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ABSTRACT

This paper describes the (auto) correlation functions of regulated or
reflecting Brownian motion (RBM) and several processes associated with
the M/M/1 queue. For RBM and the M/M/1 continuous-time queue-
length process, the correlation function of the stationary process coincides
with the complementary stationary-excess cdf (cumulative "distribution
function) associated with a previously studied first-moment cdf. The first-
moment cdf is the mean as a function of time given that the process starts
at the origin, normalized by dividing by the steady-state limit. The M/M/1
first-moment cdf in turn is the stationary-excess cdf associated with the
M/M/1 busy-period cdf. In fact, all the moment cdf’s and correlation
functions can be expressed directly in terms of the busy-period cdf. This
structure provides the basis for simple approximations of the correlation
functions and the moments as functions of time by hyperexponentials.

1. Introduction

The primary purpose of this paper is to provide useful descriptions of

the (auto) correlation functions of stationary versions of regulated (a.k.a.
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reflecting) Brownian motion (RBM) and four fundamental stochastic
processes associated with the M/M/1 queue. The M/M/1 stochastic
processes considered are: number in system, number in service, number
waiting (excluding the one in service, if any) and workload or virtual
waiting time, all in continuous time. These stochastic processes have been
studied quite extensively, e.g., [5], [7], [9]}, [131-f27], [31] and references
cited there, but we believe that we have important contributions, which are
largely based on our recent results for the transient behavior of RBM and
M/M/1 [11-{4]. -

We focus on the processes starting at the origin. We regard the
moments (as functions of time) under this special initial condition as cdf’s
(cumulative distribution functions) after normalizing by the steady-state
limits. As shown in [1]-[4], these moment cdf’s have interesting properties;
e.g., they can be expressed quite directly in terms of the busy-period cdf.
Here we show that the correlation functions of the stationary processes also
have very simple expressions in terms of these moment cdf’s, and thus in
terms of the busy-period cdf. As a consequence, we obtain nice
approximations. ‘We also show that all the correlation functions are
monotone, and all but the correlation function of the M/M/1 workload are

completely monotone (mixtures of exponentials).

The fact that there is a close connection between the M/M/1 transient
behavior and the busy-period cdf also follows from the associated process
construction used by Karlin and McGregor [13] to obtain the spectral
representation and from related duality; see Chapter 3 of van Doorn [27].
However, the rich M/M/1 structure described here evidently has not been

uncovered before,

By appropriate scaling of time and space, RBM appears as the limit of
the M/M/1 queue-length and workload processes as p — 1 where p is the
traffic intensity. Thaus, our results for RBM appear as a special case of our

results for M/M/1. We can thus derive the RBM results in two ways:
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either directly or from the M/M/1 resuits. RBM results have been
obtained from M/M/1 resuits previously by Ott [22] and Cohen and
Hooghiemstra [8]. The general approach is also commonly applied with the

invariance principle; e.g., Section 11 of Billingsley [6].

The rest of this paper is organized as follows. After briefly discussing
RBM in Section 2, we treat the M/M/1 processes representing number in
system, number in service, number waiting, and workload in Sections 3-6,
respectively. For the last three M/M/1 processes we also describe the
moment cdf’s for the first time here. In Section 7 we exhibit all derivatives
at the origin of all the cdf’s and thus obtain power series representations. In
Section 8, we discuss approximations for the new moment cdf’s and the
correlation functions. In Section 9 we conclude with some bounds and

inequalities.

2. RBM

RBM is Brownian motion on the positive half line with constant
negative drift and constant diffusion coefficient, modified by an impenetrable
reflecting barrier at the origin; see Harrison [10]. For both deriving and
expressing results about RBM, it is convenient to work with canonical RBM
which has drift —1 and diffusion coefficient +1. This simplification is
without loss of generality because, if R (¢; u,02,X) denotes RBM with drift
u, diffusion coefficient ¢* and random initial position X, then
{aR (be: u,0%,X): 120} has the same distribution (as a stochastic process,
i.e., the same finite-dimensional distributions) as {R(z; —1,1,aX): ¢t > 0}

where a and b are the scaling constants

a = |u|/lo? and‘ b = a*lu?. (2.1)

Let ¢(z; u,02) denote the correlation function of the stationary version
of {R(zs; p,6%,X): t 2 0}, which is obtained by letting X be exponentially

distributed with mean 1/2a. As a consequence,
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s 1,6?) = 4a?EIXR(t; p.o?, X)]1 — 1 (2.2)
= 4E{aXRCt/b; —1,—1l,aX)]1 — 1 = c(@/b; —1,1).

Henceforth, we only consider canonical RBM, suppressing p and o2
from the notation. QOur object now is to describe the correlation function
c(t). We obtain descriptions of ¢ {r) for RBM as a special case of the
M/M/1 queue (with an appropriate time scaling) in which the traffic
intensity is p = 1. Alternately, all RBM results could be obtained directly
from [1], [2]. In Corollary 1 to Theorem 1 in Section 3 below, we obtain a
nice explicit expression for ¢ () for RBM in terms of the standard normal

density and cdf.

3. The M/M/1 Queue-Length Process

Let Q(z) represent the number in system, i.e., the qucuc-léngth
(including the customer in service, if any) at time ¢ in the M/M/1 queueing
model; e.g., [3], [4], {7]. Without loss of generality, let the service rate be
1, so that the arrival rate coincides with the traffic intensity p. Assume that
p < 1, so that the system is stable with Q {z) converging in distribution to
Q (o) as t — o where P(Q(e0) =n) = (1 — p)p" forn = 0.

As in (2.1) of {4], we introduce additional time scaling, working with

the transition function
Pn(t) = P(QQU-p)%) =n|Q@ =0, 12 0. (3.1)

This time scaling (plus an additional space scaling) makes RBM results
appear explicitly as the special case of M/M/1 in which p = 1. (This
scaling appears in the heavy-traffic limit theorems in which Q ()
appropriately normalized converges to RBM as p — 1, e.g., [12]. Since p
appears in the time scaling in (3.1), the limit here at p=1 has negative

drift.) In conjunction with this scaling, let 8 = (1—p) /2.
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Let m;(1,i) be the associated K* moment function, defined by
my (i) = 3 n*P, (), t > 0, (3.2)
n=Q
and let H;(t) be the associated JRL—— cdf

Hi(t) = ny (1,0 /my(e0), t 2 0, (3.3)

where my () = lim m(z, i}). (The normalization by my (e} introduces

{—oo

the appropriate space scaling to obtain RBM as p — 1.)

Let cg{(t) be the correlation function of Q{t) in the time scale (3.1),
which is
E1Q(0)m; (1,Q(e0))1 — {EQ ()P
Var[Q ()]

cqt)
(3.4)

JRY)
- -(-‘—;‘i— E[Q(e}m, (1,0(=))] — p .

From (3.4) we see that ¢,(0) = 1. We now apply results about m, (¢,i} in
{4] to characterize cg(#). In particular, we exploit spatial homogeneity

away from the barrier and time reversibility.

For any cdf G () on [0,00) with mean m, let G°(t) =1 — G(¢) be
the associated complementary cdf and let G.(t) be the associated

stationary-excess cdf, defined by

{
G, (1) =m™ [G(s) ds, t > 0. (3.5)
0

Thus, H§.(r) is the compiementary stationary-excess cdf associated with the
first-moment cdf H(¢) defined in (3.3).

!
Theorem 1. ¢,(t) = H§, @) =1 = 2[H{(s) ds, t > O.
: 0 '

Proof. By Theorem 8.1 of [4] (the conservation law), m,(t,i) is
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differentiable in ¢ with derivative

2
(1-p)?
Since the M/M/1 queue-length process is time reversible,
Pig(t) = p~ Py (1); see (4.3) of [4]. Therefore, the derivative of ¢ (s} can

be expressed as

m {t,i) = [Pip®) = (1 —p)l, 2 2 0.

—a}2
¢y () = i‘—;ﬂ)— ELQ (=)’ (1,0 (o))]

o

P ,‘g%) oet (l—p)z

[(p*"Po,- () - (l—p)]

= =21 — H,®}.

This equals —#,,(t) where h,.(¢) is the density of H,,(t) because the
mean of A, (t) is 1/2; see Corollary 5.2.4 of [4]. =

By Corollary 5.2.2 of [4], H,(t) converges in distribution (pointwise)
to nondegenerate c¢df's as p— 1 and as p — 0 (the case p =1
corresponding to RBM), so that the same is true for ¢ {¢) by virtue of
Theorem 1. Combining Corollaries 1.1.1(b) and 1.5.1 of [1] with
Theorem | above, we obtain an explicit representation for the correlation
function of RBM in terms of the density ¢(t) and cdf ®(t) of a standard

normal random variable NV (0,1).

Corollary I. For RBM (p = 1), c(t) = 201=2r—t3)[1 — &(H)] +
20121 +0) ¢ (1 112). '

Remarks 3.1. (2) For RBM, but not M/M/1 with s < 1, Hy, = H.
Moreover, for RBM H; is the k-fold convolution of H;. (This relation
holds for the factorial-moment cdfs in M/M/1; see [3], [4].) Having the
stationary-excess cdf H|, coincide with the two-fold convolution
H, = H{ * H| characterizes H, for RBM; see Corollary 1.5.2 of [1].
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(b) The expression for ¢{(s) in Corollary 1 agrees with the
integral representations in (1.20) of Ott [22] and Theorem 2 of Woodside

etal. [31]. =

We have no such explicit expression for c,(r) when 0<p<1, but we
can also treat the limit as p — 0 by applying Corollary 5.2.2(b) of [4].

There is a nontrivial limit because of the time scaling.

=2t

Corollary 2. Asp — 0, c,(t} —e %, 1 2 0.

For 0<p<1, we have a representation of ¢, (r) in terms of Laplace
transforms. (The first transform representation for ¢,(¢), a cosine
transform, was determined by Morse [19].) For any function f (1), let
F(s) denote its Laplace transform. Let h;(t) be the density of Hy(r).
(Recall that here H,(t) is the ordinary second-moment cdf, not the
second-factorial-moment cdf.) From Theorem 5.1 and (2.4) of [4],

H(s) =571k, (5)]
(3.6)
= (1 + (1-0)s + [1 + 2(1—-H)s + 62521271 |

Corollary 3. 2,(s) = 57! [1 — 206 (s)] = 0HS (s) + (1—8)H5(s) where

8 = (1—p)/2, HS(s) is in (3.6) and hy(s) is in Theorem 5.1 and
Corollary 5.2.1 of [4].

From Corollary 3.3.1 of [3], we obtain an important shape property.
(See [16] for background.)

Corollary 4. ¢,(t) has a completely monotone density c;(2); i.e., c () is a

mixture of exponentials.

Proof. Complete - monotonicity is obviously inherited through the
stationary-excess operator. (This is the same reasoning applied for
Theorem 1.7 of [1} and Corollary 3.3.1 of [3]) =
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Remarks 3.2. (a) Ott [22] obtained Corollary 4 for the special case of
p = 1, ie, for RBM. _

(b) The M/M/1 busy-period cdf B {z) and the stationary-excess
operator in (3.5) play a fundamental role. By Corollary 3.1.3 of [4],
H,(t) = B,(1), the stationary-excess distribution associated with B (1).
Since ¢, (1) = Hf.(2), 1 —c,(r) is the two-fold iterated stationary-excess
operator of B (¢); see [29]. =

Since the k& ** moment of the stationary-excess cdf G,(r) in (3.5) is
mpy /k+)m, when my is the k" moment of G, we can apply
Corollary 5.2.4 of [4] to compute all moments of the correlation cdf
1 —¢ (£). These moments are useful for making approximation by moment

matching.

Corollary 5. The correlation cdf 1—c,(r) has first three moments
my = (1+p) 12, my = (1+3p+p?) /2 and m; = 3{1+p) (1+5p+p%) /4.

We mostly discuss approximations in Section 8, but we present a
sample here. As a consequence of Corollary 4, the correlation cdf 1—c, (1)
admits a (necessarily unique) hyperexponential (H,, a mixture of two
exponentials) fit to the first three moments in Corollary 5. A fitting scheme
is described in Section 5 of [1]. It turns out that we obtain a simple explicit

expression for this three-moment fit.

Corollary 6. The unique H, fit to the first three moments of the

correlation cdf 1—c,(¢) yields the approximation
2 2t

) =05e WY Lose e-Ye 130 G.7)

For the case of RBM (p = 1), Table 5 of [1] shows that (37) is an
excellent approximation. provided ¢ is neither very small nor very large.
(Recall that H,(t} = Hy,(t) =1 — ¢ (¢) for RBM.) Tables 1 and 2 here
show that (3.7) is also an excellent approximation for p = 0.50 and

p = 0.75, again provided ¢ is neither very small nor very large. (By
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A comparison of hyperexponential and normal approximations of the
correlation function ¢, (¢) = V3 (¢) with exact values obtained by Laplace

TABLE 1

transform inversion: the case p = 0.50.

RBM
exact three-moment H , fit normal
time | by transform | {Corollary 6 to Theorem 1)} | approximation
t inversion two terms one term’ (3.8)
0.01 0.9805 0.9830 - 0.9764
0.05 0.9087 0.9186 - 0.8991
0.10 0.832 0.845 - 0.821
0.15 0.765 0.779 - 0.754
0.20 0.707 0.719 - 0.696
0.25 0.655 0.665 0.399 0.645
0.50 0.461 0.45% 0.318 0.456
0.75 0.335 0.329 0.253 0.333
1.00 0.249 0.242 0.202 0.249
1.25 0.187 0.182 0.161 0.188
1.50 0.143 0.140 0.128 0.144
; 1.75 0.109 0.108 0.102 0.111
; ' 2.00 0.0847 0.0849 0.0816 0.0866
2.50 0.0518 0.0528 0.0519 0.0533
3.00 0.0321 0.0332 0.0330 0.0333
3.50 0.0198 0.0210 0.0210 0.0211
4,00 0.0127 0.0133 0.0133 0.0135
4.50 0.0081 0.0085 0.0085 0.0088
5.00 0.0051 0.0054 0.0054 0.0057
6.00 6.00219 0.00218 0.00218 0.00245
7.00 0.00096 0.00088 0.00088 0.00107
8.00 0.00030 0.00036 0.00036 0.00047
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A comparison of hyperexponential and normal approximations of the
correlation function ¢;(t) = ¥% (¢) with exact values obtained by Laplace
transform inversion: the case p = 0.75. (Also see the third column of

Tables 4 and 5.)

TABLE 2

ABATE AND WHITT

RBM
exact three-moment K, fit normal
time | by transform { (Corollary 6 to Theorem 1) | approximation
t inversion two terms one term (3.8
0.01 -0.9805 0.9850 - 0.9796
0.05 0.9139 0.9278 - 09117
0.10 0.844 0.862 - 0.842
: 0.15 0.783 0.802 - 0.781
j 0.20 0.731 0.747 - 0.728
é 0.25 0.683 0.697 - 0.681
0.50 0.502 0.502 - 0.341 0.501
0.75 0.381 0.373 0.282 0.380
1.00 0.293 0.285 0.233 0.293
: 1.25 0.229 0.222 0.192 0.229
1.50 0.181 0.176 0.159 0.181
1.75 0.144 0.141 0.132 0.144
2.00 0.115 0.114 _ 0.108 0.116
2.50 0.0748 0.0757 0.0739 0.0752
3.00 0.0495 0.0510 0.0505 0.0498
3.50 0.0330 - 0.0346 0.0344 0.0333
4,00 0.0222 0.0235 | 0.0235 0.0225
o 4.50 0.0153 0.0160 0.0160 0.0154
i 5.00 0.0104 0.0109 0.0109 0.0105
i 6.00 0.00474 0.00509 0.00509 0.00505
‘ 7.00 0.00242 0.00237 0.00237 0.00245
'; 8.00 0.00106 0.00110 0.00110 0.00121
t 9.00 0.00067 0.00051 0.00051 0.00060
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Corollary 2, (3.7) is exact for p = 0.) The exact numerical values in

Tables 1 and 2 are obtained by Laplace transform inversion, as indicated in
Section 4.4 of {11.

From Tables 1 and 2, it might appear that the H, approximations are
uniformly good as r — oo, but this is not so, because any H; complementary

—t/r for

cdf is asymptotically exponential as ¢ — oo, whereas ¢, (1) ~ At ™3"2¢
r=(14p)?/2 as t — oo, where [ (1) ~g (1) means that f () /g(t) —1 as
t — o0; see Corollary 1.1.2 of [1] and Theorem 3.1 and Corollaries 5.2.3 and
5.2.5 of [4). Moreover, as illustrated by Tables 3-5 of [1], the asymptotic
expressions are not good approximations until 7 is extraordinarily large. The
H , approximation (3.7) seems to perform well for the 7 of primary interest;

see Sections 1.4-1.6 of [1].

Tables 1 and 2 also describe another approximation based on the
correlation function ¢ () for RBM in Corollary 1. This RBM normal

approximation is simply
) = c/1-6)), t 2 0. (.8)

It is motivated by the Laplace transform A¢ (s) in (3.6). If we ignore the
#*s% term (since 8 — O as p — 1), we see that s appears multiplied by
(1-6). This suggests approximation (3.8). The first three moments of the
edf 1 —c(/(1-8)) are my = (-8, m,; =750-0%72 and
my = 21{1—6) /2, agreeing with the moments of 1 — ¢, (z) in Corollary 5

up to terms of order 42.

For higher p such as 0.75, the RBM normal approximation in (3.8)
performs better than the three moment H, fit, but the H, fit seems easier
to work with. For ¢ sufficiently large, e.g., ¢ 2 1.5, one exponential term
dominates and thus provides a good simple approximation. For obtaining
numbers, working with (3.8} is actually not easier than direct transform
inversion, but (3.8) shows how c,(z) depends on p for larger p. Even with
the time scaling (3.1), éq (z) tends to increase (slowly) with p; see Tables 1

and 2. However, for very small ¢, ¢,{1) is actually decreasing in p, as can
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be seen from (3.6). (c (0) =1 and ¢, (§) = —2 for all p, but c;(0) is a
function of p. The cases p = 0 and p = | can be seen from Corollaries 1
and 2) From Corollary 5, we see that the mean of 1—c,{¢) is
1—8 = (14p) /2. Formula (3.8) contains a time scaling to produce a one-

moment match.

Since we calculated the first moment of 1 — cq(t), we have also
calculated the integral of ¢, (¢), here denoted by ¢,. (It was first found by
Morse [19]) '

Corollary 7. (Morse) & = [c,) dt = [tdH, () = (+p) /2.
0 0

Remark 3.3. The integral in Corollary 7 is one possible representation of
the relaxation time, i.e., the rate at which the process approaches steady
state; see [1)-[3), p. 161 of Keilson [16] and p. 159 of Ott [21]. In fact,
Morse {19] in (11) on p. 260 obtains this resuit, but to develop a rough
approximation for the rate of approach to steady state he works instead with
the cosine transform. His relaxation time constant of g mentioned in
Section 2.4 of [3] seems to be based on an approximation for this cosine
transform. Of course, the dominant portion of the relaxation time appears
in the time scaling (3.1). Morse’s result and all the different versions

described in Table 4 of {3] capture this first-order effect. ®

Aside from the normalization by the stationary variance, the integral
in Corollary 7 yields the limiting average variance of the integral and the
normalization in the central limit theorem. We review these (known)
results in Cordllaries 8-10 below. See Iglehart [11] for generalizations and

previous work.

Co}ollary 8. For all initial states i,

i og
lim ¢t~ Var| f10Q2(1-p)"25)|Q(0) =il ds| = 2 VarQ () fe,(1)dt
o ’ [ .

f—o

2% p(1+p)
- ()dr = 2430
(1—p)? {c‘" RTINS
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s0 that

' _ 2p(1+p)
lim ¢! Var f[Q(s)IQ(O) =ilds] = (p)®

Let R (t,x) denote RBM starting at x.

Corollary 9. lim t~'Var

1o

‘t : -
fR (s,x) ds} = 2 VarR () f c(t)dt = 1/2.
0 ¢

Remark 3.4. As in Section 5 of Reynolds [24], (3.16) of Cox and Isham
[9], Whitt [30] and Woodside et al. [31], Coroliaries 8 and 9 are useful to

i
determine the asymptotic efficiency of the natural estimator ¢~} f Q(s)ds of
0

the steady state mean. For example, we can easily determine how one
sample of length ¢ for large ¢t compares to n i.i.d observations of the

stationary queue length Q (c). m

We can apply Corollaries 8 and 9 together with additional structure
{regenerative or stationary and ¢-mixing) to obtain ceatral limit theorems
for M/M/1 and RBM. Let => denote weak convergence (convergence in

distribution) as in Billingsley [6].

Corollary 10. As t—oo,

@ 72| [0 QU-p)725)| @ @=Nds—p(1—p)~'1| = N(0,6?)
L0 .

for any i, where &2 =ﬁp(l+p)/(1—p)2.

- |
® 72| [Rsx) ds — /2| > N, 1/2)
K -

for any x.

Remarks 3.5. Corollary 10 can be extended to functional central limit
theorems in the usual way; see Theorem 20.1 of [6] and [11]. Results
paralleling Corollaries 8-10 hold for the other processes in this paper, but

they will not be discussed.
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4. The Number in Service

Let S (¢} denote the number in service {which is either 1 or 0); let
my (1, 1) denote the k** moment of the number in service at time ¢ given
that Q(0) =i; let Si(¢) be the associated k**-moment cdf defined as in
(3.3), i.e., starting at the origin; let c,(+) be the correlation function; let
B (t) be the busy-period cdf; and let the time scale be as in (3.1). The
following theorem combines elementary calculations with Corollary 4.2.3 of
[4], which establishes that Pgy(t) = 1 — pB (1).

Theorem 2. Foreachk 2 1,i 2 Qand ¢ 2 0,
(a) msk(t, i) =1-— P,'o(!) s
(b) Sp(t) =[1-Po()i/fp = B(),

© ;@) =B(),

d F, = j;"‘cs(:)dz = = (1-p) /2.

Corollary 1. The functions Sz (t) and 1 — ¢, (¢) are bonafide cdf’s with

completely monotone densities.
Proof. Theorem 3.3 of (3. =

Remark 4.1. All moments of the busy-period cdf B (¢) and thus also the
cdf’s S, (¢} and 1 — ¢,(¢} are given in Theorem 3.2 of [4] and Section 7

" here.

5. The Number Waiting

Let L{(¢) denote the number in line or the number waiting, defined by
L@) =Q@) —S{),t > 0. Let my (1, i) denote the k** moment at time
t given that Q(0) =i; let Up(t) = my(t, 0)/my (o) be the associated
k'™ -moment cdf; and let ¢;(t) be the correlation function. As before, let the

time scale be as in (3.1).
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To determine the moment cdf’s Uy (1), we express the moments of

L {¢) in terms of the moments of Q (1).

Lemmal. Foreachk 2 1,71 2 0,and ¢t = 0,

m;k(t, i) = 2

j=0

k .
j \(—1)1 my_;(e, i) + (—D*[1-P;o (D)1
Proof. Note that L(1)* = {Q(1)=S ()1, EIQ (01)'S(1)/] = ELQ ()] for
i>0and E[S()1 =ES(G)forj > 0. =
Let * denote convolution. As before, let § = (1—p) /2.

Theorem 3. The first two moment densities of L (¢} are

@ wu () =[rG)-206()]1/0 =b(t) « b (1).

() us(t) = [A=0h,()+20%b (1)—26h | (1)1/0(1—6) = b(2) = h,y(1).

Proof. The first parts follow easily from Lemma 1. By Corollary 5.2.1 of
[4], the transforms in (a) are related by h,(s) = fo(s)b(s), so that
ft1(s) = b(s)fo(s)=261/p. However, [f.o(s)—281/p is easily seen to be
" the Laplace Stielties transform of the equilibrium time to emptiness
conditional on not starting empty. By Corollary 3.1.3 of [3], this is hy(s).

A similar argument yields (b). =
Corollary 1. The functions U, (¢} and U, (1) are bonafide cdf’s.
Corollary 2. The complementary moment cdf’s U (¢) and U5 (1) satisfy

2
US () = o~ [HS (1) — 20B°(0)} = 1 — :lGT +0() as t — 0

and
Us5() = G- [vs() — 36HS (1) + 26°B°(1)]
t2
=1 —m-i-o(t) as t — 0.

so that U§ () and U5 (1} are not log-convex.
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Proof. We give the details only for US (r). Since

2
HS@ =1 -+ + 2 106G as t =0
6 49
and
1 (1"‘0)12 2
Be(t) =1 — + +0(t%) as t — 0,
2¢? 4¢*

e.g., see Section 7,
2
US () = o~ [HS (0)~20B° ()] = 1 — -‘-:'?' +0() as t =0
and

u(0) = = +0(t) as t—0. =
20

Corollary 3. The first four moments of U,{t) are m, = (2—p) 12,
my = (G=p) 2, my = 3(4+2p—p?) /4 and m, = 3(5+10p—p*) /2.

Remark 5.1. Odoni and Roth [20], Lee [17] and Lee and Roth [18]
develop empirical approximations for the expected number waiting, and thus
U,@). Lee[17] and Lee and Roth [18] empirically discovered that U 1)
is not log-convex, but that difficuities appear only for very small p. From
the structure established here and in [1]-[4], it seems more natural to use
hyperexponential and exponential approximations for the completely
monotone functions H§(:) and B°(r), and then use the composite

approximation for U; (¢} based on Corollary 2 above; see Section 8. ®

Lemma 1 allows us to represent Ug(r) in terms of
[H (), H @), ..., H (), B(t)] for each k. Theorem 3 leads us to make
the following conjecture (which we have verified for k = 3, 4, and 5; see
Appendix B).

Conjecture 1. Forall k 2 1, u, (1) = b@t) = k. (1).

We now turn to the correlation function ¢;(1). Recall that
Var L (o) = p?[14+20—(20)21/462 = p? (1+p—p?) /(1—p)®. We = express
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¢;(t) in terms of the correlation function ¢, (:) and the second-moment cdf
V,(t) for the workload, to be treated in Section 6. We omit our proof

(using Laplace transforms).

Theorem 4. The correlation function ¢;(r) can be expressed as

(1+20)[1=c, ) 1-462U, (1) V5 (1)—862H , (1)+86° B (1)
1+26—46% 1-86%(1-6)

1 =) =

p(U *H ) (t) + 40pU, (1) +46°B (1)
p+40p+46° '

=

Corollary 1. 1 — ¢;(t} is a bonafide cdf.

Corollary 2. As p— 1, 1 —¢(1}, 1 —¢,(t) and V(1) =1 — ¢, (1)
coincide (all approach 1 — ¢ (¢)).

Corollary 3. ¢; = f c()dt = (1+4p — 4p% + p*)2(14+p—p?) and
0
Ci = Var L(0) & = p*(14+4p—402+p?) 12(1—p)?.

Corollary 4. The first three moments of 1 —¢{1) are
my = [1+pQ2—p)212U+p—p%), my = [1+p(3—p)21/2(1+p—p?) and
my = 3 1+p(16+p~5p%+p*}1/4(1+p—p?). '

From Theorem 4 and Corollary 2 to Theorem 3, it would appear that
¢;(t) might not be completely monotone, but in Section 7 we show that it

actually is.

6. The Workload

Let W(z) represent the workload or virtual waiting time at time t.
For the M/M/1 model, W(t) is distributed for each ¢ as the random sum
vi +..+vgq) where {vi: k>1) is a sequence of ii.d. service times that
are independent of @ (¢). Hence, the & moment of W () given i initial

customers is easily computed from the moment functions for Q (1), ie,
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m;(e,i) for 1 < j < k. However, we shall consider m, (s, xJ, the k'
moment of tl;c workload at time ¢ given that W(0) = x. Of éourse, these
moment  functions coincide when =0 and x =0. Let
Vit) = my;t, 0)/m,,(o2) be the k' moment cdf of W(z) and let ¢, (¢)
be the correlation function. Let the time scaling be as in (3.1). - Since the
service time and waiting time are times, they are scaled by 26% too; e.g.,
my1 6, 0) = 20%m,; (1, 0).

As indicated above, it is not difficult to obtain the moment cdf’s of
W (1) by applying previous results for Q (z). Note that the second moment
cdf ¥3(¢) coincides with 1—c4(£).

Theorem 5. V(t) = H,(¢) and
Valt) =V, () = H,,) =0H,(t) + Q- H,().

Corollary 1. V,(t) and V,(t) are bonafide cdf’s with completely monotone

densities.

More generally, paralleling Section 9 of [2] and Section 2 of [4], the
double Laplace transform of (W ()| W (0) = x) admits a factorization. As

before, one term is the special case in which the initial state is x = 0, Let
glo,s; x) = f =5t (e~ WWI W O=x]y 4 ‘
0
(6.1)

Gl.six) = [ e PW() < y|W(O=x)dt
. 0.

and 2(y,s; x) be the density of G (in the generalized distribution sense, i.c.,

there typically is an atom at the o’rig.in_)..

Theorem 6. g(s,5; x) = gla,5;0) d {o,5; x), where

(r 1 /26) (1+26%0) - A Flosin) ae 01 _(p, 12g) 0
s (o+[r 728D an TS5 % a—(r,/26)

glo,s;0) =

where r| and r, are given in (2.4) of [4].
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Let 8(y) be the Dirac delta function, corresponding to an atom at the
origin. We obtain the time transform g£(y,s; 0) by inverting g(s,s; 0)

directly by inspection.
Corollary 1. g(p,s; 0) = s~ erla(y)+(1-er1)(r,/ze)e‘y"m].

Remark 6.2. In Section 10 of [4] we proposed an operational calculus for
determining M/M/1 queue-length. quantities from corresponding quantities
for RBM. Since W (1) has a continuous state space, the connection is even
more direct for it: simply let the M/M/1 workload state be w =26x where x
is the RBM state, and let the M/M/1 quantities r, and r, be the same as
the RBM quantities, with the understanding that for RBM r; and r; solve
one quadratic equation, while for M/M/1 z., =(1—6r)/p and
z5 =(1+8r;) /p solve another. This prescription works for the downward

first passage times, but fails to capture the atom at 0 in Corollary 1.

Paralleling (4.2) of [4], Corollary 1 shows that the time transform has
the same form as the steady-state distribution, namely, an exponential
density plus an atom at the origin. We obtain the steady-state distribution
by an elementing limit. Let g(y) be the density of W({ee), again in the

generalized distribution sense.

Corollary 2. g(y) = lim sg(y.s; 0} = (=)o (y) + pf '™,
s—

However, more important for our purposes, we obtain all moments
mui(1,0) and thus all moment cdf’s .from Corollary 1. We combine
Corollary 1 and Theorems 3.1(a) and 3.3 of {4] to characterize the Laplace
transform of the k*-moment density v,(1). Let fio(s) be the Laplace-

Stieltjes transform of the cdf of the equilibrium time to emptiness.

‘ k
Corollary 3. (s, 0) = k!'(1—6r ) [’2_—6] 57!, so that
, 1

p r

_ k
U (s) = [1 il } [—2—-] =b()fo* k> 1.
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Remark 6.1. We can also obtain Theorem 5 directly from Corollary 3
above plus Corollary 5.2.1 and Theorem 9.1 of {4].

From Corollary 3, we can obtain any desired moment of V;(¢) for any
k.

Corollary 4. The mean of V(1) is 8 + kp/2, k > 1.

We now obtain expressions for V(1) for all k > 3. This relation

generalizes Theorem 1.5 of [1] for RBM (i.e., reduces to it when p = 1).

Theorem 7.
Vi () = [k=Dp + 1lvp (&) = plv, (&) +. 4 v (D)), e 20, k > 2.

Proof. Applying (2.4), (2.5) and Theorem 3.3 of [4}, we obtain the

following relations for the Laplace transforms ¥, = ¥ (s):

[(k—Dp + 119, = 2571 (=) = 257" 1=z, 1.5)
= 2z,s"! r:51_' -]Ji’] = 2zs”" [Pzz—jeg]
= 2215-1 rI-Ace'-l‘Brz]

. i - - AL —
= 22].5'-“l l—fd)] [1+f€0 +...+ffo l] + 2921?’2S-l

=ziofs 'l+]’fo- +.+ “eo"] + 209,
= pvy; (b +..4+ %) + 260,

= (f,0=200 (P +..+ D) + 209,
=0y +.+P) + 4y . W

We now turn to the correlation function ¢, (:) and the associated
covariance function C, (¢). Note that Var (o) = (1—462)6? in the time

scale (3.1). (The time scaling 26* appears twice here.)

Theorem 8. 1 — ¢, (t) = Uy, (1) = [V, ()—462H (£)1/(1—46%).
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Proof. Let C,(t) be the covariance of W(t). The Laplace transform

satisfies

sC,(s) = 20sh1,,,(s,0) + f spf et 1y (s,x)dx — (p8)2,
0

where

Sy (5,%) = x — 2051 + (20/r,)e "

by virtue of the conservation law (cf. Theorem 8.1 of [4] and Theorem 5 of
Benes [5])

20] —ryx/28
—\e
r2

miyy (t,x) = Poo(t) — (1—p) and P, (s) = Pgo(s) fls:x, 0) = [

where f(r; x,0) is the first-passage time density. (The argument parallels
the proof of Theorem 3.1 (a) of [4]: To be at 0 at time ¢ starting at x you
must reach O for a first time somewhere in the interval [0, 7]
Alternatively, see p. 260 of Cohen [7).) After integrating and rearranging
terms, we get

o (s) = Cul0) [1__2_ [s—l,__‘t__.
. 2—p

Since z, =r;/(r,+2),

4 2 2 2 -1t P
= |zt =s7'h(s)b(s) ;
ry(2+r,)? [rzrl ] [r2 ! !

see (2.4), (2.5) and Theorems 3.1 and 5.1 of [4). Hence,
sC,(s) = C, 01 — SE(h;(s)b(s)] = C,,(0) [1 ~SE@,;()]. =

Now that we have derived all the correlation functions, we summarize

the expressions in Table 3.

Corollary 1. (Ott) ¢,{z) is monotone but not log-convex, and thus not.

completely monotone. In particular,

C,(1) =C) — 200%t + pt3/680 +0(t?) as t — 0,

so that C); (0) > 0.



336 ABATE AND WHITT

TABLE 3
The correlation functions. (SE represents the stationary-excess operator
in (3.5).)
the process correlation expression resuit
cdf
M/M/1

Number in System | I - c,(t) | SE(#,) = (SE}?(B) = ¥, | Theorems 1 and 5

Number in Service | | —¢, (£} | B =8, =5, | Theorem 2
Number in Line | C{(f} a, V1 - azﬂ[ + GJB Theorem 4
Workload 1 —e () | SEW,) = bV, — byH, Theorem 8

RBM 1 —cln) SE(H,)) = H, Theorem 1 and
Remark 3.1

Remark 6.3. - From Corollary 1, we see that C,,(0) = —2p8* and

lin‘(l) t~'C (1) = p/6. Without time scaling, these values are p and
‘—.

20p = p — p*, which agree with (2.13) and (2.15) on p. 161 of Ott [211.

1+6 - 3—p
1+28 202—p)

Corollary 2. (Ott} ¢, = f ¢, (t)dt =
0

Proof. From Theorem 8, we see that ¢, is the mean of U/),, which in turn
is the second moment of U, divided by twice the | ﬁfst moment.
Alternatively, we can use the means of V,(t) and H{(z), namely, (1-6)
and 1/2:

f eoar = | [ 1=V, dr — 46% [ [1=H, (0)1d1|/(1—46?)
0 0 0 .

= [(1—-8)—462(1/2)1/(1-48%) = 1+ /(1+20) . =
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Remarks 6.3. (a) In scaled time,

1+4

o (a2
20 p(3—p)64 12 .

f C,,(t)dt = Var W(<s)
0

Without time scaling,

[ Gt = (oGP P10 = 2872
0 (-p

in agreement with (3.15) on p. 563 of Cox and Isham [9].

(b) Since W (1) is Markov even for the more general M/G/1 model, it
is natural to expect that many of the results in this section can be extended
to M/G/1. This is indeed so and is intended to be the topic of a future
paper. The situation for M/G/1 seems sufficiently more complex to justify

a separate treatment of M/M/1.

7. Exploiting the Stationary-Excess Relations

In Sections 3-6 we have shown that all quantities of interest can be
simply expressed in terms of the basic three cdf’s B (¢), H(z) and V, (1),
where H,(¢z) and V,(¢) in turn can be simply expressed in terms of the
busy-period cdf B(:). In particular, H,(t) and V,({t) are associated
stationary-excess cdf’s: H,(t) = B,(t) =SE(B) and V,(1) = H;,(t) =
(SE)2(B). In this section we exploit these relations together with properties
of thé busy-period cdf. First, we remark that these relations can be used to
describe the asymptotic behavior as r — oo of all these moment-function
cdf’s and correlation functions. They are all asymptotically of the form
Ar™32e7trr yhere + = (1+/p)2/2; apply Theorem 3.1 (b} and (c) and
Corollary 5.2.3 of [4]. -

In this section, we exploit the fact that the stationary-excess operator
acts as a simple shift on the moments and derivatives. For a cdf G (1)
without any atoms, suppose that my; is the k* moment and dj the k*®
derivative of the cdf G(¢) at t = 0; e.g., d; = g(0) where g(t} is the
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density of G (¢t). Then the k" moment m,, and k™ derivative at ¢ = 0,

d.x, of the associated stationary-excess cdf G, () defined in (3.5) are

My = M4 /(k+l)m1, del = 1/m1 and de(k+l) = -a'elfﬂkl.)

As a consequence, specifying the first /| moments m; and the first j
derivatives dj, of the cdf G (t) is equivalent to specifying the first (i—1)
moments m,; and the first (+1) derivatives d,; of the cdf G, (¢).

We thus determine all moments and éll derivatives of all moment cdf’s
and correlation functions by determining all moments and derivatives of
B(t). All moments of B(t) were given in Theorem 3.2 of [4]. We now
give all derivatives of B(¢) at t = 0 in terms of the moments. Let £ (0)
be the k" derivative of £ {(t) at ¢t = Q.

Theorem 9. For all k 2 0, (=1)*6%(0) = 4, /(k+2)19%+3 50 that
c2 = (my~m?)im, = (1-0) "= (1+p) /(1-p)

and

tk+l

(k+1)!

= my 2
B@) =1+ I (~1FkH
kz.:o (k+2)1g%k+3

Proof. We relate two representations for the Laplace transform b(s).
From (2.4) and Theorem 3.1 of [4],

b(s) =z, = 6p" [(1-&)9‘1 + 85 — [l+2(l—8)s+02s2]”2]

_ (7.2)
172
8%s | 1-8 2(1—-8) 1
- [—=+ 1 - {1+ %

The  first represeﬁtation in terms of the derivatives is
b(s) = 2 b®(0)s~**D which comes from the Taylor series expansion
k=0 :

b(®) = 6™ (0)1%/k! The second representation is the usual series
K=0

involving the moments 5(§) = E(-—l)"m,_,';"’/n! (We have changed the

n=0
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argument from s to £) The quadratic form in (7.2) enables us to easily

relate these representations after setting £ = 1/562. Then

12
8 {1=o .1 | ,20-8 1| P
p |8 Os s6* 5262 ) n! | s6?
and
12 yn
562 2(1—6) 1 il a | 1
-1+ + = 0s S (-1)" —
p ! s6? 5262 SEO( ) n! [sﬂzj
_8U-8)s 6
p P

Substituting this into (7.2), we get

b(s) =

— — o m "
=20 _ (1-28) 05 3 (cpyn o 12
P P e n! | 58

i

- m b Mp42 1
= T (1) —= . =
,2:2 nign—ign—l ,,?o (n+2)19¥ %3 | ¢

Corollary 1. In the time scale (3.1), the parameters of B (1) are my = 1,
m; =my =4, my = 36(1-6), ‘my = 36[4(1-0)2+p],
ms = 150-0)0[1+5p+p2], 50 = 1/26*, - (0) = (1-6)/26* and.
b P (0) = 36(4(1-6)2+p) /2407 |

Corollary 2. For the first-moment cdf H @),
(=D Rk (0) = m /0¥ *Y, k > 0, where my is the k" moment of
H,() given in Corollary 5.2.4 of [4], eg., mg =1, m; = 172,
my = (1-0), my = 3(1+3p+p?) /4 and c? =1 + 2p.

Corollary 3. The first three derivatives of H,;(t) at 7 =0 are
R0 =6, hV (0 = —(26°)~" and A2 (0) = (1-0) /265,

Corollary 4. For Vy(e), vo0) =2, vV (@) =-2/8 and
(—1)"v§“’ ©) = o Mk—DW¥1 k 22, where my is the k** moment of
V, (1), e.g., mo = 1, m; = (1-6), my = (143p+0%) 12,
ms3 = 3(1+p) (1+5p+p?) /4 and ¢ = 1 + p/(1+p).
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Corollary 5. The first four derivatives of ¥,(t) at ¢t = 0 are v,(0) = 2,
v (0) = —2071, v (0) = §73, and v (0) = —(1-0)87.

Corollary 6. If my is the k** moment of the busy-period cdf B (¢) in (A-
1) of Appendix A, then

o0 My 4y tk+l
HE() =1 + 3 (—]ktt
! R (k+D19%+2 | (k+1)!
and
oo ka tk+1
5 =1 + 3 (D
20 =1 2 e | W

Remarks 7.1 (a) As reflected by the ¢? values for B (), H,{t) and V, (1),
these cdf’s are "smoothed" by the stationary-excess operator, i.e., they
become more nearly exponential: c}¢) > c%,l(,) ?c%/z(,) = 1, see [29].
(However, the stationary-excess operator does not always make ¢? decrease
for completely monotone densities.} As p — 0, c? -~ 1 in each case too.

. (b) The transforms of the three basic complementary cdf’s
have a nice exponential-like form, i.e.,
1

2r 1
2+,qr 1

‘ B =—— P56 =

A . N B
B (S) S‘+‘(f'1 /26) ’ s+r

where of course r; is a function of s. In  each case, with

G°(s) = 1/(s+als)), als) — m7" as s — O as it should.

We now combine Theorems 4 and 9 to obtain a Taylor series
representation of the correlation function ¢;(¢) for the number waiting, from

which we establish that ¢;(¢) is completely monotone.

oo : k+1
~ - _1yk+I 2 B
Theorem 10. ¢;(t) =1 + kf-}o( D% g, (k+2)362"] D! where
(k+2) (k +1) mp—4(k +2) my 4 +dmy 1 0
ap =

p(l+p—~p2)
for all k, with m; being the k™ moment of B (¢), so that ¢;(¢) is completely

monotone.



CORRELATION FUNCTIONS OF RBM AND M/M/1 341

Proof. From Theorem 4, ¢;(¢) is a linear combination of B“(¢), Hf (¢t) and
V5(t). The Taylor series representation thus follows from the
corresponding Taylor series representations for B(z), H§ () and V5 (t)
determined by Theorem 9 and Corollary 6, together with (7.1).
Nonnegativity of a; is proved in Appendix A. ®

8. Hyperexponential Approximations

The representations in Sections 3 through 6 are ideal for developing
relatively simple approximations for the M/M/1 correlation functions and
moment functions. In particular, we suggest developing approximations in
two steps. In the first step we produce hyperexponential (e.g., H,)
approximations for the three basic cdf's B(), H,(G) = V() and
V() =1 —c,(t). Since the basic three cdf’s B(t), H, (1} and V,(z) are
ali mixtures of exponentials, it is appropriate to use hyperexponential
approximations. We propose doing an H, fit (two exponentials), but of
course it is also possible to use more exponentials. Using more exponentials
and more information typically leads to better approximations. As shownin
[28], approximations by moment matching can also be interpreted as bounds
within the full hyperexponential class (to which B (¢}, H,(t) and V,{r)
belong). The use of hyperexponential approximations follows [1}-[3] and is

in the same spirit of much earlier work by Riordan {25]; e.g., pp. 106-108.

‘In the second step we obtain other approximations of interest by
exploiting expressions for these quantities in terms of the basic three cdf’s
B(1), H (1) and V,(z). Note that all the correlation functions (c (),
e (1), ¢;(t) and ¢, (1)) and all the moment functions (H, (2}, Sp{t), U, (t) -

and V() can be expressed directly in terms of the three basic cdf’s.

It is also significant that there is a very strong connection afnong the
basic three cdf’'s B(t), H(z) and V,(t). In particular, H,{t) is the
stationary-excess cdf of B (1) and V,(r) is the stationary-excess cdf of

H{t). Moreover, the stationary-excess operator maps an H, density
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k
S =3 p,-)\,-e-}"", t > 0, into another H; density with the same

i=1

k —_—A
exponential parameters, ie., L) = Dgie Mt where
i=1

k .
q; = p,-?\?‘lZp;)\,—". Consequently, an H,; approximation for any one of

il
these three basic cdf"s immediately provides corresponding Hj

approximations for all three basic cdf’s.

We propose constructing hyperexponential approximations by
matching the first i moments and the first j derivatives of the cdf at the
origin. For an H; fit, 2k — 1 parameters need to be determined. The case
of principal interest is A, with three parameters. As noted in Section 7, it
is significant that the stationary-excess operator acts as a shift on these
parameters. Since the stationary-excess cdf of an H distribution is again
H, with the same exponential parameters, there is a one-to-one
correspondence between H, distributions partially specified in this way. As
a result of this one-to-one correspondence, any desired H, appr'oximat'ion for
B(t), Hy(t) and V;,(¢) can be obtained from the appropriate moments ri;
and derivatives b %?(0) of the busy-period cdf B (1).

Given the parameters above, we can fit f; cdf's in the manner
described in Section 5 of [1]. Becausc of the stationary-excess rela_tions, we
can always work with three moments. It turns out that all the A, fits for
B(t), H (1) and V,(¢) can be expressed explicitly as functions of p, many
in remarkably simple form. The various H; approximations are displayed
in Table 4. Associated numerical values for the case p = 0.75 are also
given in Table 5. The H, approximations are developed. for all
combinations of parameter triples ranging from the first three derivatives of
the cdf to the first three moments (four cases for each cdf). Also displayed
for each cdf are the one-moment exponential fit and the two-moment H;
bounding cdf with an atom at O (corresponding a degenerate exponential
with mean 0) obtained from (6) of 128]. This cdf matches the first two
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TABLE 4
Hyperexponential (H,) approximations for the basic three moment cdf’s.

Note. In the three-moment fit to HS (z) and the [g (0}, m;, m,])-fit to
V5 (1) below, A; = Q+p+[5—(1-p)} (5+p)1'72) /4; see (2.2) and (2.7)

of {3]).
the three basic complementary cdf’s
Type of
Approximation B<(t) HS () Vi) =c, (1)
Pl e—Zr e—u‘(l—ﬂ)
One-Moment
Exponential Fit my =8 m =112 my = 1-6
20e Y (12(1—g))e~1/0—® pre ¥
Two-Moment (1 3 1 _m2
Bounding H, ct=(1-0) /8 ct=1+2p cl= 1+ (pf2(1-8)%)
{Atom at 0 plus APl =m (i+c®) 2 AT = (1 4c2) 2 ATt ={1-8)q
an exponential) pa=2/(14c?) pa=2/1+c?) a=1+(/a(1-0)?)]
Pz (l _g)hz

=y

H, fit pe ™M+ (1—ple™ pe M 4 (1=ple ™™ pe M + (1—ple™?
:??;;’ ‘;"(g) ©. AT =20%p H(1—p) AT = 8(1—/3) ATt =Bg/(1—g)
‘ Ay =202(1-p) Jp A7 =8(1+/p) AT =8(1—g) /g
p=l1=Vplp+®)l2 | p=(1~p)12 p=q’
: g =[1—/pla—3p) 112
H, fit 0.5¢7 +0.5¢7 pe ™ + (1—ple ™ Ale ™ agle ™
:a(f)"‘)d ";“3 @. AT =8(1—p) AT =8p/(1=p) Al ==V 2
. 1
ATt =6(14/p) A, =8(1—p) /p A7 =+ 2
p=[1-Vora=3p) 112
pe MV +(1—-ple ¥ 0.5¢ M +0.5¢ Y pe 4 (1—ple ¥
Hz fit e — ) o ([ — - -1
baed on £(0), AT =8(1-p) Ip A7 = (1=Vp) 22 Ay =4A;
my, my A7l =8p /(1=p) AT = (1+/p) 2 p=2/(241,)
p=[1+Vpfa—3p) 112 sce note above.
Ale M A Te pe '+ (1—p)e ¥ 0.5¢ 1 +0.5¢ ¥
H, fit =l (1= - “l e (1o
baced on m,, - AT =(1=Vp) 2 Ap =4/, | A7t =G+p—Vod 2
My, my AT = (14+Vp) 12 p =M /24+0) A =4V 12

see note above.
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TABLE 5

The hyperexponential (H,) approximations for the basic three moment
cdf’s in the specific case p = 0.75.

the three basic complementary cdf’s
Type of
Approximation B<(t) HS (2) V5() = c (1)
One-Moment o8 -2 o143t
Exponential Fit €
Two-Moment 0.25¢2 05711143 | 0.8033¢~0M%
Bounding #,
(Atom at 0 plus
an exponential)
p =0.3013 p=0.0670 p =0.00515
: H, fit
* based on g" (0), Ay =742 A =59.71 A =38.32
g'(0), g A, =3.46 A, =4.287 A, =1.670
p =0.5000 p=0.1727 p =0.0670
H, fit
based on g'(0), A =59.71 A =38.32 Ay = 14.93
20, m, A, =4.287 Ay =1.670 Ay =1.072
p=0.8273 p=0.500 p=0.301
H, fit
based on g (0), X, =38.32 X =14.93 A =4.64
my, my Ay = 1.670 A= 1.072 A =0.863
H, fit p=0.933 p =0.699 p=0.500
J based on m, A;=1493 A =4.64 A =226
iy, My )\2- 1.072 AZ =0.836 Az =), 765
Parameters
g"(0) 124,928, 14,336.0 512.0
. F40)) 1792. 256.0 16.00
5 2@ 32.00 8.00 2.00
m 0.125 0.500 0.875
"y 0.125 0.875 1.906
msy 0.328 2.859 6.973
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moments and yields an upper bound on the Laplace-Stieltjes transform. It
is interesting that the stationary-excess cdf associated with this bounding cdf

coincides with the one-moment exponential fit.

It should be clear that the three-parameter H, approximations
improve near the origin (for larger 7) if we use more derivatives (moments)
in the fitting. As in [1]-[4], we have been primarily interested in larger ¢, so
that we think of the three-moment fit as the standard one, but the others
can be considered too. It is natural to ask how the approximations based on
one region perform in the other region. As illustrations, note that the H, fit
for B°(z) based on the three derivatives 5@ (0), 5V (0) and & (0) has mean
#(1—p?) while the actual mean is 8. Thus the approximation for the mean
is pretty good for small p, but not for large p. On the other hand, the H,
fit for B°(z) based on the first three moments m |, m, and m; has a density
at the origin of 2(1+p) /(1—p) while the actual value is 5(0) = 2/(1—p)2.
Again, the approximation is good for small p, but not for large p. Having a
good fit for 5(0) is obviously a pretty strong requirement, but these tests
reveal important limitations of the H, approximations. Even though B (¢)
is completely monotone, it is quite different from a simple mixture of two
exponentials. (Better approximations for B({r) are developed in 2
forthcoming paper.) However, as p — 0, B(t), H,(t} and V,(¢) approach
a simplie exponential (e.g., see Corollary 2 to Theorem 1), so that we should

expect the H, approximations to be uniformly good for small p.

Remark 8.1. Riordan [25), p. 107, claims that a three-moment H, fit for
b (r) actually matches the first four moments. However, while this is nearly
true, it is not actually correct because m, = 36{1+3p] in the three-moment
H, fit, whereas the exact value is m4 = 38[1+3p+p?]. The difference 36p?
corresponds to a 20 percent relative error as p — 1, but is negligible for

small p. =

The resulting approximations for ¢, (t) = V5(t), ¢(z) and ¢, ()
based on a three-moment fit to each of the basic cdf’'s B (), H;(¢t) and
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¥, (1} are compared to exact values obtained by Laplace transform inversion
(Section 4.4 of [1]) in the cases p = 0.50 and p = 0.75 in Tables 1-2 and
6-9. Note that these composite approximations involve four exponentials for
¢ () and six exponentials for ¢;(¢) because the exponential parameters for
B(¢), Hy(t) and V,(1) based on three-moment fits are different.

For ¢;(¢) and ¢,(z), we actually consider two different approximation
procedures. In addition to the composite approximations based on three-
moment H, fits to B(t), H;(t) and V,(¢), we also consider direct three-
moment fits for the cases p = 0.50 and 0.75 in Tables 6-9. Since ¢;(¢) is
completely monotone (Theorem 10), such a three-moment H, fit is always
possible. For ¢, (1), a direct three-moment H, fit is possible for p = 0.2;
i.e, the first three moments of ¢,(t) are m; = 3—p)/2(2—p),
my = (4+20—p2)2(2=p) and m; = 3(5+10p—p*) /4(2=p), so that
¢t > 1 for all p and mym3/m3} = 3(5+10p~p>) (3—p) 12(4+2p—p%) 2= 1.5
for p 2 0.2. .

Finally, there is the first-moment cdf for the number waiting U, (¢).
(Since V(1) = H,(¢) and S (t) = B(¢), we have already treated all other
first-moment cdf’s.) From Corollary 2 to Theorem 3, we know that Uf (1)
is not completely monotone. However, the first three moments of U (¢} are
m, = (2—p) 2, my = (3—p)/2 and m; = 3(4+2p—p?) /4, so that

c? = Ony=mi)im? =1 + 20p—1-p2)/(2—p)* 2 1

and mym,/m3 > 1.5 forp > (14++/5) 74 = 0.382. Consequently, a direct
three-moment H, fit is possible for p > 0.382. This direct three-moment
H, fit is compared to the composite approximation involving four
exponentials based on Corollary 2 to Theorem 3 and the exact values based
on Laplace transform inversion for the cases p = 0.50 and 0.75 in Tables 10
and 11.

In conclusion, all the approximations perform quite well, with the

exception of the H, approximations of the busy-period cdf B (¢) (which is
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TABLE 6

A comparison of two approximations for the correlation function ¢;{(z)
with exact values obtained by Laplace transform inversion: the case of
p = 0.50.

Note. For the direct H, fit, the three moments are m,; = 0.85,
my = 1.65 and my = 5.213. The H, parameters are p; = 0.449,
AT! = 0.495, p, = 0.551 and A5! = 1.139.

exact composite A, fit | direct three-moment
time | by transform | six exponentials H, fit
t inversion (Theorem 4) two exponentials
0.01 0.9847 0.9848 0.9862
0.05 0.927 0.928 0.933
0.10 0.864 0.866 0.872
0.15 0.806 0.810 0.815
0.20 0.755 0.759 0.762
0.25 0.707 0.713 0.713
0.50 0.519 0.523 0.51%
0.75 0.387 0.387 0.384
1 1.00 0.293 0.289 0.289
1.25 0.224 0.219 0.220
1.50 0.172 0.168 0.169
1.75 0.133 0.130 0.132
2.00 0.103 0.102 0.103
250 | . 0.0636 0.0641 0.0643
3.00 0.0399 0.0408 0.0406
3.50 0.0252 0.0261 0.0259
4.00 0.0158 0.0167 0.0166
4.50 | , 0.0103 0.0108 0.0107
5.00 0.0069 0.0069 0.0069
6.00 0.00228 0.00285 0.00284
7.00 0.00185 - 0.00117 0.00118
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TABLE 7

A comparison of two approximations for the correlation function ¢;(r)
with exact values obtained by Laplace transform inversion: the case of
p = 0.75. '

Note. For the direct H, fit, the three moments are m, = 0.914,
my = 2.020 and m; = 7.43. The H, parameters are p; = 0.493,
AT! = 0.492, p, = 0.507 and A3! = 1.325. ;

exact composite H, fit | direct three-moment

time | by transform | six exponentials H, fit

t | inversion (Theorem 4) two exponentials
0.01 0.9839 0.9857 0.9863
0.05 0.925 0.932 0.934
0.10 0.861 - 0.872 0.872
0.15 0.803 0.817 0.816
0.20 0.753 0.766 0.764
0.25 0.705 0.719 0.716
0.50 0.524 0.528 0.526
0.75 0.399 0.395 0.395
1.00 0.309 0.301 0.303
1.25 0.242 0.235 0.236
1.50 0.192 0.186 0.187
1.75 0.153 0.149 0.149
2.00 0.122 0.120 0.121
2.50 0.0798 0.0802 0.0799
3.00 0.0526 0.0541 0.0538
3.50 0.0353 0.0368 0.0366
4.00 0.0237 0.0251 0.0249
4.50 0.0162 0.0172 0.0171
5.00 0.0111 0.0117 0.0117
6.00 0.0049 0.0055 0.0055
7.00 0.00262 0.00256 0.00258
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TABLE 8

A comparison of two approximations for the correlation function ¢, (¢)
with exact values obtained by Laplace transform inversion: the case of
p = 0.50.

Note. For the direct H, fit, the three moments are m|'= 0.833,
m, = 1.583 and m3; = 4938, The H,; parameters are
p1 = 0.5095, AT! = 0.527, p, = 0.4905 and A3' = 1.151.

exact composite H, fit | direct three-moment
time | by transform { four exponentials H, fit
t inversion (Theorem 8) two exponentials

0.01 0.9868 0.9872 _ 0.9862
0.05 0.934 0.937 0.933
0.10 0.871 0.877 0.871
0.15 0.813 0.821 0.814
0.20 0.759 0.768 0.761
0.25 0.709 0.718 ' 0.712
0.50 0.512 0.515 0.515
0.75 0.379 _ 0.375 0.379
1.00 0.284 0.278 0.282
1.25 0.216 0.210 0.213
1.50 0.165 0.161 0.163
1.75 0.127 0.125 0.126
2.00 0.098 0.098 0.098
2.50 0.0605 0.0613 0.0603
3.00 0.0375 . 0.0388 0.0379
3.50 | 0.0236 0.0247 0.0241
4.00 0.0152 0.0158 0.0154
4.50 0.0095 0.0101 0.0099
5.00 - 0.00639 0.00643 : 0.00641
6.00 0.00215 0.00263 0.00268
7.00 10.00139 0.00107 0.00112
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TABLE 9

A comparison of two approximations for the correlation function ¢, (f)
with exact values obtained by Laplace transform inversion: the case of
p = 0.75.

Note. For the direct H, fit, the three moments are m; = 0.90,
my = 1975 and my =725, The H, parameters are
p1 = 0.5014, AT! = 1.320, p, = 0.4985 and A5! = 0.477.

exact composite H, fit | direct three-moment
time | by transform | four exponentials H, fit
t inversion (Theorem 8) two exponentials
0.01 0.9843 0.9863 0.9859
0.05 0.923 0.933 0.932
0.10 0.857 0.872 0.869
0.15 0.798 0.815 0.812
0.20 0.745 0.762 0.759
0.25 0.698 0.713 0.710
0.50 0.516 0.518 0.518
i 0.75 0.392 - 0.386 - 0.388
! 1.00 0.303 0.295 0.296
1.25 0.237 0.230 0.231
1.50 0.187 0.182 0.183
: 1.75 0.149 0.146 ‘ 0.146
2.00 0.120 0.118 0.118
2.50 0.078 . 0.078 0.078
3.00 0.00517 0.0529 0.0526
: 3.50 0.0341 ' 0.0359 0.0357
4.00 0.0232 0.0245 : - 0.0243
= ) 4.50 0.0156 : 0.0167 - 0.0166
i 5.00 0.0107 00114 ' 0.0114
- | 6.00 0.0048 0.0053 0.0053
7.00 0.0025 - 0.0025 0.0025
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TABLE 10

A comparison of two approximations for the first-moment cdf U, (z) with
exact values obtained from Laplace transform inversion: the case of
p = 0.50. '

Note. For the direct H, fit, the three moments are m; = 0.75,
my = 1.25 and m3 = 3.563. The H, parameters are p; = 0.854,
AT! = 0.646, p; = 0.146 and A3' = 1.354.

exact composite H, fit direct three-moment
time | by transform four exponentials H, fit
t inversion (Corollary 2 to Theorem 3) two exponentials
0.01 0.9983 0.99913 ' 0.9858
.05 0.970 0.%81 0.931
0.10 0911 0.936 0.867
0.15 0.844 0.876 0.808
0.20 0.778 0.811 ' 0.753
0.25 0.716 0.746 0.702
0.50 0.481 0.475 0.495
0.75 0.335 0.315 - 0.352
1.00 0.239 0.223 0.252
1.25 0.175 0.166 0.182
1.50 0.130 0.127 0.132
1.75 0.0977 0.0982 ' 0.0972
2.00 0.0743 0.0766 ' 0.0721
2.50 0.0436 0.0470 0.0409
3.00 0.0260 0.0288 0.0242
3.50 0.0161 0.0177 0.0148
4.00 0.00996. 0.0109 0.00938
4.50 0.00624 0.00665 0.00608
1 5.00 0.00376 0.00407 ' 0.00402
6.00 0.00179 0.00152 ' 0.00182
7.00 0.00039 0.00057 : ~ - 0.00085
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TABLE 11

A comparison of two approximations for the first-moment cdf U, (t} with
exact values obtained from Laplace transform inversion: the case of
p = 0.75.

Note. For the direct H, fit, the three moments are m| = 0.625,
my; = 1.125 and m3; = 3.703. The H, parameters are
p1 = 0.6678, AT! = 0.333, p, = 0.3322and A37' = 1.213.

exact composite H fit direct three-moment
time | by transform four exponentials Hy fit
t inversion (Corollary 2 to Theorem 3) two exponentials
0.01 0.9903 0.9977 . 0.9775
0.05 0.892 0.955 0.893
0.10 0.780 0.864 0.800
0.15 0.692 0.765 0.719
0.20 0.621 0.673 0.648
0.25 0.562 0.592 0.585
0.50 0.369 0.339 0.368
0.75 0.260 0.229 0.249
1.00 0.190 0.171 : 0.179
1.25 0.142 0.134 0.134
1.50 0.109 0.107 0.104
1.75 0.0837 0.0857 0.0819
2.00 0.0655 0.0650 0.0655
.1 2.50 0.0410 0.0450 0.0426
3.00 0.0261 0.0293 0.0281
3.50 0.0171 _ 0.0191 0.0186
4.00 0.0113 0.0124 0.0123
4.50 0.00749 0.00811 0.00813
5.00 0.00517 0.00528 ~ - 0.00538
6.00 0.00242 0.00224 0.00236
7.00 0.00110 0.00095 0.00103
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studied in a forthcoming paper). From Tables 6-11, it is apparent that the
direct H, approximations perform somewhat better than the composite
approximations. Since the direct H, approximations have a simpler form
(two exponentials as opposed to four or six), they usually are to be

preferred.

9. Bounds and Inequalities

One positive density f(¢) on [0,%0) is said to be less than or equal to
another f,(t) in the likelihood-ratio sense, here denoted by f; <, f3, if
f2(e)/f1(t) is increasing in ¢ for all ¢ 2> 0. Since the cdf's B{(t), H, (1)

. and V,(1) have completely monotone densities 5(z), /() and v,(¢) which

are connected by the stationary-excess operator, we can apply
Theorem 3.1(G) of [29] to order these densities. Moreover, from the spectral
representation, pp. 98-103 of [13], we know that the mixing distribution in
the mixture-of-exponential representation of & (¢) has support on the interval
[2(1+Vp) 2, 2(1—\/;)“2] in the time scale (3.1). We thus obtain the
following comparison result. Let e, denote an exponential density with

mean A~ L.

Theorem I1.  For X\ =20+Vp)™2 and N = 20-Vp)72,
ex1 $,b0 K, 0y S0 K, e

_AI 4

Corollary 1. Forallt = 0, e ™M < B() K HY (I)' V50 <e for

X; and A5 in Theorem 11.
Corollary 2. Whenp =0, B(t) = H{ (1) =V5() =e™¥,¢ > 0.

Corollary 3. When p =0, cq(;) =) =e ¥, U@ = (e~2)"2
= (1420)e™ % and ¢, (1) = U5, (1) = (1+)e™ %,

Corollary 4. For RBM, ey <, hy <, ¢’ =h; <, hs.

As a consequence of Corollary 1 above, we can also ‘easily establish

some inequalities among the correlation functions.



354 ABATE AND WHITT

Corollary 5. For all t and p, ¢, () < ¢;(t) and ¢, () < ¢, (1),

Proof. Apply Theorems 4 and 8 together with Corollary I to
Theorem 11. ™

From the numerical results we see that ¢, {t) < ¢;{¢r) for sufficiently
large ¢ and p, but the inequality is reversed for sufficiently small ¢ and p.
For p 2 0.50 and ¢ > 1, the three correlation functions are quite close
from a practical numerical view. Using only the dominant exponential in

the direct H, fit, we obtain

—t

——t -

-t
cgt) = 0.500e 3% | ¢,(t) = 0.501e ' and (1) = 0.507¢ 3%

for the case p = 0.75.
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APPENDIX A

Proof of Nonnegativity in Theorem 10

In this appendix we prove the nonnegativity of a; in Theorem I0.

First note that (1+p—p%a; = 2, 66, 248(1-8), _300(4('1—0)2+2,o) for

k = 0,1, 2 and 3, respectively. For general k, we apply the basic recursion

for the busy-period moments due to Riordan (Theorem 3.2 of [4]), namely,

dmy gy = (4k+2) (U+pdmyyy ~ (2—1)(1—p)*rmy (A-D

for mg = 1 and m; = (1—p)/2. From (A-1), we get

be = pU+p—pDa; = [(4k+2)(1+p) — (4k+§)]mk+| '
+ [(k*+3k+2) — (k2-1)(1—p)?Im;

= [(4k+2)p—6lmy 4y + [(k2=1)(2p—p?) + 3(k+1)]my . (A-D)



CORRELATION FUNCTIONS OF RBM AND M/M/1 357

To prove that b, 2 O for all k, we use a lemma about the busy-period
moments, which is of some independent interest. Let
xp = 2my 4 /mp(k+1). Note that x; =1 for all k¥ when {my) is the -

sequence of moments of an exponential with mean 1/2 (the case p=0).

Lemma Al. For k=0, 1 and 2, x; =1 + (k—=Dp. For k = 3,
1 €x €1+ (k—-Dp.

Proof. Dividing through (A-1) by 2(k+2)my,, yields the following

recursion for x;:

oo = QEHDU+p) =D U—p)?
o k+2 i (e +2)

(A-3)

A bound for x; in (A-3) yields a corresponding bound for Xgp. If

x; 2 1, then

N Qk+D(+p)  (k=1)(1-2p+p?)
kel Z k+2 k+2

(4k—1) p—(k—=1)p? _
>
+ 2 = 1.

=]

If x;, €1 4+ [k—1]p, then

e < BEEDUHY) =D (=2p+p7)
k= k+2 (k+2) (1 +[k—1]p)

(k—1k?p? .
(k+2) (1+[k~1]p)

=1 +kp — Ll+kp. W

Remark. 1t is also easy tosee that 1 < x, < 1 + (k—1)pforallk > 3
and p > 0. For example, x3 =1 + 2p — p?/(1+p). ™

From (A-2), we see that
b = 2mp 4 2k +11p-3) + (K +D)m B+(k=1)(2—p)p)
so that by > 0 if and only if either () p = 3/Qk+1) or (i)
p < 3/Q2k+1) and

2my 4 < 3+(k—-1)(2-plp
my(e+1)  3—[2k+1)p

X, =
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However, if p < 3/(2k+1), then

+U=DC=plp _ , , Gk=lp | kBk+1)p?

> 1+ k=Dp >
312k +11p 3 32k +11p ° k—Dp 2 x

by Lemma A-l. Hence, the proof is complete. ®

APPENDIX B

Relations Among the Moment Functions Supporting Conjecture !

Here we present relations among the moment functions which enabie
us to establish Conjecture 1 in Section 5 for &k = 3, 4 and 5, and which

might be the basis for a proof for all £.

We always consider the system starting out empty here. Let m; and
m ) refer to the ordinary moment function m (¢, 0) and the associated

factorial moment function (see {3] and [4]), respectively. These moment

B _
functions are related by my = Y agm) where ay; are the Stirling
=1 '

numbers of the second kind, see Johnson and Kotz [12a], (105) on p- 19;
e.g.,

my =m, my=my tmq

my =ma + 3Imy +mq)

myg =mq +6mp +Impup +my (B-1)
ms =m) + 10m@ + 25m@ay + 15m@y +myy .

Let m; and m ) denote the derivatives with respect to time; let 8(z) be the -

Dirac delta function. From Theorem 5.2 of [4], we know that

28
where hi(e) =b@) » fol) with So(t) = phy (1) + 265().

Consequently, we see that the factorial moments satisfy the recursion

MGy = k!{_&]’_‘{hl(t)]"‘ ' - B2
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relation
mqgy = pb(t) » [myy + kmy-pl (B-3)

where mq) = 5(1).

We can thus apply Lemma 1 in Section 5 to relate my to m;. In

particular,
my =mqy — pb(t)
mp =mey —mq + pb()
ryz =meay +mgy — pb () (B-4)
iy, =m@ + 2mg +Tmg —mq) +ebQ)
mys =) + Smy + Sm +mqy — pb D).

We now can establish Conjecture 1 by combining (B-3) and (B-4);
e.g., for k = 4,

nyy = pb (1) ¢ [y + dm@] + 206 1) » [m@ + 3myl
+pb @) « by +2mpl — pb () « Imqy + 8] + pb (1)
= pb(t) * [ + 6mea + Tmp + myl (B-5)
= pb(t) * my .

This * establishes Conjecture 1 for the case k = 4, since clearly

mfk(m) = pmk('x’). u
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