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This paper describes the effect of service-time variability on
the standard performance measures of a closed network of
single-server queues with the first-come first-served discipline
and one job class. Several service-time variability principles are
proposed to serve as rough practical guidelines. The most
tnteresting one states that the mean queue length at a bot-
tleneck qugue typically decreases when the variability of the
service time at that queue is increased. The principles are
supported here by numerical examples and theorems in special
cases. The principles are also applied to test approximation
procedures.
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1. Introduction and summary

This paper discusses the relationship between
service-time variability and the standard perfor-
mance measures in a closed network of single-
server queues with the FCFS (first-come-first-
served) discipline. The model is the standard Jack-
son {9] or Gordon/Newell [8] closed Markovian
single-class queueing network, modified by having
only single-server quenes and by allowing nonex-
ponential service-time distributions. For this
model, we propose some service-time variability
principles. These variability principles are in-
tended to serve as rough practical guidelines. They
represent general tendencies observed in numeri-
cal examples, that are supported by theorems in
special cases.

We also discuss the implication of the
service-time variability principles for procedures
to approximately analyze closed networks of
single-server FCFS queues having nonexponential
service-time distributions. Obviously, it is desira-
ble for approximation procedures to be consistent
with these variability principles. From this per-
spective, we investigate several specific approxi-
mation procedures: the Reiser mean-value-analy-
sis (MVA) procedure [19], the Chandy/Herzog/
Woo (CHWS) device-complement procedure [5],
the Shum/Buzen extended-product-form (EPF)
procedure [27,28], and the Marie device-comple-
ment procedure [15,16].

To set the stage for our investigation of closed
networks, and for its own sake, we first discuss the
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somewhat clearer situation of open networks. It is
generally understood that the congestion in an
open network of single-server queues with un-
limited waiting space and the FCFS discipline will
increase if any service-time distribution becomes
more variable (more spread out or dispersed). We
obtain a concrete expression of this idea if we
measure congestion at a queue by the mean (ex-
pected equilibrium) quene length and if we mea-
sure variability of the service-time distribution by
its CV (coefficient of variation, defined as the
standard deviation divided by the mean). Of
course, the variability of a probability distribution
with fixed mean and the impact of that distri-
bution as a service-time distribution on the behav-

-ior of a queue are not completely determined by

the CV [3,14], but the CV is certainly a major
factor which is useful for practical purposes [11,34].
The following are familiar service-time variability
principles for open networks.

Service-time variability principles for open networks

{OS1) Each mean queue length is a nondecreas-
ing function of the service-time CV at that
queue.

(082) Each mean queue length is also a nonde-
creasing function of the service-time CVs
‘at all other queues.

Variability principle (0OS2) is somewhat less
apparent than (OS1). The reason for (OS2) is that
increased variability of a service-time distribution
typically causes increased variability of the depar-
ture process from that queue, which in turn causes
increased variability in the arrival processes at the
other queues that can be reached from the given
queue. Thus, principle (OS2) is a consequence of
the following arrival-process variability principle.

Arrival-process variability principle for open
networks

(OA1) The mean gueue lengths are nondecreas-
ing functions of each arrival-process CV,

Of course, these variability principles are not
valid as theorems without qualifications. Through-
out this paper we assume that there is a single job
class and that a job completing service at queue i

. goes next to queue j with probability g;;, indepen-

dent of the history of the systemn. As usual, we
assume that the service times at each quene and
interarrival times of each external arrival process
(if any) are mutually independent. Moreover, the
service times at each queue have a common distri-
bution and the interarrival times of each external
arrival process have a common distribution. How-
ever, even with these additional specifications, the
variability principles are not valid without qualifi-
cations, but they are usually appropriate for prac-
tical purposes. We discuss them further in Sec-
tion 2.

In the associated closed network, there are no
external arrivals; instead, a fixed population of
jobs circulates around the network. The two
service-time variability principles above cannot be
extended to closed networks because the total
population is fixed. Indeed, we should not expect
that principle (0S2) would extend to closed net-
works, and it does not. It may at first seem
surprising, but even principle (OS1) does not ex-
tend to closed networks. Of course, principle (OS1)
does often apply to closed networks, but there is a
systematic exception. Increasing the service-time
variability at a bottleneck queue typically causes
the mean queue length there to decrease, when the
population is not too small. The bottleneck queue
is the queue with the largest utilization, where the
utilization is the long-run fraction of time (or
probability) that the server is busy. This “bot-
tleneck phenomenon’ was observed and verified
by simulations, analytic approximations and exact
analytic methods in [2]. We present some of the
evidence here. We also propose four service-time
variability principles for closed networks.

Service-time variability principles for closed
networks

(CS1) The mean queue lengths tend to be rela-
tively insensitive to changes in the
service-time CVs, provided that the net-
work population is not teo large.

(CS2) The mean queue length at a nonbottleneck
queue is a nondecreasing function of the
service-time CV at that queue.

(CS3) The mean queue length at a bottleneck
queue is a nonincreasing function of each
service-time CV, provided that the num-
ber of jobs in the network is sufficiently
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large; otherwise, it tends to be a nonde-
creasing function.

(CS4) The vector of server utilizations is a nonin-
creasing function of the service-time CV at
any queue.

Remarks. (1) Principle (CS1) is somewhat vague.
One way to be more precise is fo compare with
related open models: Typically, the impact on the
mean queue lengths of the same change in
service-time CV is much less in a closed model.
However, the influence increases as the population
increases.

(2) The fact that the mean queue length need
not increase when the service-time variability is
increased at that node has no doubt been observed
several times before. For example, this phenome-
non was observed for the finite-capacity M /G /1
queue by Lavenberg in [13, Table 1 and p. 506].
Principle {(CS3) and later discussion here help
explain this phenomenon.

(3) Since the ratio of the utilizations at different
queues is determined by the routing probabilities
and the service rates, even with nonexponential
service-time distributions, all the utilizations will
respond the same way; there is only one degree of
freedom for principle (CS4).

Principles (CS1), (CS2), and (CS4) are as ex-
pected, but principle (CS3) seems to be an
anomaly. It can be explained as follows. Increas-
ing the service-time variability at one queue tends
to both'increase the mean queue length there and
increase the variability of the departure process.
However, in a network of queues, the departure
process from one queue contributes to the arrival
processes at other queues. Since increased variabil-
ity of the arrival process also tends to increase the
mean queue length, as in (OAl), increasing the
service-time variability at one queue tends to in-
crease the mean queue length at all queues that
can be reached from that queue. However, this
cannot happen in a closed network without draw-
ing jobs away from the queue in question, since
the number of jobs in the network is constant. In
a closed network the outcome depends on whether
the increased service-time variability has a greater
impact at the given queue or at all other queues.
The impact on other queues is most pronounced
when service-time - variability is increased at a

heavily used node. In particular, if the server in
question is the bottleneck in a closed network with
a fairly large population, then it turns out that the
effect of increased service-time variability is usu-
ally to draw jobs away from the bottleneck queue.

The remainder of this paper is organized as
follows. Section 2 discusses the variability princi-
ples for open networks. Section 3 discusses
numerical evidence in support of the service-time
variability principles for closed networks. Section
4 indicates how the service-time variability princi-
ples for closed networks can be explained, in part,
by relating a closed network with a large popula-
tion to the associated open network obtained by
replacing the bottleneck queue by an external
source. Section 4 also contains a proof of princi-
ples (CS2) and (C83) in the special case of a cyclic
two-queue closed metwork. Section 5 contains a
proof of principle (CS4) in the special case of a
cyclic two-queue network in which the bottleneck
service-time distribution is exponential. Finally,
Section 6 discusses the implications of the
service-time variability principles for procedures
to approximately analyze closed networks.

2. The variability principles for open networks

In this section, we give partial support for the
variability principles for open networks, first by
considering the special case of a single queue.
Principle (OS1) is easily verified in the special case
of a single M/G/1 queue (with Poisson arrival
process) because the mean queue length has a
simple formula which depends on the service-time
distribution only through its first two moments.
For the GI/G/1 queue with renewal arrival pro-
cess, principle (OS1) is good, roughly speaking,
but it is obviously false without extra conditions
because, for any given interarrival-time distribu-
tion and first two moments of the service time,
there is a set of possible service-time distributions
having those moments and a set of associated
mean queue lengths. However, it is possible to
show that the set of possible mean queue lengths
is indeed a nondecreasing function of the service-
time CV, We interpret A, < A4, for sets of real
numbers as inf 4, <inf 4, and sup A4, <sup 4,.
For more on- this perspective involving sets of
possible operating characteristics, see [34].
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Theorem 2.1. For the G1/G/1 queueing model
‘with any fixed interarrival-iime distribution and any
fixed mean service-time, the set of possible expected
equilibrium queue lengths is nondecreasing in the
service-time CV,

Theorem 2.1 is a rather direct consequence of a
basic stochastic comparison result for the GI /G /1
queue [29] that provides additional support for the
variability principle for open networks (see also
[23,30]). One random variable X, or its cdf F, is
said to be fess variable than another random vari-
able X, or its cdf F,, denoted by Fi <, F, or
X, <, X, if Eg(X)<Eg(X,) for all convex
real-valued functions g for which the expectations
are defined. Since g(x)=x and g(x)= —x are
both convex, E(X;)= E(X,) and CV{X))<

CV(X,)if X, <, X,. However, the converse is not

valid: CV(X) < CV(X,) and E X, = E X, do not
imply that X, <, X,. For two GI/G/1 queues
with common interarrival-time distribution, the
mean queue lengths are indeed ordered if the
service-time distributions are ordered by <. In
fact, the equilibrium queue length distributions
are ordered in the sense of expectations of all
nondecreasing convex functions. Furthermore, this
result has been extended to several single-server
queues in series [17].

Proof of Theorem 2.1. Given any service-time
cdf F; with positive mean m, and arbitrary CV,,
it is possible to construct another service-time cdf
F, such that F, <, F, (so that m,=m,) and
CV, < CV, by a simple transfer of mass. (Use the
property that X, <, X, if and only if X, is dis-
tributed as X, + ¥ where E(Y | X;} = O with prob-
ability one.) Moreover, we can make CV, assume
any value. Similarly, if CV, >0, it is possible to
construct F, so that F, > , F, with CV, > CV,. To
carry out the proof, choose a sequence of service-
time cdf’s { F,} with fixed m, and CV; such that
the associated mean queue lengths approach the
supremum possible given.m, and CV;. Then con-
struct an associated sequence of cdfjs {G,} with
CV(G,)=CV,>CV,and F, <, G, forall n. As a
consequence of the Stoyan [29] ordering, the mean
queue lengths associated with G, are larger than
the mean queue lengths associated with F,. Hence,
the supremum of the mean queue lengths given m,
and CV] is less than or equal to the supremum

given m, and CV,. A similar argument applies to

the infimum. 0O

Remark. Principle (0OS1)} does not extend to
multi-server queues. Counter-examples for G/
G/s queues with s>1 appear in [38,22] We
conjecture that (OS1) is valid for M /G /s queues,
but it has not yet been proved. It is valid for
several approximation procedures for M/G/s
queues (see [35] and references cited therein). More
generally, we conjecture that the principle extends
when the arrival processes tend to be no more
variable than the Poisson process. Roughly speak-
ing, this means when the interarrival-time CV is
less than or equal to 1.

Since the basic stochastic comparison result for
GI/G/1 queues in [29] applies to interarrival
times as well as service-times, there is a corre-
sponding theorem in support of principle (OA1),
proved in the same way.

Theorem 2.2. For the Gl/G/1 gqueueing model
with any fixed service-time distribution and any
fixed mean interarrival time, the set of possible
expected equilibrium queue lengths in nondecreasing
in the interarrival-time CV,

We conjecture that Theorems 2.1 and 2.2 ex-
tend to any ‘GI/G /1 network” of the kind we are
considering, i.e., any open network of single-server
FCFS queues with one job class, unlimited waiting
rooms and general service-time distributions, pro-
vided that the service times are mdependent and
identically distributed at each queue, the external
arrival processes are independent renewal pro-
cesses, the service times at different queues are
mutually independent and independent of the
arrival processes, and there are independent rout-
ing probabilities. Even if the conjecture turns out
not to be correct as a theorem, we believe that it
describes the typical situation.

In fact, all numerical evidence known to us
supports the variability principles for, open net-
works of single-server FCFS queues, with the
proper qualifications. As a consequence, ap-
proximation procedures for open networks that
are based only on means and CVs invariably are
consistent with the variability principles above.
This is certainly true of the Queueing Network
Analyzer (QNA) described in [33] and all previous
algorithms mentioned therein. For QNA, it is easy
to show that the vector of mean queue lengths is
an nondecreasing function of the vector of

e
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service-time CVs and external arrival-process CVs.,
Moreover, the approximation formulas there make
it easy to quantify the influence of variability.
Approximation formulas (33), (36) and (38} in [33]
for the CVs obtained from the basic operations of
superposition, splitting and departure, respec-
tively, indicate, at least roughly, how a CV in-
fluences the rest of the network.

The variability of the departure process tends
to be more seriously influenced by the variability
of the service-time distribution at higher utiliza-
tions. This is illustrated by the approximation
formula for the CV of a departure process from a
single-server queue first proposed in [25] and fur-
ther, discussed in [37], namely,

CVZ=p?CV2+(1-p)°CV2, (1)

where CV,, CV,, and CV, are the coefficients of
variation, respectively, of an interdeparture time, a
service time and an interarrival time, and p =A/p
is the traffic intensity or utilization, defined as the
ratio of the arrival rate A and service rate p.

It should be remembered, however, that the
variability of a departure process or an internal
arrival process is determined not only by the
variability of each interval , which is usually char-
acterized reasonably by the interval CV, but also
by the dependence among successive intervals.
Except. for external arrival processes, these
processes are typically not remewal processes.
Positive dependence, e.g., positive correlations,
among successive intervals (a tendency for arrivals

- or departures to occur in clusters) can be regarded

as another aspect of increased variability. Simi-
larly, negative dependence can be regarded as
another aspect of decreased variability.

The influence of CV, and CV, on a single-server
queue may be described quantitatively by the fol-
lowing approximation formula for the mean queue
length (excluding the job in service):

EQ=p(CV}+CV})/2(1-p) (2)

(see [33, equation (44)] and references therein).

3. Numerical evidence for closed networks

We now consider closed networks and discuss
numerical. evidence in support of principles
(C81)—(CS84), with particular attention to (CS3).
These principles are illustrated in the exact

global-balance solutions of small closed central-
server networks in [1,24}. To describe these exam-
ples, let the demand at any queue equal the rela-
tive arrival rate or visit ratio (determined by solv-
ing the traffic-rate equations) multiplied by the
mean service time. Since we are considering only
single-server queues, the actual utilizations differ
from the demands by a common multiplicative
factor.

Balbo’s central-server network is illustrated in
Fig. 1. It consists of two queues with equal de-

Table 12
Performance measures for Balbo’s network in Fig. 1 {from [1})

Parameters CPU DISK1 DISK2

Mean service time 0028 004 028

Visit ratio 100 70 20

Demand 0.28 0.28 0.56

Mode! variant Congestion CPU DISK1 DISK2
measure

Product form QL 0.89 089 423

Utilization ~ 0.486 0486 0.972
Throughput 1735 1215  3.47

CV=06at CPU QL 0.83 086 432
Utilization 0.488 0488 0977
Throtighput 17.44 1221  3.49
CV=2atCPU QL 1.02 096 4.03
Utilization 0477 0477 0953
Thréughput 17.03 1192 341
CV=5aCPU QL ] 1.23 096 3.79
Utilization 0446 0445 0889
Throughput 1588 11.11 3.18
CV=10atCPU QL 138 085 378
Utilization. 0416 0416 0.832
Throughput 14.87 1041 297

CV=06at DISK1 QL 0.84 083 432
Utilization 0488 0488 0.977

Throughput 1745 1221  3.49

CV=2atDISK1 QL 0.95 100 395
Utilization 0477 0477 0954

Throughput 17.03 1192 341

CvV=10at DISK1 QL 0.83 137 3380
" Utilization 0415 0415 0.831

Throughput 1483 1038 297

.CV=2atDISK2 QL 1.00 100 400

Utilization 0465 0465 0.931
Throughput 1662 11.64 3.32
Cv=5atDISK2 QL ’ 111 116 3.79
Utilization 0439 0439 0.878
Throughput -15.67 1097 313
CV=10at DISK2 QL 113 113 373
Utilization ~ 0.431 0431 0.863
Throughput 1541 1079  3.08

- The network population is § in each case.
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DISK 1
< 0.28
10 0.04
CPU
0.28
0.028
2
DISK 2
VISIT RATIO 0.56
NAME 0.28
DEMAND

MEAN SERVICE
TIME

Fig. 1. Balbo's central-server model.

mands, CPU and DISKI, and a third queue,
DISK2, whose demand is twice the demands of
each of the other two queues. Clearly, DISK2 is
the bottleneck device. The parameters of Balbo’s
central-server model and portions of the solution
data are shown in Table 1. The network popula-
tion {(or multiprogramming level) is the same (6) in
all cases. With this population, the system is
saturated; e.g., the utilization of DISK2 when the
network has all servers exponential is nearly one.

The reference case is the standard product-form
model in which all setvice-time distributions are
exponential. In all other cases, all the service-time
distributions are again exponential except for the
one distribution being modified. Servers with CV
greater than one have been fitted with two-stage
hyperexponential distributions chosen to have their
stages balanced. The service-time density when the
distribution has mean m and coefficient of varia-
tions CV > 1 is thus

() =pp, e+ (1—plu, e, 120, (3)
where
p=HHcvi-n/(cvi+ 1)),

pm=2p/m and p,=2(1-p)/m. |
Servers with CV less than one and greater than 0.5
have been fitted with hypoexponential distribu-

tions (convolutions of two exponential distribu-
tions, possibly having different means). Balbo
solved this network exactly by representing it as a
vector-valued Markov chain.

Table 1 illustrates principles (CS1)-{(CS4). First,
in support of (CS1), the mean queue lengths (de-
noted QL) change relatively little compared to
what we would expect for related open models
from approximation formulas (1} and (2). For
example, the mean queue length would go up by a
factor of 50.5 in an M/G/1 queue when the
service-time CV is increased from 1 to 10.

Table 1 also shows the CPU mean queue length
rising as its service-time CV increases with the
service-time CVs of the other queues kept fixed at
unity, while in contrast the mean queue length of
DISK?2 falls as its service-time CV is increased
with other service time CVs fixed at unity. The
utilizations at each server decrease whenever any
service-time CV is increased.

Principles (CS1), (CS3), and (CS4) are also
supported by the Ruggieri—Galeazzi data shown
in Table 2. The network has the same topology as
the Balbo model in Fig. 1, but different parame-
ters. The mean queve length at DISK2 decreases
when the DISK2 CV is increased as soon as the
network population (MPL) exceeds 2. These data
indicate that increasing the number of jobs makes
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Table 2

The network in Fig. 1 with and without a hyperexponential service-time distribution at the bottleneck queue, taken from [24]

Parameters CPU DISK1 DISK?2

Mean service time 2.0 4.0 25.0

Visit ratio 5.0 3.0 1.0

Demand 10.0 12.0 25.0

Model All exponential CV=12.6 at DISK2

Population Measure CPU DISK1 DISK2 CPU DISK1 DISK2

2 Mean queue length 0.37 0.46 1.17 0.37 0.46 118
Utilization 0.3035 0.367 0.764 0.289 0.346 0.721
Throughput - 0.153 0.092 0.031 0.144 0.087 0.029

3 Mean queue length 048 0.62 1.90 0.49 0.63 1.88
Utilization 0.351 0.421 0.878 0.327 0.393 0.318
Throughput 0.176 0.105 0.035 0.164 0.010 0.033

4 Mean queue length 0.55 0.73 2.72 0.59 0.79 262
Utilization 0.375 0.450 0.937 0.350 0.420 0.876
Throughput 0.187 0.112 0.037 0.175 0.105 0.035

5 Mean queue length 0.60 0.80 3.60 0.67 0.93 3.40
Ultilization 0.387 0.464 0.976 0.365 0.438 0.913
Throughput 0.193 0.116 0.040 0.183 0.110 0.037

8 Mean queue length 0.66 0.90 645 0.83 1.23 5.93
Utilization 0.398 0.478 0.996 0.387 0.466 0.965
Throughput 0.19%9 0.120 0.040 0.194 0.116 0.039

(CS3) more prominent, but the phenomenon can
occur if the system is only moderately loaded, as
well as when it is saturated.

The apparent anomaly (CS3) was also investi-
gated for the Balbo network in Fig. 1 using the
SLAM II network-oriented simulation package
[18]. As before all service-time distributions are
exponential except for the designated one. The
bottleneck phenomenon was also observed in the
simulations. The simulations also showed a strong
relationship between the anomalous mean queue
lengths and the measured interarrival time CVs.
The simulation results for the arrival and depar-
ture CVs appear in Table 3. No assessment of the
statistical accuracy of the simulattons is given, but
the runs were quite long. Each network was simu-
lated for 2000 units of simulated time on a CDC
6500, implying that there were at least 28000
departures from the CPU. The statistics were
cleared at time 200 to reduce startup bias. There
were no replications with different seeds. How-
ever, the exact analytical results in Table 1 were
used for validation. - )

From Table 3 we see that, as the CPU service-
time CV is increased, the interarrival time CV at
other devices in the system also increases. How-
ever, as suggested by (1), the same trend is much

more marked when the service-time CV is in-
creased at DISK?2 instead. The difference is par-
ticularly great when the DISK2 CV is 10. This is
also the instance in which CS3 is most prominent.

Table 3 1s also significant because it dramati-
cally demonstrates a striking difference between
the open and closed models. The closed models is
much more tightly coupled. The population con-
straint tends to induce strong negative dependence
(e.g., correlations) among successive interarrival
times at the queues. Indeed, if the successive inter-
arrival times at each queue were nearly indepen-
dent, then we could predict the mean queue lengths
reasonably well using (2) together with the inter-
arrival-time and service-time CVs. However, from
Tables 1 and 3 we see that this method grossly
overestimates the mean queue lengths. This shows
that there must be significant negative dependence
among successive interarrival times. For example,
in the product-form case when the actual popula-
tion is 6, the predicted expected number at the
CPU using the open-model approximation (2} with
p = 0486 (the utilization from Table 1) and the
simulation value CV, = 1.62 (from Table 3) is 1.32
as opposed to the actual value 0.89 (Table 1).
More dramatically, when CV =10 at DISK2 and
the actual population is 6, the predicted expected
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Table 3

Arrival and departure CVs for Balbo's network in Fig. 1 and Table 1, obtained by simulation, from [2]

Parameters CPU DISK1 DISK2

Service time 0.028 0.64 0.28

Visit ratio 10.0 70 2.0

Demand 0.28 0.28 0.56

Varant Population ArCvV DepCV ArrCV DepCV ArrCV DepCV

Product form 1 149 1.50 1.55 1.55 0.72 0.73
6 1.62 1.63 1.67 1.67 0.98 0.97

CV =0.6 at CPU 6 1.71 1.69 1.75 1.76 0.99 0.99

CV = 0,6 at DISK1 6 1.7¢ 1.71 1.79 1.76 0.98 1.01

CV=0.6 at DISK2 6 125 1.26 1.43 1.44 0.86 0.59

CV=2atCPU 1 1.55 1.55 1.60 1.60 0.74 0.74
6 1.69 1.80 1.79 1.77 1.01 0.98

CV =2 at DISK1 1 1.57 . 158 1.59 1.60 0.76 0.76
6 1.77 1.75 1.74 1.86 1.04 0.99

CV =2 at DISK2 1 2n 27 2.42 242 1.24 1.24
6 3.96 396 347 346 1.86 2,07

CV=5at CPU 1 1.98 1.98 1.92 1.92 0.93 0.93
6 222 2.76 247 243 137 114

CV =175 at DISK1 1 209 2,09 196 1.58 0.98 0.99
6 242 242 221 279 1.37 1.25

CV =5 at DISK2 1 4.73 4.73 4.08 4.09 2.15 2.17
6 8.13 8.13 6.86 6.87 3.72 3.87

CV=10at CPU 1 276 2.80 2.55 2.54 1.26 127
6 413 491 4.19 4.17 228 1.94

CV =10 at DISK1 1 322 323 284 2.83 148 1.48
6 4.15 4.15 3.58 422 213 1.97

CV=10at DISK2 1 13.24 13.24 11.05 11.09 5.94 5.98

- 6 18.86 18.86 15.78 15.77 8.55 8.61

number at the CPU using (2) plus p = 0.431 (the
utilization from Table 1) and the simulation value
CV, =18.86 (from Table 3) is 58.7 as opposed to
the actual value 1.13 (Table 1).

Two additional sets of experiments were run to
explore principle (CS3) further. In the first set of
experiments, a driver was written to run Marie’s
algorithm [15] repeatedly on a model whose mean
service-time at a nonexponential server was gradu-
ally increased from zero. The program compared
the approximate mean queue length at this server
with the mean queue length the server would have
had in-a network with all servers exponential. As
indicated in [1], Marie’s approximation procedure
is remarkably accurate. Moreover, principle (CS3)
was always observed when the server’s demand
became sufficiently large. The same phenomenon
was observed when the visit ratio was varied in-
stead. The experiment was run with the service-
time CV set at various levels. It was found that a

single nonexponential server exhibited anomalous
queue length at lower demands as the CV was
raised. The results also showed that it is not
necessary for the device to be the bottleneck in
order to exhibit the anomaly ((CS3) is a rule of
thumb, not a theorem) (see [2] for additional
details).

The second experiment was performed on two-
station cyclic networks. The networks had one
exponential server and one server whose service-
time CV was set to either one or five. The same
hyperexponential service-time distributions in (3)
were used. The steady-state equations were solved
for networks with stations having balanced, slightly
unbalanced, and very unbalanced demands, as
shown in Table 4(a). All of the networks con-
tained three circulating jobs. The balanced case
shows a reduction in the queue length of the
nonexponential server when its service-time CV is
increased from 1 to 5, even though the utilization
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Table 42

Results for a two-queue closed cyclic network with population 3 in support of principle (CS53)

(a) Global-balance solution of two-queue cyclic networks

queune 2 exponential

Network CV, A S, QL, qQL, Util, Util, Throughput
Balanced 1.0 0.2 02 1.50 1.50 0.75 0.75 375
5.0 02 0.2 1.46 1.54 0.65 0.65 3.24
Slightly 1.0 0.206 0.2 1.54 1.46 0.76 0.74 3.69
unbalanced 5.0 0.206 0.2 149 1.51 0.70 0.64 3.20
Very 1.0 0.2 0.1 2.27 0.73 0.93 0.47 4.67
unbalanced 5.0 02 0.1 215 0.35 0.86 0.43 432
50 01 0.2 0.84 2.16 0.41 - 0.81 407
(b) Simulations of two-queue very unbalanced cyclic networks
queue 2 exponential
Cv, S, Sy QL, QL, Util, Util, CVarr; CVarr, Throughput
1.002 0.1 2.26 0.74 0.94 0.47 0.99 0.98 4.72
5002 01 2.16 0.84 0.86 043 4.37 4.39 4.27
5001 0.2 0.84 2.16 0.41 0.81 2.09 218 404

* The mean service-time at node i is §; and the mean queue length is QL,, i=1, 2.

of both servers is moderate (0.6480). The slightly
unbalanced case is of interest because it shows
that the longest queue length need not occur at the
bottleneck device. This case provides an example
in which one queuve has both higher demand
(0.206 > 0.200) and higher CV (5 > 1), but a lower
mean queue length (1.49 < 1.51).

Another instance of the bottleneck anomaly is
revealed by the very unbalanced case in Table
4(a). The analytic results for the very unbalanced
case are corroborated by the simulation results in
Table 4(b). Each network was run for 500 units of
simulation time, after removing 100 units to re-
duce startup bias. Again, the exact analytical re-
sults were used for validation. Notice that the
simulated CVs of the interarrival times for the

- network with one nonexponential server are con-

siderably greater than those for the network with
both servers exponential. The bottom row of Ta-
ble 4(b) shows the results of a simulation in which
the, nonexponential server is not the bottleneck
(the mean service times of the second row have
been reversed); in this case, the mean queue length
of the nonexponential server has increased when
compared with that of the associated nonproduct
form network. Also notice that, as suggested by
(1), the CVs of the interarrival times are not as
great as in the run shown in the second row of
Table 4(b). This parallels the simulation results for
Balbo’s models; very large interarrival-time CVs

were observed when a high service-time CV was
placed at the bottleneck device.

4. Theoretical justification for principles (CS2) and
(CS3)

There is a simple explanation for the service-
time variability principles for closed networks
when there is a large population (where large
obviously depends on the network). As the popu-
lation in the closed network grows, the bottleneck
queue is almost always busy. (We assume that
there is a single bottleneck queue, but the ideas
also extend to several bottleneck queues.) In fact,
it can be shown that the vector of queue-lengths in
the subnetwork of the closed network without the
bottleneck queue converges in distribution to the
vector of queue lengths in the associated open
network obtained by replacing the bottleneck
queune with an external renewal arrival process.
This and related limit theorems are discussed in
[36]. The external renewal arrival process, of
course, has the bottleneck service times as inter-
arrival times. Hence, for large populations, we can
regard the bottleneck service times as interarrival
times to an open network. When the population is
large enough, we can translate the service-time
variability questions about closed networks into
related arrival-process variability questions about
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open networks. In particular, (CS2) and (CS3) can
be viewed as consequences of (OS1) and (OAl),
respectively, when the populations are large
enough. This is rigorously justified asymptotically
as the population grows, but the examples in
Section 3 show that the effect is already present
for relatively small populations.

In the case of a two-queue cyclic network, we
can rigorously demonstrate that principles (CS2)
and (CS83) for a closed network with a bottleneck
node and a large population follow from princi-
ples (OS1) and (OA1). As the population grows,
the closed network approaches a simple GI/G/1
queue with the bottleneck service times as inter-
arrival times. For this special case, principles (CS2)
and (CS83) follow from principles (OS1) and (OAl)
via Theorems 2.1 and 2.2

The discussion above indicates that principle

Table 5

(CS2) will eventually apply as - the population
grows, but it is not clear how large the population
must be, From examples, the population evidently
does not have to be very large. The population
need not be so large when the relative utilization
of the boftleneck node is large. This can be con-
veniently demonstrated in the special case of the
two-gqueue cyclic network in which one of the
service-time distributions is exponential. In this
case, the closed model with population X is equiv-
alent to the open M/G/1/K — 1 model having a
finite waiting room of size K —1 (see [20,13] and
[12, p. 33]). We can see what happen in this case
from the extensive tables in [12]. To illustrate,
Tables 5 and 6 contains the mean queue lengths
and utilizations for the server when K =3 and 11,
respectively. In these tables, four service-time dis-
tributions with identical means are considered:

The utilizations and mean queue lengths in an M/G/1/K —1 model with a finite waiting room of size K—1=2 for G=D
(Deterministic), E, (Erlang of order 2), M (exponential), and H, (hyperexponential).

Arrival Utilization of the server Mean queue length

rate D E, . M H, D E, M H,
0.50 0486 0.476 0.467 0.451 0.18 0.23 0.27 0.31
075 0.685 0.656 0.634 0.606 0.42 0.48 0.51 0.55
1.00 0.824 0.781 0.750 0.716 0.70 0.73 0.75 077
1.40 0.933 0.893 0.859 0.826 1.08 1.05 1.05 1.04
2.00 0.988 0.960 0.933 0.909 1.42 1.36 1.33 1.32
Notes:

(1) The mean service time is always 1.

(2) The H, distribution has CV =1.50 and balanced means.

(3) The exact values come from [12, Tables 5.1.2, 5.2.2, 5.3.2 and 5.4.8 in Section IL5].

(4) This model is equivalent to the closed two-queue cyclic network with population K = 3 in which one service-time distribution is
exponential. The mean service time of the exponential server is the reciprocal of the arrival rate.

Table 6
The utilizations and mean queue lengths in an M/G/1/K —1 model with a finite waiting room of size X —1=10 for G=D
(Deterministic), E, (Erlang of order 2), M (exponential), and H, (hyperexponential).

Arrival Ultilization of the server Mean queue length

rate D E, M H, D E, M H,
0.50 0.500 0.500 0.500 0.498 0.25 0.37 0.50 0.77
0.75 0.749 0.747 0.742 0.725 1.10 1.54 1.87 2,29
1.00 0.954 0.934 0.917 0.883 4.61 4.60 4.58 4.46
1.40 1.000 0.998 0.993 0.979 8.61 8.12 1.72 718
2.00 1.000 1.000 1.000 0.999 9.37 9.1% 9.00 8.75
Notes:

(1) The mean service time is always 1. .

{2) The H, distribution has CV =1.50 and balanced means.

(3) The exact values from [12, Tables 5.1.6, 5.2.6, 5.3.6 and 5.4.12 in Section IL.5) vsing the FCFS discipline.

{4) This model is equivalent to the closed two-queue cyclic network with population K =11 in which one service-time distribution is
exponential. The mean service time of the exponential server is the reciprocal of the arrival rate.
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D (deterministic), E, (Erlang of order 2), M {ex-
ponential) and H, (hyperexponential, a mixture of
two exponentials with balanced means). The CVs

“are 0, 0.071, 1.0, and 1.50, respectively. These

distributions are increasingly more variable in the
< , ordering introduced in Section 2. Principles
(CS1)-(CS4) are illustrated in these tables. Even
when the population in 3, principle {CS3)} applies.
However, this is not the case when K =2. The
mean queue lengths when the. arrival rate is 2.00
are then 0.53, 0.56, 0.57, and 0.58 for D, E,, M,
and H.,, respectively.

It is not necessary for the ratio of server utiliza-
tions to be extremely large. In fact, (CS3) holds
for equal utilizations here (arrival rate=1.00)
when K =11. We conjecture that there exist criti-
cal thresholds of populations and relative utiliza-
tions, such that principle (CS3) applies for all
larger populations and all bottleneck nodes with
higher relative utilizations.

5. Theoretical justification for principle (CS4)

Principle (C84) is illustrated in all the examples
so far. It can also be explained intuitively in the
case of a bottleneck node with a large population.
Then the throughput tends to be the bottleneck
service rate. However, greater variability anywhere
in the network increases the likelihood of the rare
event that the bottleneck quene will be idle, thus
decreasing the bottleneck utilization and the
throughput. Now we give a theoretical justifica-
tion of (CS4) in the special case of the two-queue
cyclic closed network in which one service-time
distribution is exponential. As in Section 2 we use
‘the variability ordering < , based on the expecta-
tion of convex functions. As in Section 4, we use
the equivalence with the M/G/1/K ~ 1 systems.

Theorem 5.1. Inan M /G /1 /K — 1 queue for which
the arrival rate is less than the service rate, the
wtilization is a nonincreasing function of the service-
time distribution in the ordering < .

Proof. By [6, Section 5.9], the utilization is 1 /(g
+ a), where a=A/p is the offered load (arrival
rate divided by the service rate),

g =po/(Po+ - - +RK—1)a

and p; is the equilibrium probability that there are

J customers in the associated M /G /1 queue with
unlimited waiting room. As a consequence, p, =
1 —a, independent of the service-time distri-
bution. However, by Rolski and Stoyan [21], the
equilibrium distribution of the M/G/1 queue in-
creases stochastically when the service-time distri-
bution gets more variable in the sense of <.
Hence, p,+ -+ +pg_, decreases for any K, so
that wf increases and the utilization decreases.
a

Remarks. (1) By the argument of Theorem 2.1,
Theorem 5.1 can be recast in terms of the set of
possible utilizations as a function of the service-
time CV.

(2) The examples here indicate that server utili-
zations are not severely affected by service-time
variability. This is typically the case, but dramatic
changes in utilization are possible if the variability
is allowed to increase without bound (see [36,
Section XIJ). It is possible to construct networks
of single-server queues for which all server utiliza-
tions are arbitrarily close to 1 in the product-form
Markovian model, but arbitrarily close to 0 in the
non-Markovian model obtained simply by increas-
ing the CVs of the service times while keeping the
means fixed.

6. Approximation methods for closed networks

The results of the previous sections yield in-
sights for evaluating the performance of ap-
proximate closed queueing network solution meth-
ods. Some of these methods will be examined
below,

6.1. Reiser’s MVA-based approximation

Reiser [19] has presented an approximate anal-
ysis of closed networks with nonexponential FCFS
servers based on the mean-value-analysis (MVA)
algorithm for product-form-networks. The al-
gorithm is shown in Fig. 2.

The approximation reduces to the original (ex-
act) MVA algorithm when all servers are exponen-
tial. The appearance of the squared service-time
CV in the response-time formula is derived from a
renewal argument based on the residual service
time of the job in service at the instant 2 new job
arrives. This is also the cause of its appearance in
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Algorithm: REISER HEURISTIC

fori: =1 to N do f(0) : =0.0;
for k:=1 to K do begin

Ri:=Si{1+ fifk— 1)Uk - 1))

end; (" for k*)

+U k=181 +CV2, i=12,. ., N;

k) :=kVR/LVR;, i=1,2,.. ., N;

Notation

K network population {multiprogramming level}
N numkber of queues

B; mean response time at queue |

5 mean service time at queue i

Vi visit ratio or relative arrival rate

mi(k} mean number of queue i given population Kk
U;(k} utilization of server i given population k

Fig. 2. Reiser's MVA-based heuristic.

the P— K formula for the M/G/1 queue [10].
The approximation implicitly uses the Arrival
Theorem [26], which states that the number of
waiting jobs seen by an arriving job is egqual to
that seen by an ocutside observer of the network
with one job removed. However, the Arrival Theo-
rem does not hold unless the network has product
form.

This approximation method may predict per-
formance measures that are mutually inconsistent.
To see this, constder the case when the network
population is 2. Let Ui{k) be the utilization and
7,(k) the expected number at queue i as a func-
tion of the network population k. Multiply the
response-time formula given in Fig. 2 by the
throughput on both sides and apply Little’s law to
obtain the following expression for the mean num-
ber of customers at node i; '

7,(2) = U,(2) + 1U(QU,(1)(1 + CV?), (4)

because 7r;(1) = U(1), the utilization with one job
in the system. The left-hand side of (4) is less than
or equal to 2, the network population, while the
right-hand side can be made arbitrarily large by
letting U (k) be the true utilization at node i with
population % and increasing CV,. To see that the
right-hand side of (4) can indeed be made arbi-

trarily large, consider the special case of a sym-
metric two-node network in which both servers
have the same CV. Since U;(1) + U,(1) =1, U(1)
= 2 and U,(2) > 3. Hence, (4) implies that r,(2) >
2 for CV> \/ﬁ . Of course, Reiser’s algorithm
does not actually make n,(2) > 2 when CV, gets
large; it forces U;(k) below its true value to keep
n;(2) <2,

The presence of the CV on the right-hand side
of the response-time formula suggests (but does
not demonstrate) that the queune length will always
increase as the coefficient of variation increases,
contradicting the numerical results of Section 3.
There is also nothing in the approximation to
suggest that the effect of the service-time CV on

‘the queue length at one server is counteracted by

the effect of interarrival-time variability on the
queue length of other queues.

Sample outputs of Reiser’s heuristic for Balbo's
central-server model are shown in Table 7. Note
that the predicted mean queue length at DISK2
goes up from 4.23 to 4.75 to 5.71 as the service
time CV is increased from 1 to 2 to 10, contrary to
principle (CS3). Also note that the approximate
values are not close to the exact values. These
observations do not conflict with Reiser’s observa-
tion that the approximation produces good results
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Table 7

Comparison of the Reiser, EPF, CHW, and Marie approxima-
tion methods for Balbo’s central server model, as described in

Table 1

CV =1.0 at DISK2, product form

Server Queue length Utilization Throughput
CPU 0.89° 0.486 17.35
DISK1 0.89 0.486 12.15
DISK2 423 0.972 347
CV =20 at DISK2, Reiser’s method
Server Queue length Utilization Throughput
CPU 0.63 0.397 14.17
DISK1 0.63 0.397 9.92
DISK2 4.75 0.793 2.83
CV = 2.0 at DISK2, EPF method
Server Queue length Utilization Throughput
CPU 0.9% 0.467 16.68
DISK1 0.9% 0.467 11.68
DISK2 4.02 0.934 334
CV =20 at DISK2, CHW method
Server Queue length Utilization Throughput
CPU 0.87 0.479 1710
DISK1 0.87 0.479 11.97
DISK2 422 0.947 3.38
CV =20 at DISK?2, Marie’s method
Server Queue length Utilization Throughput
CPU 1.00 0.465 16.60
DISK1 1.00 0.465 11.62
DISK2 4.00 0.930 332
CV = 5.0 at DISK2, Reiser's method )
Server Queue length Utilization Throughput
CPU 0.31 0.241 8.61
DISK1 0.31 0.241 6.03
DISK2 537 © 0482 172
CV = 5.0 at DISK2, EPF method
Server Queue length Utilization Throughput
CPU 110 0.440 1571
DISK1 1.10 0.440 11.00
DISK2 3.80 0.880 314
CV =50 at DISK2, CHW method
Server Queue length Utilization Throughput
CPU 0.34 0.469 16.76
DISK1 0.84 - 0.469 11.73
DISK2 427 . 0.930 332
CV = 5.0 at DISK2, Marie’s method
Server Queue length”  Utlization Throughput
CPU 1.11 0.438 15.66
DISK1 111 0.438 10.86

313

DISK2 378 0.877

Table 7 (continued)

CV =10.0 at DISK2, Reiser’s method

Server Queue length Utilization Throughput
CPU 0.15 0.123 4.38
DISK1 0.15 0.123 3.06
DISK2 51N 0.245 0.88

CV =10.0 at DISK2, EPF method

Server Queue length Utilization Throughput
CPU 1.13 0.432 15.42

DK1 1.13 0.432 10.79
DISK2 374 0.936 3.08

CV =10.0 at DISK2, CHW method

Server Queue length Utilization Throughput
CPU 0.84 0.468 16.70
DISK1 0.84 0.468 11.69
DISK2 427 06.957 3.31

CV =10.0 at DISK2, Marte’s method

Server Queue length Utilization Throughput
CPU 1.13 0.431 15.40
DISK1 1.13 0.431 10.78
DISK2 3.713 0.931 3.08

for networks with one or more deterministic
servers, since the nature of the varability in our
example is quite different. '

6.2. The extended-product-form (EPF) method

The Extended-Product-Form (EPF) method,
due to Shum and Buzen [27,28] treats nonex-
ponential servers by convolving the distributions
of M/G/1/K queues into the normalizing con-
stant vector G used in Buzen’s algorithm [4]. Trial
throughputs of the M/G/1/K queues are de-
termined using a search whose objective is to
minimize violations of the flow balance equations
X =V.X, i=1,2,..., K. The method reduces to
the original convolution algorithm when all servers
are exponential. Balbo’s thesis [1] indicates that
EPF is fairly accurate in many cases. The portion
of his data reproduced in Table 7 indicates that
the EPF method predicts principle (CS3) correctly
and is very accurate for this example. However,
this should not be too surprising because the EPF
technique is known to be exact for a two-queue
cyclic network with only one nonexponential server
[27,28], and Balbo’s example in Fig. 1 is very close
to such a network.
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It is not difficult to see how the EPF can
perform poorly. For example, consider a cyclic
network with a bottleneck nonexponential server
having CV>1 and n>2 other exponential
servers with equal service rates. The EPF method
necessarily makes the queue-length distributions
the same at all » exponential servers, whereas in
fact the mean queue lengths are typically much
larger in the queues that come immediately after
the boitleneck server. As the population grows,
the closed network approaches the open network
containing a series of exponential servers with a
bursty external arrival process. The successive
mean queue lengths at the exponential servers
decrease dramatically if the traffic intensity is not
too small. For # > 2 and large populations, it thus
is apparent that the EPF method can perform
poorly and presumably also violate (CS3).

6.3. The generalized-product-form (GPF) method

A generalization of the EPF method called the
Generalized-Product-Form (GPF) method was de-
veloped by Tripathi [32]. 1t iteratively applies ap-
proximations for the interarrival and interdepar-
ture time CV’s as in (1) and [25] to compute
arrival-process parameters for heuristic approxi-
mations for GI1/G/1 queue-length distributions.
These distributions are then convolved into the
normalizing constant vector G. The vector G is
then used to compute the network’s performance
measures in the usual way. Initial estimates for the
throughputs are obtained using the Chandy/
Herzog/Woo (CHW) decomposition method de-
scribed in Section 6.4. We do not display results
for this method, but the results in [32] were not
especially good. Tripathi attributed errors in the
output of this method to errors in the individual
approximating queue-length distributions. It is also
possible that errors may arise from the CV ap-
proximations for departure processes described
earlier. However, we believe that the errors are
primarily caused by ignoring the population con-
straint and the dependence it causes in the arrivals.
Nevertheless, it does appear that the GPF method
or a suitable refinement should usually be con-
sistent with principle (CS3). Avoiding the Poisson
arrival assumption should make it possible to im-
prove on the GPF method.

6.4. The CHW device-complement method

The device-complement method of Chandy,
Herzog and Woo (CHW) [5] decomposes a closed
network into two parts, a (possibly) nonexponen-
tial device with index / and a single flow-equiv-
alent server whose state-dependent service rate
p,{k) is taken to be the throughput of the closed
network with device i removed (the complemen-
tary network) and k circulating jobs. The comple-
mentary network is assumed to consist entirely of
exponential servers so that it may be solved using
the convolution algorithm. The global balance
equations of the two-station network are then
solved by an appropriate method. The service-time
CV of the composite server is taken to be an
average of the CV’s of the servers it represents,
weighted by their throughputs. After the de-

‘composition and solution procedure have been

performed for each station in turn, corrections to
the service rates are made so as the minimize the
violations of the flow-balance law and the queue-
length constraints. The entire process is then re-
peated until the constraints are met to a set toler-
ance. A lucid description of the CHW method is
given in [31].

The CHW decomposition method has been re-
poried to predict throughputs fairly accurately [1],
but not queue lengths. Errors may result from
assuming ¢xponential service at all stations of the
flow-equivalent complementary server when com-
puting its throughputs. Indeed, the data in [1]
show that the CHW decomposition method does
not predict (CS3). The cases CV =2, 5, and 10 are
displayed in Table 7. While the CHW method is
not consistent with (CS3), it is much more accu-
rate ‘than Reiser's MVA approximation for this
example.

6.5. Marie’s device-complement meihod

Marie’s method [15] is also an iterative device-
complement method. Each device is treated as a
queue with state-dependent Poisson arrivals and a -
Coxian server [7], denoted by A,(%k)/C/1. Coxian
servers consist of a series of exponential stages; a
job leaves the server after each stage with some
probability. Stages and exit probabilities may be
combined to yield a Coxian server with any de-
sired CV. The queue-length distribution -is com-
puted as described in [16] when the arrival rates
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and Laplace transform f(s) of the service-time
distribution at queue i are known.

For closed networks with general servers, the
arrival rates at server / are given by

A(K)=0
and
. 5)
G, (K—k—1 (
)\‘.(k)=lf}—'(—'-l 0<k<K,

Gi(K—k) ’

where G; denotes the convolution vector of the
complementary network and K is the population
or multiprogramming level. The queue-length dis-
tribution is used to fit an equivalent load-depen-
dent server to device i when it is in the comple-
mentary networks of the other servers on the next
iteration, since

A(k=1)p(k— 1)'= p k) pi(k),
k=1,2,...,K, (6)

where A (k), p,(k), and p,(k) are respectively the
arrival rate, service rate, and state probability for
k customers at node i. This allows the comple-
mentary networks to be solved by the convolution
method, while explicitly accounting for the distrib-
utional form of each server.

After the throughputs and queue lengths have
been computed, they are checked to ensure that
the flow-balance and queue-length constraints are
satisfied. If they are not satisfied, corrections simi-
lar to those for the CHW method are applied to
the service rates and the entire process is repeated.
The overall scheme is depicted in Fig. 3. The
corrections are described in [15,2] and will not be
repeated here.

The data in [1,24) indicate that Marie’s method
is one of the most accurate approximations for
closed single-class queueing networks with nonex-
ponential servers, and this is corroborated here in
Table 7. The accuracy is apparently achieved by
explicitly accounting for the distributional form of
the service time at all devices. This is done by
(i) using the Laplace transform to compute
the queue-length distribution at each queue, and
(ii) fitting the service times with equivalent load-
dependent service rates used in analyzing the com-
plementary networks. Marie’s algorithm also im-
plicitly captures the effect of high or low inter-
arrival-time variability by fitting instantaneous
state-dependent arrival rates to each server. Be-
cause of these features, Marie’s method seems to

Convolution G(K)
P (k) = VGK-k—1)GK-K)

I

A(K/CH Queue
using fi(s}

}

Performance Metrics
wikpk) = Nk~ 1)pgdk—1)
pi(k) inputs to convolution

:

Marie’s corrections
if needed;
Otherwise STOP,

B

Fig. 3. Scheme for Marie’s algorithm.

perform consistently well. However, more testing
is needed to investigate its convergence properties
and its performance over a wide range of service-
time distributions.
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