COMMUN. STATIST.—STOCHASTIC MODELS, 14(3), 663-680 (1998}

CALCULATING TRANSIENT CHARACTERISTICS OF THE
ERLANG LOSS MODEL BY NUMERICAL TRANSFORM

INVERSION
J. ABATE W. WHITT
900 Hammond Road AT&T Labs—Research
Ridgewood, NJ 07450-2908 Room 2C-178

Murray Hill, NJ 07974-0636

Key Words: Erlang loss model, transient behavior, blocking probability,
first passage time, covariance function, numerical transform inversion, scaling,
reflected Ornstein-Uhlenbeck diffusion process

ABSTRACT

We show how to compute the time-dependent blocking probability given an
arbitrary initial state, the distribution of the time that all servers first be-
come busy given an arbitrary initial state, the time-dependent mean number
of busy servers given an arbitrary initial state, and the stationary covariance
function for the number of busy servers over time in the Erlang loss model by
numerically inverting the Laplace transforms of these quantities with respect
to time. Algorithms for computing the transforms are available in the litera-
ture, but they do not seem to be widely known. We derive a new revealing
expression for the transform of the covariance function. We show that the
inversion algorithm is effective for large systems by doing examples with up to
10,000 servers. We also show that computations for very large systems (e.g.,
10° servers) can be done with computations for moderately sized systems (e.g.,
102-10° servers) and scaling associated with the heavy-traffic limit involving
convergence of a normalized process to the reflected Ornstein-Uhlenbeck dif-
fusion process. By the same reasoning, the Erlang model computations also
can be used to calculate corresponding transient characteristics of the 11m1t1ng
reflected Ornstein-Uhlenbeck diffusion process.
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1. Introduction

In this paper we consider the classical Erlang loss model, i.e., the M/M/c/0
system with Poisson arrival process, exponential service times, ¢ servers and
no extra waiting space, where blocked calls are lost. We let the individual
service rate be 1 and the arrival rate (which coincides with the offered load)
be a. We show how to compute several transient characteristics by numerical
transform inversion. Transience arises by considering arbitrary fixed initial
states.

In particular, we develop algorithms for computing: (1) the time-dependent
blocking probability starting at an arbitrary initial sténte i, L.e., the transition
probability

Pi(t) = P(N() = N (0) = 9) , (21)

where N(t) is the number of busy servers at time ¢; (2) the complementary
cumulative distribution function {ccdf) FZ(t) of the time T, all servers first

become busy starting at an arbitrary initial state ¢; i.e.,
T = inf{t > 0: N(t) = ¢|N(0) = ¢} (1.2)

and

Fot)=1-Fe() = P(Ti. > 1) ; (1.3)

(3) the time dependent mean
Mi(t)= E(N()IN() =) ; (1.4)

and (4) the (stationary) covariance function

I

R(t) Cov(Ng{u), Ny(u + t)) (1.5).

E(N,(u)Ns(u+1t)) — EN,(v)ENs(u+1) ,
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where {N,(t) : ¢ > 0} is a stationary version of {N(¢) : t > 0}, ie., where
N,(u) in (1.5) is distributed according to the steady-state distribution
m; = P(Ny(u) = j) = c“'/ 7 (1.6)
o aF/K!

We also show how to compute these quantities for very large systems by
performing computations for moderately sized systems and using scaling based
on the heavy-traffic limit in which (N(®)(t) — a)/+/a converges to the reflected
Ornstein-Uhlenbeck (ROU) process as a—oo with i(a) —a ~ 714/a and c¢(a) —
a ~ y2/a, where f(a) ~ g(a) medns that f(a)/g(a)—1 as a—oco; see p. 177
of Borovkov [6] and Srikant and Whitt [26].

For example, suppose that we want to compute P, (£) and ¢(a) = |a++/a],
i(a) = |a — 24/a] and a = 10%, where |z] is the greatest integer less than or
equal to z. The scaling implies that P\ (t)/B(c, a) should be approximately
independent of a, where B(c,a) = P{”(00) = n{® is the steady-state Erlang
blocking probability, which is known to have the asymptotic relation

B(e,a) ~ 1 o0 as a—oo , | (1.7)

Va®(-7)
where ¢ is the density and & is the cdf of a standard (mean 0, variance 1)
normal distribution and + is the limit of (a — ¢)/+/a; see Jagerman [13], Whitt
[29], and (15) of Srikant and Whitt [26]. Hence, we can compute using a = 400

and obtain

P S o () iy
with 4 and ¢ chosen appropriately in each case. We will show the effectiveness
of the scaling in our numerical examples.

Our algorithms are based on computing the Laplace transforms of these

quantities with respect to time. For the most part, algorithms for computing
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the transforms are available in the literature. In particular, an algorithm to
calculate the Laplace transform of P;(t) is given on pp. 81-84 of Riordan [24],
but it does not seem to be widely known. Formulas for the Laplace transform
of the mean and the covariance are given in Benes (4], [5] and Jagerman [15],
but the formula for the covariance transform in (15) on p. 209 of [5) and (15)
on p. 136 of [4] has a sign error. We contribute to the basic theory by deriving
a new revealing formula for the covariance transform. (See Theorem 2.)

Jagerman [15] evidently first had the idea of calculating these transient
characteristics by numerical transform inversion, but the approach in [15]
tends to produce a rough approiimation rather than an accurate numerical
algorithm. - Also, Jagernian considered only the cases ¢ = 4,8 and 12 in his
numerical examples. We wanted to know if an effective algorithm could be
developed for large ¢.. We show that it can by considering values of c.up to
10t

Given the Laplace transforms, we apply the Fourier-series method of nu-
merical transform inversion, as in Abate and Whitt (2], [3], but we could also
apply other inversion algorithms, such as the Laguerre—series method in Abate,
Choudhury and Whitt {1]. To accurately compute extremely small probabili-
ties, we could use the transform scaling in Choudhury and Whitt (9] (which is
unrelated to the scaling for large systems that we do use), but for typical cases
that is not necessary, and we do not use it. Previous applications of numer-
ical transform inversion to calculate transient characteristics of single-server
queues are contained in ICho’U.dhﬁry, Lucantoni and Whitt 7], [8]- and Lucan-
toni, Choudhury and Whitt [21]. In contrast to the single-server algorithms,
v&hich use multi-dimensional inversion, we use only one-dimensional inversion
here. _ _

Our numericé.l inversign algp:it;hm is an alternative to the spectral expan-

sion described in Benes [4], [5] and Riordan [24]. The spectral expansion is
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efficient for computing values at many time points, because the eigenvalues
and eigenvectors need only be computed once. However, the inversion algo-
rithm is also fast, and remarkably simple. The inversion program can be quite
short, less than 100 lines. (See the displayed programs in [2], {3]).

Our numerical inversion algorithm is also an alternative to the numerical
solution of a system of ordinary differential equations (ODEs), which has often
been used; e.g., see Koopman [19], Taaffe and Ong [27], Ong and Taaffe [23],
Mitra and Weiss [22], Green, Kolesar and Svoronos [12] and Davis, Massey and
Whitt [11]. Numerical solution of ODEs has the advantage that it applies to
time-dependent models as well as the transient behavior of stationafy models
with nonstationary initial conditions. However, when the numerical inversion
algorithm applies, it has the advantage that it can produce calculations at
any desired ¢ without having to compute the function over a large set of time
points in the interval {0,¢]. The numerical inversion algorithm can also more
easily produce high accuracy. (To illustrate with an extreme example, using
the scaling in Choudhury and Whitt [9], we can compute probabilities of order
10740 with relative error 10~® using only étandard double precision. This
evidently is not possible with the system of ODEs.)

Even if another algorithm is used, such as the numerical solution of a
system of ODEs, our scaling to reduce very large systems to approximately
equivalent smaller systems can play an important role. With the spectral
expansion, fewer roots need to be computed. With the ODEs, fewer ODEs
need torbe considered.

Finally, asymptotic formulas can serve as alternatives to exact numerical
algorithms in the appropi‘iate asymptotic regimes. Such asymptotic formulas

are given in Mitra and Weiss [22], Knessl [18] and Chapter 12 of Shwartz and
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Weiss [25]. These asymptotic formulas are very attractive when they are both
simple and sufficiently accurate. If the asymptotic formulas are not simple,
then they properly should be viewed as alternatives to numerical algorithms.
For example, the direct numerical inversion here would seem to be prefer-
able to the refined asymptote in Theorem 2 of Mitra and Weiss [22], which
itself involves a Laplace transform that appears to be no easier to compute
than P,.(s) itself (because that transform is expressed as an integral). The

asymptotic expressions in Knessl [18} also seem quite complicated.
2. Time-Dependent Blocking Probabilities
As éhown on pp. 81-84 of Riordan [24], the Laplace transform
| By(s) = /0 - e~ P,;(t)dt (2.1)

is easily computed recursively, exploiting relations among the Poisson-Charlier
polynomials. (Earlier work used the related sigma functions; see Kosten, Man-
ning and Garwood [20].) Since Riordan wasnot developing a numerical inver-
sion algorithm, he was not interested in a numerical algorithm for computing
the transform, so it is not highlighted, but it is there. The key relation is (8)
on p. 84 of [24] using the recursions (3) and (4). the determinant |D| in (8) is
evaluated in (6).
Remark 2.1. The Laplace traﬁsform of P;;(t) in the more general GI/M/s/0
model is given in Chapter 4 of Takécs [28], but that transform appears to be
more difficult to compute.

We will focus on P;;(t) only for j = c, but the general case can be computed

as well. To express the result for P,(t), let

dn = du(s,a) = (—1)"Cr(—s,0a) , (2.2)
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where s is a complex variable and C,(s, a) are the Poisson-Charlier polynomi-

als; i.e.,
:.in-z ( )s(s—!—l (s +k—1a"*; (2.3)
e.g.,
1
dQ = ] ) d]_ = E(a + 3) (24)
dy = gg(a2 +(2a+1)s+52) . (2.5)

We now specify the algorithm for computing P,.(s) for any desired i, c and
complex s. We use the polynomials d,, but we do not compute them via
(2.3); instead we compute them recursively. Our algorithm follows from the
recursive relations in Riordan [24].

Theorem 1. The Laplace transform of the time-dependent blocking probability

18
RC(S) = d,-f’oc(s) N (26)
where
' - 1
Pols) = —— 2.7
0 ( ) a(dc+1 _ dc) ( )

dy and d, are given in (2.4) and
n s n
o1 =1+ —+-)}d, — —dn_; , >1. .
n+1 (+a+a) J1, n2 (2.8)

Since {N,(t) : t > 0} is a stationary reversible process, e.g., see p. 26 of
Keilson [16], m; Pic(t) = m.Pei(t). Hence, we can also caleulate P,;(t) directly
from P() by .

Pu(t) = (mi/me) Pelt) = CPult) | (2.9)

As indicated in the introduction, P{*)(t)/B(c, a) should be approximately

independent of a provided that i = i(a) = a + v11/a and ¢ = ¢(a) = a + 12v/a

for arbitrary constants y; and «, (which we think of as being in the interval
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[—5,5]). To calculate the Erlang blocking probability B(c,a), we use the well

known recurrence
1

1+ aB(c(—:-l,a) .

B(c,a) = (2.10)

Remark 2.2. The Erlang blocking probability B is related to the polynomial
d, by d.(1,a) = 1/B(n,a). The recurrence relation (2.10) follows directly

from another recurrence relation for d,,, namely,
dn(s,a) = dn(s + 1,a) — gdn_l(s +1,0); (2.11)

see Corollary 3 on p. 549 of Jagerman [13]. The polynomials d,, are related to
the sigma functions used in Benes [5] and other early references by o.(n) =
a*d,(s,a)/n!

We now illustrate the algorithm with a numerical example. We will con-
sider five cases with five different values of a, ranging from ¢ = 100 to
a = 10,000, where v, = (i(a) —a)//a = =3 and 2 = (c(a) — a)/+/a = 2. The
five cases with steady-state performance measures are displayed in Table 1.
Let M and V be the mean and variance of the steady-state number of busy

servers, i.e., M = a(l — B) and
V=M-aBc— M)=M —aB(c—a)— (aB)*. (2.12)

The effectiveness of the scaling is shown there through the values of v/aB and
V/a, which are nearly independent of a.

Numerical values of P{*(£)/B(c, a) for nine time points are displayed in
Table 2. The values of B are computed from (2.10), while the values of P (t)
are computed by the Fourier-series method of numerical transform inversion,
using Buler summation, as in {2], [3], after computing the transform values
by the algorithm in Theorem 1. The inversion parameters were set so that

the transform was computed at 40 values of complex s in each case. For the
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Table 1. The five cases (7, = —3 and ¥, = 2).

cases c a i B M Vv VaB Via
I 120 100 70 .0056901 99.43 87.73 .066901 877271
I 440 400 340 .0028060 398.88  352.72 .056120 .881806
111 960 900 810 .0018613  898.33 795.01 .055840 .883341
v 2600 2500 2350 .0011122 2497.22 2211.45 .055608 .884579
v 10200 10000 9700 .0005543 9994.46 8855.13 .055430 .885513

largest case, a = 10%, the computation took about two minutes using UBASIC

on a PC. As in Table 1, the effectiveness of the scaling in Table 2 is evident.

3. First Passage Times

Let f;;(t) be the probability density function (pdf) of the first passage time
T; from state ¢ to state j in the M/M/c/0 model. Clearly,

Pi(t) = fi(t) * Py (2) (3.1)

for all 4 and j, where * denotes convolution. Hence, if

fae) = [ e psat, (32)
then
Fis(s) = Py(s)/Bi(s) (33)
Since o
Fy(e)= 1080 (3.4
where
ZOES " etE ()t (3.5)

and Ff(t) is the cedf of Tj;, we can calculate F(t) by numerical inversion too.
In particular, given the algorithm for calculating }5,-,:(3) in Theorem 1, we can

calculate F¢(s) and FE(t).

<
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Table 2. Values of P (t)/B(c,a) in the five cases.

I I IIT v Vv
time (2=100) (a=400) (a=900) (a=2,500) (e=10,000)
1.0 .038920 .040993 .041755 .042435 .042836
1.5 .220241 225617 .227479 227581 230147
2.0 459358 464459 466181 467744 468612
2.5 .657298 .660662 .661786 662651 .663363
3.0 792636 794518 795143 795656 .796044
4.0 .928489 928951 929102 929222 929311
5.0 .976022 976108 976135 976156 976171

7.0 9973498 9973442 9973420  .9973401 -9973386
10.0 99980311 .99990208 .99990172 .99990141 9899011

In fact, as is well known, it is easy to derive a recursion for the transform

f;,,-_,_l(s) directly. Considering the first transition, we have

b= () GG+ (6) i) @0

a+i+ 3 a+t1 a1

or, equivalently,

fip(s) = ati+s i éf,-_l,,-(s) ' (3.7)
On the other hand, we can derive (3.7) from Section 2 because,
)= 2 B~ e (35)
and
foils) =1/di(s,a) . (3.9)

The recursion (3.7) also follows from (2.8) and (3.8).
By the scaling for large a, the distribution of T;; should be approximately
independent of @ when c(a) = |a + m+/a] and i(a) = |a + 124/a]. Indeed,
as a — oo with ¢(a} — a ~ 11/ and i(a) — @ ~ 12/a, T converges in

distribution to the first passage time 7,,,, of the Ornstein-Uhlenbeck (OU)
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diffusion process from v, to 1;; see Darling and Siegert [10] and Keilson and
Ross {17].

We now give a numerical example. We compute the cdf F.(t) for several
values of ¢ in the five cases given in Table 1. We let the initial state here be a
instead of i; i.e., «y; = 0 instead of y; = —3. The results are shown in Table 3.

It is also possible to calculate the transforms and means of the first passage

times T ;41 recursively; e.g., by a variant of the argument in (3.6)

1 4
EFT;\y=—4+-ET;,; . 10
i+ = + a 1, (3.10)
Then, for i < j,
Eﬂ,j = EJ},{_H +...+ Ei—.’f‘"ld . (311)

For the five cases in Table 3, the mean first passage times ET,, are 9.81, 10.11,
10.21, 10.30 and 10.36. _
Finally, we remark that the recursions (3.10) and (2.10) are closely related.

They can be connected using the relation
1
aB(i,a)

Since aB(i,a) is the overflow rate in an i-server system, 1/aB(i,a) is the

ET i = (3.12)

mean time between overflows from the i-server system, which is easily seen to

be ET; ;1.

4. The Time-Dependent Mean

The time-dependent mean in (1.4) has Laplace transform

A. = h —st . . Z a 1___ A_ ) B
itis) = [ e M,(t)dt—1+s+1+s(s Bus)) 5 (41)

see p. 215 of Benes [5]. Clearly M;(s) is easily computed once we have P (s).
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Table 3. Values of the first-passage-time cdf F,.(t) in the five cases (y; = 0

and v, = 2).

time I{a=100) II(a=400) III{(a=900) IV(e=2,500) V(a = 10,000)
2 1755 .1694 .1674 .1657 .1644
4 .3318 .3230 .3199 3175 3156
6 4564 4461 4426 4397 A375
8 5576 5467 5429 5398 .5375
10 .6400 6201 6252 6221 6197
20 8715 .8638 8611 8588 .8571
30 9541 .9500 .9485 9473 9463
40 9836 9817 .9809 .9803 .9798
80 .9997 .9997 .9996 .9996 9996

Since (N(t)—a)/+/a converges to the ROU process as a—oo with i{a)—a ~
m+/a and ¢(a) — a ~ ¥24/a, we should have
MA@ —a
Va

provided that #(a) and ¢(a) are defined as above. We confirm the effectiveness

m{® (£) —m(t) as a—oo (4.2)

1l

of this scaling by computing the scaled mean m{® (t) in (4.2) for several differ-
ent values of a. In particular, values of —m,(“) (t) are displayed in Table 4 for

the same five cases as in Table 2. Now we let v, = —3 again, as in Table 2.

5. The Covariance Function

We now give two new expressions for the Laplace transform of the covari-
ance function in (1.5).

Theorem 2. The covariance function R(t) has Laplace transform

B(s) = /:Oe"“R(t)dt

V  (M-V) (aB)? [P.s) 1
1+s (1+s)? (1+s)2( __) (5:1)

B 8
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Table 4. Values of the normalized mean [a — Mi(a) (t)]/+/a in the five cases

(’}’1 = —3)-
I II I v 14
time (e=100) (a=400) (a=900) (a=2,500) (a=10,000)
0.1 2.714512 2.714512 2.714512 2.714512 2.714512
0.5 1.819592 1.819592 1.819592 1.819592 1.819592
1.0 1.103903 1.103920 1.103925 1.103930 1.103638
1.5 .672385 672445 .672466 .672483 669390
2.0 415669 415718 415733 415743 415751
3.0 177146 176943 .176865 176800 176748
5.0 070190 069547 069316 069124 068976
7.0 .058365 057607 057335 057111 056938
10.0 - 056954 .056174 .055895 055664

V__ (a=M)(M(s) ~ (M/s)) ,

145

1+s

055486

(5-2)

where B = B(c,a) = m. in (1.6), M = M;{co) = a(l — B) and V = R(0) 1s

given in (2.12).

Proof. Formula (5.1) can be obtained by taking the Laplace transform of

(15) on p. 209 of Benes [5], after correcting a sign error (C— — C' in the last

term). Formula (5.1) can also be deduced from (29) on p. 217 of {5]. However,

a more direct derivation is to combine equations (193) and (200) in Jagerman

[15]. This yields

V 4+ M?

aM

M? acB

R(s) = 1+s +s(1+s)_ s (1+s)?

_a’B(1-B) _ (aB)? [ﬁcc(s)_ll
s(1+s)?2  (1+s)?| B s|

Comparing (5.3) to (5.1), we see that it suffices to show that
(M-V) M aM M? acB aBM

C(1+59)? _1+s+s(1+s)_ s (1+s)? s(1+s)2°

(5.3)

(5.4)
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However, the first three terms on the right in (5.4) equal

M{a—M)  aBM
s(1+s)  s(1+s)’

while the last term on the right in (5.4) equals

aBM (1_ 1 )_ aBM _ aBM
(I+s)\s 1+s/ s(+s) (1+s)?"
Hence, the right side of (5.4) equals
_(acB—aBM) —aBlc-M) —(M-V)
1+s)2 — (1+s?2  (1+s)2
Finally, equation (5.2) follows from (5.1); exploiting the formula for M,(s) in

(4.1), obtained by setting i =c. O

We can apply (5.2} to obtain useful expressions in the time domain.

Corollary. The covariance can be expressed as
t
R(t)y=Ve?—(a~ M) /'; e~ M, (v) — M)]du < Vet . (5.5)

Proof. The product of transforms in (5.2) corresponds to convolution. the in-
equality follows because a > M and M.(t) | M , the latter because the process
{N(t) : t > 0}, being a birth-and-death process is stochastically monotone.
O
The Corollary to Theorem 2 yields a bound which is approached as c—o0;
i.e., it is known that R(¢) = Ve™* in the M/M/oco model. Bene§ proposes a

simple approximation
Rty Ve ™V | >0,

which is easy to compute and reasonably accurate; see p. 188 of [5].

Since

Ny(u)—a Ny(u+t)—a\ Cov(N,(u), N,(u+t))
oo (R RIS < a
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Table 5. Values of the normalized covariance function R(t)/a.

I IT IIr v v
time (a=100) (a=400) (a=900) (a=2,500) ({e¢=10,000)
0.1 784019 788345 789814 .791000 .791895
0.5 .502346 505750 506913 .507853 508564
1.0 288786 291173 291990 292692 293153
1.5 .166203 167816 168370 .168819 .169159
2.0 .095700 096765 .097132 .097429 097655
3.0 031748 032192 .032345 .032469 .032564
5.0 .003496 003219 .003589 003608 .003623
7.0 .0003850  .0003948  .0003982  .0004010 .0004032
10.0 .00001407 .00001455 .00001472 .00001486 00001496

we conclude that C(¥(t)/a should be approximately independent of a provided
that c(a) = a+v+/a. We confirm this scaling in our numerical example below.
In particular, values of the normalized covariance function R(t}/a are displayed
in Table 5. We use the same five cases (values of ¢) and same nine time points
as in Table 4. From the evident convergence, it is clear that the values can
be used to approximate the covariance function of the limiting ROU diffusion

process as well.
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