential tails. When
they do, the asymptotic parameters of the different distributions are closely
related. .

1. Introduction

In this paper we establish asymptotics for steady-state distributions of
GI/M/1-type and M/G/l-type Markov chains, as in Neuts [26,28],
supplementing recent work by Asmussen and Perry [5], Baiocchi {6],
Elwalid and Mitra [14] and Falkenberg [16,17], and earlier work by Neuts
[27], Neuts and Takahashi [29] and Takahashi [32]). We apply Tauberian
theorems for generéting functions and Laplace transforms in Feller {17, pp.
445-7] to establish asymptotics for the steady-state distributions of
M/G/1-type Markov chains and the basic processes of the BMAP/G/1
queue. The generating function of the steady-state distribution of an
M/G/1-type Markov chain is given in Neuts [28, p. 143]. The transforms
of the steady-state distributions in the BMAP/G/1 queue are given in
Ramaswami [30], Neuts [28) and Lucantoni [23,24). The BMAP/G/1
model has a single server, the first-come first-served service discipline, an
unlimited waiting room and i.i.d. service times that are independent of a

batch Markovian arrival process (BMAP).

To model service times that are not necessarily i.i.d., we also consider

the MAP/MSP/1 queue, which has a Markovian service process (MSP) as
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well as a Markovian arrival process (MAP). The MSP is a MAP
independent of the arrival process that generates service completions when
the server is busy. The MAP/MSP/1 queue can be represented as a quasi-
birth-and-death (QBD) process, so that the asymptotic behavior is
determined by previous results of Neuts [26,27]. We can also treat the
multi-server MAP/MSP/m queue, because it can be represented in a
GI/M/1-type Markov chain. The MAP/MSP/m model is interesting
because the arrival and service processes have the same structure. The
spectral analysis of this model when the MAP and MSPs are Markov
modulated Poisson processes (MMPPs) is discussed in Elwalid and Mitra
[14]. The references contain related asymptotic results for other models

and additional references; e.g., see [1,3,5,7,8,19].

Let W be the steady-state waiting time experienced by an arriving
customer before beginning service; let L be the steady-state workload at an
arbitrary time, or the virtual waiting time; and let Q, Q% and Q¢ be the
steady-state queue lengths, the number in system at an arbitrary time, just
before an arrival and just after a departure, respectively. Under quite
general conditions, we show that there exist positive constants

1,0,0,,0w,B, B and B? such that
e™P(L >x) - da; and e¥P(W>x) > dwasx >0 (1)

and
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o *P(Q > k) 5 B, 67*P(Q% > k) — B°

and 6 *P(Q% > k) 9 B as k — o . 2)

We call 1) and o the asymptotic decay rates and o.; ,ctw,B,B% and B¢ the
associated asymptotic constants. Instead of (2), we actually establish

related results for probability mass functions, such as
o *P(Q = k) = B(1-0)/Cas k = o . 3)

The convergence in (3) and (2) are equivalent, but (2) is usually of greater
applied interest. We also establish limits for the joint distribution of these

variables and the auxiliary phase state.

However, a word of caution is in -order. While the limits in (1)«3)
typically hold, they are by no means automatic. Some conditions must be
satisfled. Even for a stable M/G/1 queue where the service-time
distribution has a finite moment generating function in a neighborhood of
the origin, (1)~(3) need not hold. This is illustrated by Example 5 of [1].
In that example, the rightmost singularity of the Laplace transform is a

branch point, not a simple pole.

We also establish important relations among the asymptotic parameters
in (I1)<3) in the BMAP/G/1 model, extending previous results in that
direction by Neuts [27]. For example, if V is a generic service time, the

asymptotic decay rates 1] and o are related by Ee"V = ¢~!. There are also
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simple relations among the asymptotic constants: B = 0w, B = &, and
o;/cw = p(1-0)/n0o. Therefore, if we know the asymptotic decay ramé
and one asymptotic constant, then we know the other asymptotic constants.
Indeed, assuming that we know the service-time transform Ee®Y, we only
need to know one of the asymptotic decay rates. Additional results of this

kind appear in [2] and [19].

In Section 5 we illustrate our results for the BMAP/G/1 queue by
analyzing an MMPP,/D /1 example. The MMPP, arrival process is a
Markov modulated Poisson process (MMPP) with a two-state environment
Markov chain, while D, is a two-point service-time distribution. As in
[1,2], our exact numerical results are based on the algorithms in
Lucantoni [231, using numerical transform inversion algorithms in Abate
and Whitt [4], as implemented by Choudhury, Lucantoni and Whitt [11].
The asymptotic parameters are also calculated by a moment-based
numerical inversion algorithm in Choudhury and Lucantoni [9]. The

algorithm in [9} calculates moments of all desired orders.

The BMAP/G/1 and MAP/MSP/]1 models are attractive since they
include superposition arrival processes. Whitt [33] applies the asymptotic
decay rates in the BMAP/G/1 and MAP/MSP/1 queues to develop effective
bandwidths for independent sources to use for admission control in multi-

service networks. This paper provides theoretical support for the
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procedures in [33]. For related work, see Chang (8], Elwalid and Mitra
[13,14] and references therein. However, a further word of caution is in
order, because we have found that the quality of the effective-bandwidth
approximations can deteriorate dramatically with superposition arrival

processes as the number of component arrival processes increases; see [10].

2. Structured Markov Chains

For Markov chains of GI/M/1 type, the asymptotics of steady-state
distributions is discussed in Neuts [27]. The steady-state probability vector
is matrix-geometric, i.e., of the form xg, x, xiR, x1R2,... where Ris the

rate matrix. It has the asymptotic form
xR = o' (x P+ 0(c’) as i = oo, @)

where the decay rate ¢ is the Perron-Frobenius eigenvalue of R, and { and r
are left and right eigenvectors associated with o normalized so that
le = Ir = 1, with ¢ being a vector of 1’s; see [27, p. 224]). (Our ¢ and N
are 7} and & in [27].) Neuts points out that the asymptotic decay rate ¢ is
relatively easy to obtain, even for large models, but the asymptotic constant

(vector) (x1 r}! usually is not.

We now investigate the asymptotics of steady-state distributions of
M/G/1-type Markov chains. The transition probability matrix is of the

form
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Bg By By B3 By...
Co A1 A; A3z Ag..
0 Ag A1 Ay As..
P=|0 0 Ay A; Aj..
0 0 0 Ay Aq.
0 0 0 0 Ag.

with component mXxm matrices A ¢, moXmg matrix B, mgXm matrices By
and mxmg matrix Co. Our matrix P corresponds to the matrix Q(e) in
(2.1.9) of Neuts [28, p.76], with Ay = Ai(e), By = By(ee) and
Co = Co(e). We assume that the Markov chain with transition matrix P
is irreducible and‘ positive recurrent. In the queueing models, positive
recurrence primarily corresponds to p < 1, where p is the traffic intensity.

(We also need a moment condition on { By }.)
Let{xg, x1,...) be the steady-state vector, with xg = (X014 -+ X0mg)

and x; = (xi1,....%m), and let X(z) = ¥ x;z' be the (vector)

i=1
generating function. By (3.3.2) of [28, p. 143], the generating function

satisfies the equation

X()[d-A(2)] = zxgB(z) — zx 4y , (5)
for all complex z with |z| < 1, where A(z) = ¥ Agz* and B(z) =
k=0

Y Byz*.
k=1
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We now want to establish (3). One way is to use a ‘‘probabilistic’* or
‘‘large-deviations’’ approach, exploiting change of measure, as in [5,8,19].
However, since the transform is available in (5), it is natural to use it. One
way to use the transform is to study the singularities of X(z), as discussed
in Wilf [34, Section 5.2j. With this approach, we need to identify the
radius of convergence and show that the only singularity on the radius of
convergence is a simple pole on the real axis. This approach is used by

Fatkenberg [15,16]; for related work see Gail, Hantler and Taylor [18].

What we do is apply the Tauberian theorem for generating functions in
Feller [17, p. 447). However, Tauberian theorems require extra conditions.
Under regularity conditions, we prove that (1-z0)X(z) converges to a
specified limit € as z — ¢~ !. This almost implies that ™ x; converges to

the same limit & as i — o, but not quite. By [17], the transform limit

. n ,
implies Cesaro convergence of o 'x;, i.e., n~! Yy o 'x; > Easn o e,
i=1

Thus, we assume that 6~’x; converges to something, possibly 0 or oo in
each coordinate. Then the Cesaro limit implies that o'ixi actually must

converge to &.

Our analysis shows that o~! is the radius of convergence of the
generating function X(z) and that there is a singularity on the real axis at

o~!. Our extra assumption is tantamount to assuming that there are no
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other singularities on the circle [z| = ¢~1, Falkenberg [15,16] makes a
similar assumption. A virtue of our approach is that we obtain explicit
expressions for both asymptotic parameters £ and o.

Example 1. To see that in general a transform limit does not imply

ordinary convergence, consider the probability density function

f(x) = e"z"(% + sinx — %cosx) ,x20,

with Laplace transform

2

1-(4/3)(s +2)
+ .
2+s

1+(s+2)2

F(s) = e *f(x)dx = %
0

It is easy to see that (s +2)f°(s) — 8/3ass — -2, but ezxf(x) oscillates
as x —> oo i.e., €2* f(x) converges to 8/3 with Cesiro convergence but not
ordinary convergence. (Similar examples can be constructed with
generating functions.) The transform}(s) has three singularities for s such
that Re(s) = -2, namely, —2 and —2 £ {. In this example, ¢** f(x) is
periodic, but it is not difficult to construct examples where ¢ f(x) is not
periodic, e.g., it could be asymptotically periodic, as with

flx) = % % + sin(xz/(x+1))—%cos(.t2/(x+1)) :

Nevertheless, when one of these densities is used as the service-time

density in an M/G/1 queue, the limits in (1)—(3) are valid for all arrival
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rates such that p < 1. Hence, it may be possible to eliminate the

convergence assumptions we make, e.g.,on 6 ‘x;. ®

We first show that the asymptotic decay rate is independent of the
auxiliary phase state. Motivated by Example 5 in [1], we allow asymptotic
behavior of the form Bi =P’ as i — oo.

Theorem 1. Consider an irreducible positive-recurrent Markov chain of

M/G/1 type. Suppose that lim 6~iPx;; = I; and im 6~'%Px; = u;

i = o { = oo

Jor all j, where 0 S l; S u;j Soo and —eo < p < oo IfA= EA,: is
k=0

irreducible, then I; > 0 (u; < oo) holds for one j if and only if it holds for
all j.
Proof. Consider an initial state (i, ;) where i is the level and j is the phase,
with i 2 m + 1. Letj’ be a designated alternative phase state. Since A is
irreducible and there are only m phase states, it is possible to go from (i, f)
‘to (i + k, j) in at most m steps for some k. Sincé the chain can go down at
most one level at each transition, we can have k 2 — m. In particular, there
is a finite product of at most m of the m X m submatrices A, that produce
this transition. It is significant that this bounding probability is independent
of i, provided that i 2 m + 1, since it is impossible to reach the lower
boundary level from level above level m + 1 in m steps. As a consequence,

there is a constant € as well as the constant & such that
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Xij 2 EXjek,j (6)
for all i. Since the states j and j* are arbitrary, formula (6) implies that

lim 07'iPxy; 2 € lim 67 iPx; g pr
[ =¥ oo I = oo

2 eo® lim 60 (i +k)Px;y jr (N
{ = oo
and
fim 6~+0 (i +k)Px;pp S €71 lim o~ R i+ R)Pxy;
i=> oo i=> 00

se~lo™* lim o7iPx; . (8)
I = oo

The inequalities (7) and (8) imply the desired conclusion. =

From (5) it is evident that the radius of convergence of the generating
function X(z) should be the minimal z > 1 such that p(z) = z where
p(2) = pf(A(z)) is the Perron-Frobenius eigenvalue of A(z). (It is
understood that p(z) = o« if any elements of A(z) are not finite.)
Properties of p(z) are discussed in Chapter 1 and Section 2.3 of Seneta [31]
as well as in Section 2.3 and the Appendix of Neuts [28]. We will need the
following basic convexity result due to Kingman [22].

Theorem 2. If the elements of an irreducible nonnegative square matrix
A(s) are log-convex functions of s, then the Perron-Frobenius eigenvalue

Pf(A(5)) is log-convex.
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We apply Theorem 2 to transforms and related functions, using the
following consequence of Holder’s inequality; see [22, p. 284).
Lemma 1. For any random variable X, the transform Ee*X is log-convex
ins.
Theorem 3. Let p(z) = pf(A(z)) be the Perron-Frobenius cigenvalue of
A(z) for z > 0, with p(Z) = oo if A(2) is not finite. Then log p(e®) is an
increasing convex function of s, so that when A(1) is irreducible the
equation p(z) = z has at most one root for z # 1, and, if there is a root,
this root must satisfy z > 1.
Proof. The argument is a variant of the proof of Lemma 2.3.4 in Neuts [28,
p- 94]. Make the change of variables z = ¢®. Then the elements of the
matrix A(e*) are log-convex functions of s by Lemma 1. (The elements are
constant multiples of transforms.) Consequently, log p(e*) is a convex
function of s on (—%0,ee) by Theorem 2. (The relevant domain for s in [28]
is (—oo,0), but we are interested in (0,0); we can conclude that log p(e®)
is convex on the interval it is finite.) Moreover, pf(A1) < pf(Aqz)if A
and A, are nonnegative irreducible matrices with A| < A, (elementwise),
with pf(A1) < pf(A3) if A; £ A,; e.g., by Theorem 1.6 of Seneta [31,
p. 23]. Hence, log p(e*) is an increasing convex function of s on (—ce,ee).
Note that h(s) = log p(e®) = s if and only if p(e®) = ¢°. Since A(1) is

stochastic, p(1) = 1. The assumed positive recurrence of the Markov
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chain P implies that p = p’(1) < I; see [28, pp. 124-128, 481). These
relations in tumn imply that 2(0) = 0 and A’(0) < 1, so that, by the
convexity, h(s)} = s for at most one other s, and such an s must be positive.

Thus, p(z) = zforatmostone z # 1 and suchazmustsatisfyz > 1. ®

Example 5 in [1] involving the M/G/1 queue shows that the equation
p(z) = z may actually not have a root for z > 1, even when the service-
time distribution has a finite moment generating function ¢(s) = Ee*" for
s > 0. A necessary and sufficient condition for a root z > 1 not to exist
for some traffic intensity (arrival rate) is for ¢ to have a finite radius of
convergence s* with ¢(s*) < oo; see [1]. This can occur only when the
rightmost singularity of the Lapiace transform ¢(-s) is a branch point
singularity. When there is no root to p(z) = z for z > 1, the steady-state
waiting time W does not satisfy (1). Sirniiarly, Q¢ (which has the steady-
state distribution of an M/G/1-type Markov chain) does not satisfy (2) or
(3). InExample 5 of [1}, P(Q > k) ~ Bx~32c* as k — oo, which is not a
good approximation until k is very large. For further discussion, see [1], [3]

and Borovkov [7, Section 22].
1t is convenient to rewrite (5) as
X(z)(I - A(2)) = x0B(z) - x1Aq 9)

where A(z) = A(z)/z. Let p(z) be the Perron-Frobenius eigenvalue of
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A(z) when z is real and positive. By Theorem 3, we are interested in the z
such that p(z) = 1 and z > 1. We next iﬂtroduce a generalization of the
fundamental matrix of Kemeny and Snell [21], which is a convenient form
of a generalized inverse; see Hunter [20], Theorem 3.3.1 in Neuts [28,

p. 144] and Baiocchi [6].

Consider an irreducible nonnegative matrix P with Perron-Frobenius
eigenvalue p < 1 and let / and r be left and right eigenvectors associated
with p normalized so that le = Ir = 1, where ¢ is a vector of 1’s. Let the
fundamental matrix associated with Pbe Z = (I — P + pri)~L. Note that
Z is the familiar fundamental matrix in Kemeny and Snell [21, pp. 75, 100]
when P is stochastic. (Then [ is the steady-state vector %t and r = ¢, the
vector of 1’s.) Next, we relate the spectral radiuses of P and P — prl. The
spectral radius of P is the Perron-Frobenius eigenvalue since P is
nonnegative; that is not the case for P - prl.

Lemma 2. If P is an irreducible aperiodic nonnegative matrix with
positive Perron-Frobenius eigenvalue p and associated left and right
eigenvectors | and r normalized so that le = lr = 1, then P —pri is a
matrix with spectral radius strictly less than p.

Proof. By the orthogonality of eigenvectors, P and P — pri have the same
eigenvectors, with the eigenvalue of P — pr! associated with / and r being

0. The remaining eigenvalues of the matrices P and P — pri coincide.
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Since P is aperiodic, p is strictly greater than the modulus of any other

eigenvalueof P. m

Theorem 4. If P is an irreducible nonnegative matrix with Perron-
Frobenius eigenvalue p < 1 with associated left and right eigenvectors 1
and r normalized so that le = Ir = 1, then (I — P + prl) is nonsingular,

Z=(I~P+ph)™l =1+ ¥ (P~ pr)"

n=1

=1+ 3 (P" -p"r), (10)

n=1

Zr=r>0andiZ=1>0.

Proof. First, if p< 1, then P" -0 and p" -» 0, so that
(P"=p"rl) = (P-prh)® — 0 as n — o, so that (10) is valid; see
Kemeny and Snell [21, pp. 22, 75] and Seneta {31, p. 252]. Henceforth,
assume that p = 1. First suppose that P is aperiodic. By Lemma 2
sp(P-prl) < 1, so that (P—prl)” — 0 and we can reason as above.
Next, suppose that P is periodic with period 4. Then we can apply the
argument in [21, Section 5.1]. Then P¢ is a transition matrix associated
with d separate ergodic sets, each of which is aperiodic. Treating each of
these separately, we obtain limits for P™#*/ as n — oo for each j. We then
obtain a Cesiro limit for (P —prl)® — 0 as n — -, which implies (10);

see [21, p. 23]. Finally,
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Zr=(+ S P =~p"r=r+ ¥ (p"r-p"r) =r,

n=1 n=1

where r is strictly positive. A similar argument appliesto iZ. =
Theorem 5. Consider an irreducible positive-recurrent Markov chain of
M/G/1 type in which the matrix A = A(1) is irreducible. Let r(z) and 1(2)
be the -eigenvectors of z(z) in (9) normalized so that
l{z)e = I(z)r(z) = 1. Suppose that the equation p(z) = pf(A(z)) = z
has a root 6”1 forz > 1, p(t:!"l +E&) < oa for some positive &, B(o Y is
finite, c"x,-j —y; as i > o where 0 Sy; Se jor each j, and
(xoB(G'l)—xle)r(c'l) > 0. Then X(z2) in (5) and (9) is finite for
1 < z < 6”1, the derivative p’ (6~ 1) exists withp’(6™1) > 1 and

_ (xoB(e™)=x140)r(c”Hi(s™)
) p'(c™") -1

o fx; = & as i 5 o, (11)

with all components of the limit in (11) being strictly positive and finite.

Proof. Since the matrix A is irreducible, so is A(z) for all z > 0. Hence,
Pf(A(z)) is a simple eigenvalue. By Theorem 3, there is at most one root
for z > 1. We now show that X(z) in (9) is finite tn a neighborhood of
z = 6~ with |z| < o~!. First, since B(¢™1!) is finite by assumption, the
right side of (9) is finite for |z| < 6=}, Forreal z with 1 < z < 61,
1 < p(z) < z by the proof of Theorem 3. Hence, spA(z) < 1 and the

inverse (I-A(z))~! exists and is finite; see Seneta [31, p. 252].
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(Moreover, since sp(A(z)) < sp(A(lzl])), the inverse is also finite for
complex z in the neighborhood of z = 6~ ! with {z| < 6™, although that
is not required for the Tauberian theorem in [17].) Hence, let z be such that
1 <z<o"!, so that p(z) < 1. Let I(z) and r(z) be left and right
eigenvectors associated with p(z). Multiplying by r(z) on the right in (9),

we see that
X(2)r(2)(1-p(2)) = (x0B(2) = x1Ag)r(2) = H(z)r(z), (12)
so that

H(z)p(z) r(z)1(z)
1 -p(2)

X(z)(I - A(2) + p(2)r(2)l(2)) = H(z) +
and, by Theorem 4,

X(z) = |H(z) + H“"f‘z’_’(‘z)’“” (- A() + B r) )" .
- p(z

Now we apply the Tauberian theorem in [17, p. 447]. (There we let the
slowly varying function L be a constant and let p = 1.) Our assumption
that ¢~ 'x, converges as i — oo allows us to strengthen Cesro convergence

to ordinary convergence. We obtain

lim 6”'x; = lim (1-20)X(2)

{ = 0a PN

= lim (1-z0) |H(z) + H(z)p(2)r(z)(z)
z-» 0! 1 - 5(2..)
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x (I - A(c™!) + (e~ o~ Hi(ec™ ) !

_ He"Hpe"Hre~HHie™h
o~'p'(o7h)

x (I -A(6™Y) + 5o~ Hr(e Do)}

= H(G-I)r(o-l)l(o-l)(I_E(o.-l) + r(o-l)l(o-l))-—l ,

p'(c”ly -1

because

p(x) -1 _ p'(c”h

Ty |
= 4] -1.
z-o! z0-1 g P )

The derivative p’ (o~ 1) exists because, by assumption, p(0~! + €) < oo
see the Appendix of [28). Since A(1) is positive recurrent, p’(1) < 1, as
noted in the proof of Theorem 3. Since #(s) = log p(e*) is convex in s,
we must have A’ (o™!) = p’(6~ VYo~ l/p(c™!) = p’(6™!) > 1. Next,

by Theorem 4,
o~ - A(e™!) + r(e~ Do~ )" = (o™)) .

Finally, all components of the limit in (11) are strictly positive because
p'(c™1) > 1, all components of /(c~!) are strictly positive and, by
assumption, (xoB(c‘l)—xle)r(c‘l) is positive. =

Remark 1. The condition that (xoB(S™!)=x;A¢)r(6™!) be strictly

positive needs to be checked in applications. In specific instances, this can
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often be easily done, as we show for the BMAP/G/1 queue in the next
section. In general, we know that r(1) = e since A = A(1) is stochastic
and that (xgB(l)—-x;Ap)e=0; see [28, p. 145]. By (12),
(xgB(2)—-x1A9)r(z) > Oforallz,1 <z < o~!. For the M/G/1 queue,

x) = Ag'(1-Bg)xg by [28, p. 16), so that

x0B(6™!) = x1Aq = xo(B(6™!) ~ (1-By)) , (13)
which is strictly positive for 6! > 1 because B(z) > Oforz > 0. =
Corollary. Under the conditions of Theorem 5,

(x0B(c™!) = x1Ag)r(c™!)
p'c -1

O'Ex,-e 4 §e =

3

Xitl,j Xir1€ x; -
= 40, = - g and 2 5 (¢~ )

Xij xe Xx;e

asi — oo,

3. The BMAP/G/1 Queue

The queue length at departure epochs in the BMAP/G/1 queue is a
Markov chain of the M/G/1 type. Therefore, we can apply Theorem S to

the BMAP/G/1 queue.

A BMAP can be defined by processes N(t) and J(): N(t) counts the

number of arrivals in [0,7] and J(¢) is an auxiliary state variable. The pair
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(N(8), J(1)) is a continuous-time Markov chain with generator Q in block-

partitioned form, i.e.,

Do D, D, . D,..

. Dy D, D,..
%= Dy Dj,... (14)

where p is the overall arrival rate, Dy, k 2 0, are m X m matrices, D has

negative diagonal elements and nonnegative off-diagonal elements, D is

nonnegative for k 2 1, and D = f; Dy is an irreducible generator matrix
k=0

for an m-state continuous-time Markov chain. (We choose p so that

T kDge = 1)
k=1

Let V denote a generic service time. We assume that ¢(s) = Ee*¥ < «
for some positive s. This is a necessary, but not sufficient, condition for the
asymptotics in (1)<3). If ¢(s+€) < o for some & >0, then
o' (s) = EVe®V < oo t00. Key quantities are ¢(n) and ¢’ (M) where 7 is

the asymptotic decay rate in (1).
The generating functions of Q¢ and Q are given in (20) and (35) of

Lucantoni [23], while the Laplace transform of L is given in (44) there. Let

‘ xi—ﬁ- be the steady-state probability that the queue length is i and the auxiliary
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state is j just after a departure. Let x% = (x{-’l,....x}f,,) and let

X4(z) = ¥ xfzi. LetD(z) = ¥ Dyz¥and
[ =0 k=0

A(z) = E[ePP@V] = jo“' ePPDYP(V S y) . (15)

Then

X4()ld - A(D)) = (-x8D5" ) D(DA(2) , (16)

where (—x§Dg!) is a positive vector. The generating function of Q¥ itself

is Qd(z) = X%(z)e, where again e is a vector of 1’s.

As we have indicated, (16) is a consequence of (5). We will be
interested in z such that z > 1 and pf(A(z)) = z. The following is
consistent with Neuts [27].

Theorem 6. For the BMAP/G/1 queue, the equation pf(A(z)) = z has at
most one root with 7 > 1. Such a root exists if and only if there are

solutions and N with) < ¢ < land 0 < 1| < oo to the equations
pf(D(1/¢)) = % and Ee"V = 1/0. an

Proof. By Seneta [31, Section 2.3], the Perron-Frobenius theory applies to
D(z) for all z > 0, provided that D(z) is finite. By (15), the matrices D(z)

and A(z) have a common associated positive real right eigenvector r(z):

A(D)r(z) = jo”ePsz)yr(z)dP(v <y)
= r(@) [ PRI aP(V < ) ,
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so that
Pf(A(2)) = EePPIP@Y (18)
From (18), we to see that (17) is equivalentto pf(A(z)) =z =

The representation of the single equation pf(A(z)) = z in terms of the
two equations in (17) allows us to identify and separate the effects of the

arrival process and the service-time distribution, see [13,14,19,27,33].

Next we apply Theorem 3 to deduce some properties of the Perron-
Frobenius eigenvalue of D(z).
Theorem 7. The Perron-Frobenius eigenvalue pf D(e’) is a strictly
increasing convex function of s withpf(D(1)) = 0.
Proof. Since D(z) is irreducible, ¢”) is a nonnegative matrix with
pf(eP@)) = ¢PfD(); see (18) above and Theorem 2.7 of Seneta {31).
By Theorem 3, pf(D(e’)) = log (eP/(P(¢"))) js increasing and convex
function of 5. Since e®() is stochastic, pf(e®(!)) = 1, which implies that
pf(D(1}) =0. m |
Remark 2. From Theorem 6 it follows that the asymptotic decay rates

and o depend on the BMAP armrival process only via the function
pp(2) = pf(D(z)). Itis significant that p p(z) coincides with the limit of

the time-average of the factorial cumulant generating function, i.e.,

pp(z) = limr 'logEN® ;
{=3o0
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see Theorem 1 of Choudhury and Whitt [12]. Approximations for the
asymptotic decay rates 7| and O are developed in [12]. Logarithmic limits
for more general models are established in [8,19]. m

Theorem 8. In the BMAP/G/1 queue, suppose that p < 1, D = D(1) is
irreducible, the equations in (17) have solutions with 0 < ¢ < 1 and
0<M <oo, Ee®*MWY < oo gnd pf(D(c"l +€)) < o for some
positive g, and G'ixf-_’,- —> yjasi —> cowhere 0 S y; < oo for each j. Then
the generating function X°(z) in (16) is finite for 1 < z < ¢~ ! and
n(-x§Dg")r(a™Hi(c™)

p(r’(c™") - 1)

o,—l'x'd - éd - a.S_ i = oo ’ (19)

where p(z) = pf(A(z)) and all components of the limit §d in (19) are
positive and finite. In (19), p’(c™!) = pd’Mpph(c~') > 1, where
¢M) = Ee" andpp(z) = pf(D(2)).

Proof. The conditions here imply the conditions of Theorem 35, since (16)
is a special case of (5). (Note, however, that the summation in X(z) and
X?(z) start at 1 and O, respectively.) First, the Markov chain is irreducible
“and positive recurrent because D is irreducible and p < 1. Here

(—xﬁDa t )D(z)Z(z) plays the role of x(B(z) — xAg in Theorem 5, and
(-24D5 ) D(2)A(2) (2) = (~x4D5")pf(D(2)PF(A(2)) r(z) , (20)

which is strictly positive for all z > 1, because pf(D(1)) = 0, pf(D(z))

is strictly increasing in z, and all other components are strictly positive.
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The right side of (20) simplifies at o !; by (17) and (18),
pf(D(c~1)) = n/p and pf(A(c~!)) = 1. From (18), we see that
p'(c Disasgiven. =

Remark 3. Let g be the steady-state probability vector associated. with the
stochastic matrix G in (23) of Lucantoni [23]. By (54) of [23], (-x&Dg!)

in{19) canbeexpressedas-(xSDal) = (1 — p)g. Asnoted in Section 1,

(19) implies a limit 6&2/(1 — o) for the tail probabilities 6~ 3 x7,
k=i+l

which agrees with the formula for the MAP/G/1 queue following (26) in

Baiocchi [6]. =

Expressions for the transforms of the other steady-state distributions in
the BMAP/G/1 queue are also available, Let x}; be the steady-state

probability that the queue length is { and the auxiliary state is j at an
arbitrary time. Let x{ = (xf;,...,x{,) and X’(2) = f: xiz!. Then, by
i=0
(35) of Lucantoni {23},
X'(2)D(z) = (z-1)X%z) . (21)

Relation (21) is established in Theorem 3.3.18 of Ramaswami [30] for the

case |z| < 1, but it is valid more generally provided that everything is
finite. It is convenient to use the following alternative expression for X*(z)

from (3.3.20) of [30]:
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X'(z) - xh = px§(D(z) - D) + pX4(2)E[®PPY] (22

where V, is a random variable with the service-time stationary-excess

distribution, i.e.,

P(V, < x) = (EV)~! jo"P(v > u)du. (23)

Lemma 3. Ifpf(A(z)) = z has a finite root ™' > 1, then D(¢™") and

EePD(U-I IV,

are finite.
Proof. By Theorem 6, pf(D(0™!)) = 1/p < os, 50 that D(c™!) must be
finite. Also, by Theorem 6, Ee"Y = 6! < . Hence, using integration

by parts, Ee"* = E(e"Y - 1)MEV < co. Finally, as in Theorem 6,

-1 -1
pf(EepD(a )Vc) = EePPf(D(G nv, = EeTIV. <oo. B

Similarly, let x{; and X%(z) be the corresponding probabilities and
generating function seen by the first customer in a batch upon arrival. Let
D(j,k) be the ( j,k)ttl element of D. Then, by the covariance formula in (8)

of Melamed and Whitt [25] for instance,

X4(2) = X(2) T (D=-Do)(jrk) » 24)
k=1

so that the generating function of

Q%z) = X*(z)e = X (2)(D-Dy)e -

Remark 4. In the MAP/G/1 queue, where customers arrive and depart one
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at a time, Q% has the same distribution as Q¢, but we need not have
X%(z) = X%(z). What we do have is X%(z)e = X%(z)e. To see that this
is consistent with (21) and (24), note that in the MAP/G/1 case (21)
becomes X'(z)(Dg + D12z) = (z~= 1)X%3z) and (24) yields
X%z)e = X'(z)D1e. Then note that D,e = -Dge, so that

X'(z)D1e = X?(z)e. By (34) of Lucantoni [23], in the BMAP/G/1 queue
xh = —xgDg! or x§ = -xbDy
whereas by the reasoning in (24) x§e = x§(D ~ Dg)e. ®

From (21), (22), (24) and Theorem 8, we have the following asymptotic
results for x| and x¥.
Theorem 9. If, in addition to the conditions of Theorem 8, 6™'x}; — y}

and 67'x§; = y% asi = oo where 0 S ¥}, y§ < oo for each j, then

o 58 ando™xf 5 E%asi = o, (25)
where
: _ p(1=0) r4
g = on £ (26)
and
g = &'kﬁ (D-Dg)(j.k) @)
=1

for&2 in (19), so that E% = E(D-Dy)e.
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Proof. Again we apply the Tauberian theorem for generating functions in

{17, p. 447]. Now we use (22) and (24). Note that
-1
E4pE(ePPC V) = Ep(1~0)/ma,
because

- -1
I(G-I)E(epb(c I)Vc) - I(U—I)E(BPD(G )V¢)

o~y =1 _ (-9l
n ne

using Lemma 1 of [2]. Alternatively, from (19) and (21), since

Ie™HD(e™!) = o™ HYpp(c™h),

g4 = I—_Qj;ﬁ‘D(c") = —E-;é"pp(c'*) = _p%‘
Remark 5. In the MAP/G/1 queue, (25)«27)  yield
Be = E% = E'D e = Efeon/p(1-0). As a quick check on (25)-(27),
note that in the M/G/1 queuve D-Dg =Dy =-Dp=1, and
pp(c™l) =0"! =1 = n/p,sothatno/p(l-p) = 1. =

We now consider the workload L and the waiting time of the first
customer in a batch W?. Let F j(x) be the joint probability that the

workload is less than or equal to x and the auxiliary state variabie is j at an

arbitrary time in steady state. Let F(x) = (Fy(x),...,Fn(x)) and

F(s) = Io”e'“dp(x). Then, by (44) of Lucantoni [32],
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F(s) (14 p 2D = xp. (28)

The Laplace transform of L is then F (s)e.

Let F%(x) = (F{(x),...,Fqn(x)) be the joint probability that the
waiting time of the first customer in a batch is less than or equal to x and the
auxiliary state variable upon arrival is j. Let F%(s) = jo“ e~ % dF%(x).

Then

Fi(s) = F(s) E (D=Dy)(Jj.k) (29)
k=1

for F (s) in (28), by the same argument as for (24). The Laplace transform
of W?, where W? is the waiting time of the first customer in a batch, is then

Fi(s)e = F(s)(D-Dy)e.

To treat the workload and waiting time of the first customer in a batch
in (28) and (29), let I(s) and 7(s) be left and right eigenvectors of
pD(f/(s))/s associated with its Perron-Frobenius eigenvalue, which we
denote by f(s), normalized so that I(s)e = I(s)7(s) = 1. Note that
I(-m) = I(c~") and F(-1) = r(c~!). From (17), it is evident that the
critical singularity is at s = —=1. From (17), f(-n) = —-1. By Theorem
7, 0> f(s) 2 -1 for 0 > s 2 —1y. We need the following analog of

Theorem 4.
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Lemma 4. The marix Y(6~!) = I - pn~'D(6™!) + r(c™Yyi(c™ ) is
nonsingular and i(G'l)Y(o"l) = l(a'l).

Proof. As noted above, (17) implies that pf(pn~!D(c™!)) = L.
Consider a vector u such that u(/ — pn~'D(6™ 1) + r(c™1)i(c™!)) = 0.
If we multiply on the right by r(c™ "), we see that u r(c™!) = 0, but this
implies that « is a left eigenvector of D(o~1). Since ur(c™!) = 0, we

musthaveu = 0. =

Let S and S$¢ denote the auxiliary state at an arbitrary time and at an
arrival epoch, respectively, in steady-state. As in (4) of [23], let ®t be the
probability vector of S, i.e., satisfying tD = 0 and e = 1. Let nt® be the

probability vector of S% which by the argument for (24) satisfies

nf = w; E (D-Dg)(j,k). Then F(e) = ® and the Laplace transform
k=1

for the tail probabilities ® — F(x) is (% - F(s))/s. As before, let

6(n) = Ee"Y andpp(z) = pf(D(2)).

We now apply the Tauberian theorem for Laplace transforms in Feller
[17, p. 445]. As before, we assume that the quantities of interest, such as
e"P(L > x, § = j), converge to something as x — « in order to get

ordinary convergence from the Cesiro convergence implied by the
Tauberian theorem. For a large class of MAP/G/1 queues, this limit holds

by virtue of Theorem 5.1 of Asmussen and Perry [8]. Our analysis

supplements [5] by giving alternative expressions for the limits.
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Theorem 10. If in addition to the conditions of Theorem 8,
eWP(L>x,S=j)>y; and e™PWP > xX%=j)>yf as
X oo where 0 < y; £coand 0 <y} < oo for each j, then the critical

singularity of [R~F(s))/sisats = ~T and

eVP(L > x,5 = j) = e (n; - Fj(x)) > &f as x 5 o0,

where
=Ly 1cee=11. t
;= p;;r((:"))q:'( :n) - 1 (lo-gir) ’ 0
eMP(WP > x, 8% = j) = eV (nf - FF(x)) 5 &Y asx > o,
where
EW = & § (D-Do)(i) = e | @31
K=1 (1-0)
eVP(L >x) s oy =tleasx o oo (32)
and
eVP(W? > x) 5> ap =t easx = oo, (33)

5 N "
where & and EW° are finite with all positive components.

Proof. We apply the Tauberian theorem in [17, p. 445). By (27),

(% -»SF(S)) (I + pD(V(5))/s)
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x(I + pD(V(s))/s) _ X0
A 5

= M(s) =

Postmultiplying by 7(s) in (34), we see that, for s < 0,

(1 — F(s))F(s) — xh7(s)

—(—’L:;—Hi)—lF(S)(l—f(s)) -

5

Therefore,

lim (s+ n)-(n—TF(m- F(s)

5= -1

lim |5 4y 22 _ (s + N)xH7(s)

s -7 s (1 -— f($))s

_ Xpr(-m)
(-n

where, with pp(2) = pf(D(2)),

() = Lpp (V' () - ""—"52@ ,
so that
’ 0-1 ’ -1
£ = ppp(c™ )" (M) ‘
n
As in Theorem 8,

p’(e7l) = % PFA@), - o1

= ppp(a~HE[Ve™] = pp’ (™) ¢’ (n)

129

(34)

(35)

(36)

(37)

(38)
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and the denominator of (30) is strictly positive. Next, by (34) and (35),

(o omEEWD [, Diite)

- f(s) F(s)f(s)]

- - X F(s) 1
_ (S"'Tl)[M(s)— (r(1 f(s):(l-?()s;()s)z(s)f(s)} .

Taking the limit as s — —1) in (39), we obtain

lim (s+m) __(n—f'(s))

§ = -1

-1 -
[1 _ pi’—“;—) + ‘r'(-n)l(—n))]

_ #F=miC-n) @)
nfe-ny

where the matrix on the left is nonsingular by Lemma 4 and the right side is
strictly positive and finite as in (36). We then note that I(-n) = I(c™!)
and 7(-1M) = r(c”!). We take the inverse in (40) to obtain (30). By
Lemma 4, I(6™1)¥(6™!) = I(c™!). Hence we can delete the ¥(o™!).
Our assumption that e"*P(L > x, § = j) converges enables to obtain
ordinary convergence from the Cesaro convergence provided by the
Tauberian theorem in [17]. We apply (29) and (30), and the Tauberian

theorem again, to obtain (31)~33). [}

We conclude by stating some relations among the asymptotic constants
that follow from Theorems 8-10.

Theorem 11. (a) In the BMAP/G/1 queue, if the limits exist, then
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ﬁ=aL!Ba=aW (41)

and

B _ &D-Do)e _ I5(D-Dy)e
B~ Efe - tle
_ &wbe B _
= L. = (o) (D-Dyg)e . (42)

(b) In the MAP/G/1 queue,

EDie  gWe  aw 1 ne
= = = = = . (4
tle tle ar Ho™)Dye p(l1-0) “3)

Proof. (a). Apply Theorems 8-10, recailing that p = c&‘e/(1-0) and
B¢ = a&%/(1-0). (b) In the MAP/G/1 queue, customers arrive one at a
time, so that B® = B and E¥e = oy. Then D — Dy = D,. Finally, by
(26), B°/B = no/p(1-G). Theorem 2 of [2] also shows that
aw/0y; = No/p(l-0)in any G/GI/1 queue (with i.i.d. service times that
are independent of the arrival process). =

Corollary. (a) In the MAP/M/I queue, G = 1 — 1 so that

B _%w _o_1-n (44)

(b) In the MAP/D/1 queue, ¢ = e~ ", 5o that
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B¢ _ %w _  ne™™ _ —cloge

B o p(l-e™M) ~ op(l-0)

(45)

Remark 6. In applications we are often interested in the steady-state
sojourn time or response time 7, i.e., the waiting time W plus the service
time V. Theorem1 of [2] shows that in any G/GI/1 queue if
eP(W>x) >0y as x— oo, then eVP(T > x) = ay/0.
Moreover, the exponential approximation for- the sojourn-time distribution
is also remarkably good, even when the service-time distribution is not

nearly exponential. m

4. The MAP/MSP/1 Queue

In this section we consider a related class of Markov models with
dependence among the service times. We let the number of service
completions during the first ¢ units of time that the server is busy be a MAP
that is independent of the arrival process. We call this service process a

Markovian service process (MSP).

For the MAP/MSP/1 queue, the queue length at an arbitrary time,
together with the phases of the arrival and service processes is a guasi-

birth-and-death (QBD) process. A QBD process has a generator of the

form
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(46)

LY
1]
-

[ ]
-
1

o

Let 03 and Df be the coefficient matrices of the MAP and Dé’ and D{'
the coefficient matrices of the MSP, as in (14), normalized so that they each
" have overall rate 1,ie, D?e = Dfe = l. Let the overall service rate and
arrival rate in the queue be 1 and p, respectively. Then the matrices in (46)

can be expressed using the Kronecker product @ and sum @ operations as
An = 11®0DT . A, = D} T i nY
o =11®pDy ,A; = Dg®pDg and A, = DY®I,, (CY))

where I, and I, are identity matrices. By our assurnption that the MSP

operates only when the server is busy,
Bo=1,0pD) and By =A4,. (48)

We can obtain alternative models by changing the definition of 5‘0. For
example, we could let the phase process run without generating any real

service completions. Then we would have ﬁo =D'® ng .

Since the MAP/MSP/1 queue produces a Markov chain of GI/M/1
type, it has the asymptotic behavior in (4), where in this case the rate matrix

R is the minimal nonnegative solution to the equation
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RZA; + RA; + A5 = 0. (49)

The asymptotic decay rate ¢ is then the Perron-Frobenius eigenvalue of R,

pf(R), which satisfies the equation

pf(A(c)) = 0, (50)

where ﬁ(z) = zzﬁg + z&l + ﬁo. As with D(z) in §3, the Perron-
Frobenius theory applies to A(2) since A(z) has nonnegative off-diagonat
elements. By the same argument as for Theorem 7, we have the following
result.

Theorem 12. In a QBD process if A(1) is irreducible, then the Perron-
Frobenius eigenvalue pf (A (%)) is a strictly increasing convex function of
s with pf(A(1)) = 0, so that the equation pf(A(z)) = O has at most one

rootcwithd) < g < 1.

We apply Theorem 12 to establish asymptotics for the MAP/MSP/1
queue.
Theorem 13. In the MAP/MSP/1 gueue, if é is irreducible and positive

recurrent, and pT (1)and Dl’( 1) are irreducible, then
xi = xoR' = ' (x0)F(o))i(o) +o(6') as i s =, (51

where the asymptotic decay rate G is the unique root with0 < ¢ < 1 of the

equation pf (A(z)) = Oor, equivalently, the equation
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pf(D*(2)) = -pf(pDT (1/2)) , (52

and f( o) and F{(G) are left and right eigenvectors of A (o) associated with
pF(A(G)) such that [(6) r(6) = i(6)e = 1.

Proof. A(1) is irreducible if DT (1) and D¥(1) are. By Theorem 12, the
equation pf(ﬁ(z)) = 0 has at most one root with 0 < z < 1. By
Theorem 3.1.1 of [26], this root ¢ exists and satisfies 0 < ¢ < 1, and (51)

is valid. By basic properties of the Kronecker operations,

i I
pIA@) = pf(2(1,@pD]) + (1,8pD]) + (DY ®I) + D1 or2)

XA
D
= pf(U;®(pzD] +pD})) + (DY + 'z—l)®fz))

L
D
= pf(zpr+pD$ ) + pf(D$ +—z-l-))

= pf(DT () + pA(D*(172)) . (53)

By Theorem 7, p f(DT (z))and p f(DJ’ (z)) are increasing convex functions

of z. Hence p f(DJ'( 1/2))is aconvex functionof zaswell. m

We can obtain related results for the steady-state distributions just
before arrivals and just after departures by applying the covariance formuia
(8) in Melamed and Whitt [25]. To this end, let x{; denote the steady-state

probability that the queue length is i and the (joint arrival and service) phase
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is j at an arbitrary time, and similarly for x; and xﬁ-ff. Then, paralleling (24),

we obtain

2% = xh; T Ap(j.k) and x§ = x5 T AL(.K) . (54)
k k

from [25], using time reversal in §4 there for xf-f,-. Hence,
x%e = xfAge and xfe = xiA,e, (55)

from which the asymptotics for x¢ and x# follow. Since the long-run flow
rate from level i up (down) is xtAge (xlA,e), we have x%e = x%e, as we
should.

Remark 7. The asymptotic behavior in (4) also holds for the multi-server
MAP/MSP/m and GI/MSP/m models, even with heterogeneous servers,
because these models can be analyzed via Markov chains of GI/M/1 type;
see [26,27,29,32]. The complicated behavior occurring when not all m
servers are busy is captured by the boundary states; see of Neuts [26, p.
207]. In the non-boundary states, the multiple servers are represented by

Kronecker product and sum operations. Multichannet (superposition)

arrival processes can be represented, just as in Neuts [27, pp. 243-248].

5. A Numerical Example

To illustrate the BMAP/G/1 results in Section 3, we present a numerical

example. We consider a simple MAP, a two-state Markov modulated
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Poisson process (MMPP,). An MMPP is a BMAP with Dy = M - A,
Dy = A and D; = 0 for j 2 2, where M is the infinitesimal-generator
matrix of the Markovian environment process and A is the associated

Poisson rate matrix. With two phases,

0 A

M = [‘”’0 "‘0] and A =
m; —m

o o] , 56

where mg,m;,Ap and A; are positive constants and mgA;
+ miAg = mg+mji, so that the arrival rate is 1. The overall arrival rate is

then p where p is specified separately. Then

-mg + Ag(z—-1) my

. 57
mi —mi +7\.1(2—1) ( )

D(z) =

The Perron-Frobenius eigenvalue pf(D(z)) = pp(z) can be found by
solving the characteristic equation. Let x = z-1, m = mg + my,

s = Ap + Ajyandd = Ag — A;. Then the characteristic equation is
det(D(z) = yI) = ¥* = Y(sx—m) + Aghx2-mx = 0. (58)

Therefore,

- 2,2 - 2
sx—m+Nd?x «;2mx(2 Nrmt s

Pp(2) = y(x)
Here the key equations in (17) are

YWo~l-1) = -2— and Ee®V = o~} (60)
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for y(x) in (59).
For our example, consider the two-point service-time distribution:
P(V = 11) = 0.01960784 = 1 - P(V = 0.8) .

Clearly, EV = 1 and EV? = 3. Letp = 0.7, pAg = 1.1, pA; = 0.3 and
pmg = pmy = 0.1. The overall arrival rate is 0.7, but the arrival rate in
phase 0 is 1.1, which exceeds the overaﬂ service rate of 1. Then

m = 0.285714,s = 2.0 and 4 = 1.142857, so that (59) becomes

¥(x) = x — 0.142857 + 0.5V 1.306122x2 + 0.0816326 .  (61)

The solution to (60) is 1 = 0.1115972 and o = 0.878066. Thus

pp(c™1) = 0.159424, I(6™") = (0.629544, 0.370456),

0.075362  0.142857 1.179891

and rag~!) = [ (62)
0.694306

D(c™H
0.142857 -0.083342

with [{(c~!) and r(o~!) being chosen so that (o~ !)r(c™!)

=Ko~ e = 1.

To calculate &7 in (19), we also need ¢’(M), pp(0™") and g. (Recall

that (-xoDg') = (1-p)g). First,
o'(M) = EVe" = 1.593677 . (63)
From (59),

pp(z) = Y (x)
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2.2 _ 2y-1/2
Ly (d”x *2""‘(2 DM a2y + 2m(2-5))

so that here
Pb(o") = v (0.138866) = 1.277475 . (65)

From ([l11], we obtain g = (0.241185, 0.758815), so that

g r(c™') = 0.811421. Thus, by (19),

_ -1 -1
gd = NA=pla (@ JHI ) _ g g910881671)  (66)
p(PPD(S™)9'(M) ~ 1)

and £% = E9e = 0.091287. From (26), we obtain
£ = &;“—"lgd = 0.0795156/(c"}) 67)

and Efe = 0.0795156. We also see that (66) and (67) are consistent with

(27),i.e.,E% = E'D e = E%eas it should.

Next,
gl = l—i-%g' = 0.5726081(c™ 1) (68)
and
EWe = -‘1’—?—" = 0.657379 , (69)

sothat; = B, aw = p% and
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Table 1. A comparison of approximations with exact values for the
steady-state queue-length tail probabilities.
P(Q° > k) P(Q > k)

k exact approx. exact approx.

2 { 05039 0.5068 0.4366 0.4415

4 | 0.3660 0.3908 0.3223 0.3404

8 | 0.2267 0.2323 0.1989 0.2023

10 | 0.1790 0.1791 0.1563 0.1560

12 | 0.1395 0.1381 0.1214 0.1203

14 | 0.1076 0.1065 0.09348 0.09273

16 | 0.08249 0.08208 0.07174 0.07150

20 | 0.04869 0.04879 0.04242 0.04250

24 | 0.02898 0.02901 0.02525 0.02526

28 | 0.017250 | 0.017242 | 0.015024 | 0.015019

36 | 0.0060921 | 0.0060927 | 0.0053066 | 0.0053070

48 | 0.0012798 | 0.0012798 | 0.0011148 | 0.0011148

o _ B _ 8e _ pU-9 _ 5g91049

(70)

§e

(IW_B“

as in Theorem 11.

ne

Finally, in Table 1 we compare the exponential approximations po* and

B%c* to the exact values P(Q > k) and P(Q° > k) for this model

obtained from [11]). From Table 1

it is clear that the exponential

approximations are excellent at the 80'® percentile and beyond. As in [1],

we find that the exponential approximations often perform remarkably well,

but of course, in general, the point where the exponential approximations

become good depends on the model; e.g. see [10].
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