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1 Introduction

I thank all involved with the conference and this special issue (SI). I was asked to
provide some commentary to put queueing theory in perspective, as seen from this
stage in my career, which I do by first discussing the papers in this SI and then by
providing a few personal reflections.

2 The lifeblood of queueing theory

We all are captivated by the way probability can help us understand uncertainty. Thus,
we are naturally attracted to queueing theory because it is a subfield of probability
theory within mathematics. At the same time, queueing theory is also subfield of
severalmore applied domains: of operations researchwithin engineering, of operations
management within business, and of performance analysis within computer science
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and electrical engineering. Indeed, as emphasized by Uma Prabhu in his founding
editorial in 1986 [42], the lifeblood of queueing theory lies in its applications.

Queueing theory has its origins in the work by A. K. Erlang on early telecommu-
nication systems [4,12,35] and keeps being revitalized by new technology, including
production, distribution, and computing systems. Today queueing theory is being
revitalized by new applications in service systems, as illustrated by the papers by
Zychlinski et al. [51] and Ibrahim [27] in this SI.

2.1 Improving healthcare: time-varying tandem queues with blocking

Zychlinski et al. [51] study tandem networks of many-server queues with time-varying
arrivals. The models have both telecommunication blocking (loss upon arrival if there
is no capacity) and production blocking (blocking after service, so prevented from
leaving, when the next facility has no room), e.g., see [16,48]. The authors develop
fluid models for several of these networks and justify them by establishing many-
server heavy-traffic (MSHT) functional strong law of large numbers (FSLLNs). They
show that the fluid models can be effectively analyzed, exploiting ordinary differential
equations with discontinuous right-hand side [18].

The paper [51] has a compelling motivation to analyze the flow of elderly patients
into beds in hospitals and then on to less costly beds in other geriatric institutions, as the
authors describe in their companion paper [50]. The blocking after service (bed block-
ing in hospitals) occurs when there are no beds available in the geriatric institutions,
forcing the patients to remain in the more expensive hospital beds, preventing new
admissions to the hospital. Moreover, in [50] they validate their model and analysis by
making comparisons with both 2 years of patient flow data and computer simulation
experiments. Thus, [50] is part of the recent empirical emphasis within operations
management. Avi has helped lead the way by developing the Service Enterprise Engi-
neering SEELab at the Technion, where data are collected and data analysis tools are
developed.

The basic Markov stochastic model studied in [51] has two stations, having N1
and N2 servers. There is a finite waiting room of capacity H before the first sta-
tion and no waiting space in between the two stations. The content is represented
by a vector (X1(t), X2(t)), where X1(t) is the number of customers at station 1 that
have not completed service at station 1, while X2(t) is the number of customers in
the entire system that have completed service at station 1, but not at station 2. The
number of blocked servers at station 1 is then B(t) ≡ (X2(t) − N2)

+, while the
number of unblocked servers at station 1 is U (t) ≡ X1(t) ∧ (N1 − B(t)). Cus-
tomers arrive according to a nonhomogeneous Poisson process with rate λ(t); the
total service rate at station 1 is μ1U (t) and at station 2 is μ2(X2(t) ∧ N2); a customer
completing service at station 1 continues to station 2 with probability p and departs
otherwise.

The authors show that the vector stochastic process (X1(t), X2(t)) can be analyzed
conveniently (so that reflection occurs on the axes) by letting R1(t) represent the non-
utilized capacity at station 1 (the blocked and idle servers plus the available waiting
room), while R2(t) represents the available space in the entire system.
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2.2 Sharing delay information in service systems

Ibrahim [27] surveys the rapidly growing literature on sharing delay information in
service systems. This important direction is emphasized in Sections 3, 5 and 6 of
the 2007 survey on call centers by Aksin et al. [1]. Recent research is responding to
the complex costs and benefits of sharing delay information, involving economic and
behavioral issues as well as probabilistic and statistical ones.

To see the growing interest in economic issues in queues, we observe that 320 of
the 872 citations in Google Scholar to the classic 1969 paper in Econometrica by
Naor [41] on “the regulation of queue size by levying tolls,” have appeared in the last
four years. Of course, this area has received attention, as can be seen from Hassin and
Haviv [26] (updated in [25]) and Stidham [47], but there is a new level of excitement.
Of particular interest is the number of empirical papers.

The fascinating new questions about sharing delay information can be seen in the
following quote from a recent article in the New York Times [19]:

LEONIA, N.J. - It is bumper to bumper as far as the eye can see, the kind of
soul-sucking traffic jam that afflicts highways theway bad food afflicts rest stops.
Suddenly, a path to hope presents itself: An alternate route, your smartphone
suggests, can save time. Next thing you know, you’re headed down an exit ramp,
blithely following directions into the residential streets of some unsuspecting
town, along with a slew of other frustrated motorists.
With services like GoogleMaps,Waze and AppleMaps suggesting shortcuts for
commuters through the hilly streets of Leonia, N.J., the borough has decided to
fight back against congestion that its leaders say have reached crisis proportions.
In mid-January, the borough’s police force will close 60 streets to all drivers
aside from residents and people employed in the borough during the morning
and evening rush periods...

3 The great reach of the CLT

Probability theory can work wonders explaining complex phenomena associated with
randomness. Indeed, much insight is provided by the central limit theorem (CLT). Par-
tial sums of random variables have a complex exact distribution, even when they are
independent and identically distributed, but in great generality they may be approxi-
matelyGaussian, a distribution that depends only on themean and variance.Variants of
the CLT also provide answers and insights into queueing problems. Gaussian approxi-
mations for complex many-server queueing systems are developed and exploited here
by Aras et al. [2] and Massey and Pender [40].

3.1 Overloaded queues with abandonment and non-exponential service times

One way complexity can arise in queueing is by having a non-Markovian model.
Aras et al. [2] show that tractable Gaussian approximations can be developed for the
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overloaded general many-server G/GI/n + GI model with customer abandonment
(the +GI ) by establishing a MSHT functional central limit theorem (FCLT).

First, service systems provide a good reason for focusing on many-server queues
with customer abandonment, as explained by [21]. With abandonment, there is no
issue about stability, so that the system might well be overloaded. In addition, data
analysis has shown that service time and patience distributions are often not nearly
exponential in practice [13], which is important because the system performance can
depend significantly on the underlying service time and patience distributions beyond
their means.

With or without abandonment, many-server queues with a non-exponential service
distribution are hard to analyze, because the queue-length process is not Markov.
Ways to address this problem have emerged over the last twenty years, including
two-parameter and measure-valued processes, as in [2,31] and references therein.

The main FCLT in Theorem 4.2 of [2] exploits a stochastic integral with respect
to a Gaussian process and the CLT for sums of equilibrium renewal processes. They
identify the separate contributions of the arrival, service, and abandonment processes.
Theorem 4.3 gives explicit expressions for the covariance functions of the components
of the Gaussian limit process.

3.2 The dynamic-rate Erlang-A queue

Another way complexity can arise in queueing, even for a Markov model, is to have a
time-varying arrival rate. A MSHT functional weak law of large numbers (FWLLN)
and FCLT for many-server queues with a time-varying arrival rate were first estab-
lished byMandelbaum,Massey andReiman [38], and subsequently analyzed elegantly
in [44], but in general the limit is complicated, except for the special case when the
system is almost never critically loaded, which occurs if the system is always under-
loaded, always overloaded or alternates between overloaded and underloaded regimes,
instantaneously passing through critical loading in each transition.

However, recent research has shown that the exceptional special case can be
exploited, because then the limit is a time-varying Gaussian approximation. Unfortu-
nately, the accuracy of that Gaussian approximation can degrade significantly when
the system is nearly critically loaded, the common design goal. In this SI, Massey
and Pender [40] review and extend their closure approximations for improving the
quality of the resulting Gaussian approximation for the Mt/M/ct + M (dynamic-rate
Erlang-A) model, first developed in [39].

For a time-varying birth–death process with birth rates λk(t) and death rates μk(t),
the time-varying probability mass function (pmf) pk(t) ≡ P(X (t) = k) satisfies the
forward Kolmogorov differential equations; i.e., with ṗk(t) denoting the derivative
with respect to time, the system of ordinary differential equations (ODE’s) is

ṗk(t) = −(λk(t) + μk(t))pk(t) + λk−1(t)pk−1(t) + μk+1(t)pk+1(t), k ≥ 1, and

ṗ0(t) = −λ0(t)p0(t) + μ1(t)p1(t). (3.1)

A closure approximation is a much smaller system of ODE’s for a functional of the
process, like a moment, which is obtained by assuming that X (t) has a distribution
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belonging to a convenient parametric family for all t . For a real-valued function f of
the state, we define

m f (t) ≡ E[ f (X (t))] = p(t) f ≡
∑

k

pk(t) f (k) (3.2)

and examine the resulting ODE for ṁ f (t). If we let f (k) = k p, k ≥ 0, then m f (t) =
E[X (t)p].

For highly structured queueing models such as the Mt/M/ct + M model with
service rate μ and abandonment rate θ for each customer, the functional Kolmogorov
equations for the first few moments take a relatively tractable form. For the time-
varying (TV) mean m(t), we have m f (t) in (3.2) for f (k) = k, k ≥ 0, so that

ṁ(t) = λ(t) − μE[(X (t) ∧ ct )] − θE[(X (t) − ct )
+]. (3.3)

By appropriately combining the ODE’s for the first two moments, we get the corre-
sponding ODE for the TV variance, denoted by v(t),

v̇(t) = λ + μE[X (t) ∧ ct ] + θE[(X (t) − ct )
+]

−2(μCov(X (t), X (t) ∧ ct ) + θCov(X (t), (X (t) − ct )
+)). (3.4)

The first Gaussian closure approximation is obtained by assuming, as an approx-
imation, that X (t) has a Gaussian distribution, which of course is determined by its
first two moments. Equivalently, X (t) is distributed as

X (t) ≈ m(t) + N (0, 1)
√

v(t) for all t, (3.5)

where N (0, 1) is a standard normal random variable.
Massey and Pender [40] also develop higher-order refinements based on the first k

moments for k > 2. To do so, they exploiting the Hilbert space of Hermite orthogonal
polynomials and a generalization of Stein’s lemma [46]. The general framework rep-
resents the distribution at each time t as a polynomial function of a Gaussian random
variable. Moreover, this general approach can be applied in other contexts.

Closure approximations to create reduced systems of ODE’s are not always effec-
tive, even though the successive moment ODE’s are exact. The procedure in [39,40]
evidently is remarkably effective, because the closure step exploits the MSHT FCLT
supporting the underlyingGaussian approximation. Thus, we see that there is potential
to benefit more from an asymptotic result than can be gained by an immediate direct
application.

4 New insights into classical reflected processes

To see the essential behavior of a single-server queueing system, we can consider a
model having a net-input stochastic process with stationary and independent incre-
ments. Given that the associated queue content should be nonnegative, we impose a
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reflecting lower barrier at the origin. To ensure stable long-run behavior, we assume
that the net-input process has a negative drift. If we focus on the queue-length process,
i.e., the number of “customers” or “jobs” in the system, then it is natural to assume
that arrivals and departures occur one at a time. These requirements lead us to the
classical M/M/1 queue.

4.1 Modeling the variability of the net-input process

Ashortcoming of theM/M/1model, likemany of its Erlang (Markov) relatives, is that
it provides no direct way to quantify the level of variability in the net-input process;
it can be thought of as a “deterministic” stochastic model. The M/M/1 model can
be fully specified by the deterministic arrival and service rates (as well as the initial
conditions). Even though the behavior over time is of course stochastic, there is no
separate quantification of the level of variability. That is a concern, because we are
unlikely to understand the significance of features that we do not model.

If we drop the discreteness requirement, either by focusing on the remaining work
in service time in the system or by approximating the queue-length process, then we
are led to reflected Lévy processes, which allow the variability to be modeled directly.
Variants of these Lévy queueing models are studied in this SI by Glynn andWang [22]
and by Asmussen and Ivanovs [6].

If we assume that the sample paths are continuous (which is quite realistic if the sys-
tem is heavily loaded and we take a distant view), then the net-input process becomes
Brownian motion (BM) and the M/M/1 queue is replaced by reflected Brownian
motion (RBM), which is characterized by a negative drift −r , r > 0, and a positive
volatility parameter or diffusion coefficient σ , which quantifies the level of variability
in the RBM.

4.2 The role of scaling for RBM

If we think of RBM as an approximation for a discrete queueing process, then it can
be helpful to exploit heavy-traffic limit theorems, which show that a family of queue-
length processes indexed by the traffic intensity ρ, after appropriate scaling of space
and time, converges to RBM as the traffic intensity ρ increases to the critical value. In
particular, under regularity conditions, the scaled stochastic process

{Q̂ρ(t) : t ≥ 0} ≡ {(1 − ρ)Qρ((1 − ρ)−2t) : t ≥ 0} (4.1)

approaches RBM as ρ → 1. That scaling of time and space can be understood by
the way we scale random walks in the central limit theorem (CLT). Indeed, when we
take a function space view, we see that the limit for the entire queueing process can
be regarded as a consequence of Donsker’s FCLT for random walks [9].

The asymptotic perspective described in the last paragraph is now widely accepted,
but the situation was quite different 50 years ago. I can still recall being impressed
by the new asymptotic ideas in Skorohod [45], Kolmogorov [36] and Prohorov [43]
and the new approach to queues in Kingman [32–34], which were then pursued by my

123

Author's personal copy



Queueing Syst (2018) 89:3–14 9

advisor Iglehart [28], Borovkov [11], and others. I got caught up in this asymptotic
fever, but these ideas were unconventional at the time, and were not always well
received. However, the lesson is not always clear; the negative reaction to our work
might mean that it is not interesting rather than breaking new ground.

Whenwe take such an asymptotic perspective, we see that the scaling provides great
insight into the transient behavior of the queue, but we should also carefully study
the RBM, as was done by Harrison [23] (updated in [24]). Even for RBM, scaling
provides important insight. In particular, we can express RBM with any negative
drift and positive volatility in terms of canonical RBM with drift −1 and diffusion
coefficient 1. Let p(t, x, y;−r, σ ) denote the probability transition density function,
i.e., the probability density of being in state y after an elapsed time t , starting in state
x , when the model parameters are (−r, σ ). With that definition, we can write

p(t, x, y : −r, σ ) = ηp(νt, ηx, ηy;−1, 1), t ≥ 0, (4.2)

for η ≡ r/σ 2 and ν ≡ r2/σ 2, as shown in (2.4) of [22]. Hence, the impact of the
volatility parameter is determined solely by the scaling. For further analysis, we can
consider canonical RBM. Moreover, by the combination of the heavy-traffic scaling
and the invariance scaling, the structure of general RBM is already captured by the
M/M/1 queue.

Nevertheless, there is more to do, because there is a surprisingly rich structure
underlying such a seemingly simple model [10,23] and Chapter 15 of [30]. And even
richer structure is found when we go beyond BM net-input processes to consider Lévy
net-input processes with discontinuous sample paths. Applications lead to important
new questions. For example, the papers by Glynn and Wang [22] and Asmussen
and Ivanovs [6] contribute significantly to stochastic simulation, which has important
applications for queueing systems and beyond [5].

4.3 On the rate of convergence to equilibrium for RBM

Glynn and Wang [22] study the way RBM approaches equilibrium as time evolves.
One source of motivation is the initial-transient or warm-up problem in stochastic
simulation, which arises when we apply simulation to estimate unknown steady-state
stochastic quantities, but are forced to start the system in some fixed state, commonly
chosen to be the empty state. We ask if we should discard an initial portion of each run
to allow the system to approach steady state, and if so, how much? Or should we start
in a special initial state, and if so, which one? See [49] for discussion and references.

We are also interested in the relation between steady-state quantities and associated
transient quantities when we employ steady-state analyses to approximate what are
naturally transient quantities in a queueing system, such as an average cost. Studying
the way RBM approaches equilibrium extends the literature on “the relaxation time”
for queues, as for the M/M/1 queue in §III.7.3 of [15].

Glynn and Wang [22] start by taking a classical approach, as reviewed in Chapter
15 of [30], approaching the transient behavior of RBM via its transition probability
function p(t, x, y) ≡ p(t, x, y;−r, σ ), as in (4.2). They show that several useful
ways to measure the difference between transient and steady state can be expressed in
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terms of the transition function and conveniently bounded. For example, Theorem 2.1
bounds the total variation distance between RBMat time t and its steady state limit via

d(t, x) ≡ sup
A

|Px (X (t) ∈ A) − P(X (∞) ∈ A| = 1

2

∫ ∞

0
|p(t, x, y) − p(y)| dy

≤ √
2/πe−νt/2(νt)−3/2(1 + ηx)eηx for t > 1/ν, (4.3)

where the supremum in line 1 is over all measurable sets A, p(y) ≡ p(∞, x, y) for
any x , η ≡ r/σ 2 and ν ≡ r2/σ 2 as in (4.2). (The bound is 1 for t ≤ 1/ν, and so of
no use near the origin.)

To establish the bound and related asymptotic results, [22] exploits the spectral
representation of p(t, x, y), as in §15.13 of [30]; see also [37]. In particular, [22]
swiftly derives the representation

p(t, x, y) − p(y) = p(y)
∫ −ν/2

−∞
eλt uλ(x)uλ(y)φ(λ) dλ, (4.4)

where uλ(x) is a function of x and λ,φ is a function of λ, where λ is a real number in the
open interval (−∞,−ν/2) and ν is a positive scaling parameter depending on the drift
and volatility. In other words, the difference p(t, x, y)− p(y) can be represented as a
continuous (not necessarily nonnegative) mixture of exponentials. They then exploit
the trigonometric structure of the functions uλ(x) to obtain insightful expressions and
bounds, e.g., for Ex f (X (t)) − E f (X (∞)), where X ≡ {X (t) : t ≥ 0} is the RBM
and f is an appropriate real-valued function.

As discussed on p. 337 of [30], the spectrum for RBM is continuous. That explains
why the rate of convergence is relatively complicated. That is in contrast with the
exponential rate of convergence in an irreducible aperiodic finite-state discrete-time
Markov chain (DTMC), as discussed in Chapter 10 of [30]. In that DTMC setting, the
rate of convergence is determined by the modulus of the second largest eigenvalue.

The paper [22] considers rates of convergence to equilibrium for various functions
and metrics. They elaborate on the underlying spectral theory for RBM and discuss
the implications for simulation, in particular, to treat the initial-transient problem.

4.4 Discretization error for two-sided reflected Lévy processes

Asmussen and Ivanovs [6] study the discretization error when we approximate a two-
sided reflected Lévy Processes by the associated two-sided reflection of the random
walk obtained by sampling the net-input process, extending the corresponding study
for RBM in [7]. First, for BM B(t)with drift r and volatility σ , it is natural to simulate
the BM by generating the associated Gaussian random walk with step size h, so that

Bh((k + 1)h) = Bh(kh) + r Bh(kh)h + σ(B((k + 1)h) − B(kh)), k ≥ 0, (4.5)

on the lattice hN and Bh(t) = Bh(
t/h�h) off the lattice, which corresponds to the
Euler approximation of the SDE. As might be expected, this approximation scheme
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performs well. The main focus of [7] is on reflected analogs. In particular, they start
by approximating the RBM B̄ ≡ ψ(B), where ψ is the standard one-dimensional
reflection map, by B̄h ≡ ψ(Bh), for Bh in (4.5). They show that the reflection map has
a substantial impact on the quality of the approximation. In particular, they show that

h−1/2(B̄(t) − B̄h(t)) ⇒
√

σ 2tW as h ↓ 0, (4.6)

whereW is a positive random variable with an explicit distribution related to the three-
dimensional Bessel process. The obvious intuition for the positivity is that the contin-
uous RBM experiences more upward pushing at its lower barrier. The order 1/2 rate of
convergence for RBM is slower than the associated order 1 rate of convergence for BM.

Asmussen and Ivanovs [6] study the correspondingproblem for the two-sided reflec-
tion of a non-monotone Lévy process. Moreover, the authors suggest an improved
simulation algorithm exploiting their asymptotic result. They treat two-sided reflec-
tion by noting that a two-sided reflection can be constructed by alternating one-sided
reflection at the upper and lower barriers. They then exploit a generalization of the
one-sided limit (actually the supremum) in (4.6) obtained in [29]. Useful background
on Lévy processes and reflected versions can be found in Chapter IX of [3,8,17].

The key assumption for the limit in [6], which is carefully studied via self-similarity
in [29], is an associated limit for the scaled local behavior of the Lévy process in their
(2.4), i.e.,

X (h)/a(h) ⇒ X̂(1) as h ↓ 0, (4.7)

where a(h) is a scaling function. In the case of BM, the appropriate scaling function
in (4.7) is a(h) = h1/2 as in (4.6) and

h−1/2B(h)
d= N (0, 1) for all h > 0 (4.8)

where N (0, 1) is a standard normal random variable and
d= denotes equality in distri-

bution.
It is indeed evident that the difference between the sampled random walk approxi-

mations of the continuous-time RBM (and other Lévy processes) depend on the local
behavior of these continuous-time processes. Moreover, it is well known that the local
behavior is quite complex; e.g., the sample paths of BM are almost surely nowhere
differentiable. For BM , the local behavior can be extracted from the classical time-
inversion property, which says that t B(1/t) is distributed as BM.

For queueing processes, RBM tends to be a good approximation over longer time
intervals, but not over shorter time intervals (just as in the classical approximation
for the location of particles suspended in a fluid by BM). It is thus natural to wonder,
when our real interest is in a queueing process, if it might not be better to simulate
a queueing process rather than to, first, approximate the queueing process by RBM
and then simulate the RBM by generating the reflected random walk. Of course,
the evolution of a general queueing process could be quite complicated. A natural
alternative algorithm for the queue-length process in a general G/G/1 queue is to
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simulate an M/M/1 queue that has parameters chosen to match the heavy-traffic limit
of the given G/G/1 model. This might be done by exploiting strong approximations
for queueing processes, as discussed in [14] and references there.

But onemight ask:Howcanwe capture the complex variability of theG/G/1 queue
by the M/M/1 queue? That takes us back to §4.2: First, the heavy-traffic limit for the
G/G/1 queue connects to RBM, which has two parameters, the drift and volatility
parameters. Second, the scaling of RBM allows us to transform to canonical RBM,
which connects directly to the heavy-traffic limit for the M/M/1 queue. Thus, we see
that elementary theory acquires significant meaning in application.

5 Personal reflections

As in our probability models, life is full of random events, unexpected twists and turns.
I have had good fortune in the hand I was dealt. I had supportive family and friends. I
had good teachers, including my thesis advisor, Donald L. Iglehart. I lived at a good
time and place, so that I could be a late bloomer without serious penalty. My path
exposed me to many interesting gifted people, especially in the queueing community.
I thank them all for their friendship and inspiration.

I thank Narahari Umanath (Uma) Prabhu for founding QUESTA in 1986, fostering
a cohesive community in our subfield of applied probability and providing a home
for much of our research. I also thank the subsequent editors Richard Serfozo (1996–
2004), Onno Boxma (2004-2009) and Sergey Foss (2009- ) for carrying the torch [20].
And I thank the authors, associate editors and referees for contributing interesting con-
tent and maintaining high scientific standards, including honesty, intellectual integrity
and a sense of fairness. I am pleased to see that QUESTA is a diverse worldwide
academic community, where individual human dignity is respected. I am also pleased
to see that this diversity is well represented by the contributors to this SI.

Looking toward the future, the world seems to face more challenges than ever.
Fortunately, I see among us many highly gifted researchers, so that the future of
queueing seems bright. Hopefully we can do our part to make the world a better place.
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