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This is a supplement to the main paper, presenting additional experimental results not

included in the main paper due to lack of space. The overall study investigates ways to create

algorithms to numerically invert Laplace transforms within a unified framework proposed

by Abate and Whitt (2006). That framework approximates the desired function value by a

finite linear combination of transform values, depending on parameters called weights and

nodes, which are initially left unspecified. Alternative parameter sets, and thus algorithms,

are generated and evaluated here by considering power test functions. The resulting power

algorithms are shown to be effective, with the parameter choice being tunable to the trans-

form being inverted. The powers can be advantageously chosen from series expansions of

the transform. Real weights for a real-variable power algorithm are found for specified real

powers and positive real nodes by solving a system of linear equations involving a generalized

Vandermonde matrix, using Mathematica. Experiments show that the power algorithms are

robust in the nodes; it suffices to use the first n positive integers. The power test functions

also provide a useful way to evaluate the performance of other algorithms.
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1. Introduction

In the main paper we propose a new class of algorithms for numerically inverting Laplace

transforms, called power algorithms, with parameters that are tunable to the transform being

inverted. Our power algorithms are constructed using power test functions within a unified

framework for constructing algorithms to numerically invert Laplace transforms proposed by

Abate and Whitt (2006).

The framework approximates the function f by a finite linear combination of transform

values; specifically,

f(t) ≈ fn(t) ≡ fn,α,ω(t) ≡ 1

t

n∑

k=1

ωkf̂
(αk

t

)
, t > 0 , (1)

where α ≡ (α1, . . . , αn) and ω ≡ (ω1, . . . , ωn) are vectors of complex numbers, called nodes

and weights, respectively. The nodes and weights do not necessarily depend on the transform

f̂ or the function argument t, but typically depend upon n. This is a framework rather than

a single algorithm because the nodes and weights are initially left unspecified. We consider

the case in which the function f is real-valued and the weights and nodes are real, so that

(1) applies directly in the real domain.

We investigate ways to create new inversion algorithms by considering test functions.

In particular, we consider one very natural family of test functions: powers. For real p,

the pth power is the function f(t) ≡ tp, which has well-defined Laplace transform f̂(s) ≡
Γ(p + 1)/sp+1 for all p > −1, where Γ(p) is the gamma function, for which Γ(p + 1) = p!

when p is an integer. (Powers with p ≤ −1 may also be of interest. They correspond to

pseudotransforms, as discussed in Sections 12-14 and the Appendix of Doetsch (1974), and

they may capture asymptotic behavior for large t (and small s) via Heaviside’s theorem, p.

254 of Doetsch (1974), but we emphasize p > −1 here.)

The framework (1) is exact, using real weights and nodes, for the pth power for p ∈ P ≡
{p ∈ R : p > −1} if

1

t

n∑

k=1

Γ(p + 1)(
αk

t

)p+1 ωk = tp, (2)

which, by eliminating t > 0, is equivalent to the power relation

n∑

k=1

Γ(p + 1)

αp+1
k

ωk = 1 . (3)
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We consider n given (distinct) positive real nodes and n distinct powers when we look

for the n weights. Then the power relations in (3) for the n values of p become a system of

n linear equations in n unknowns, where the weights are the unknowns.

We can write the linear system in matrix form as

Aω = b ≡
[

1

Γ(p1 + 1)
, . . . ,

1

Γ(pn + 1)

]T

, (4)

where T denotes transpose and A ≡ An,P is the node matrix

A ≡ An,P ≡




(
1

α1

)p1+1

. . .
(

1
αn

)p1+1

(
1

α1

)p2+1

. . .
(

1
αn

)p2+1

...
...(

1
α1

)pn+1

. . .
(

1
αn

)pn+1




(5)

Fortunately, it is not difficult to solve the linear system Aω = b in (4) and (5) with

Mathematica because the node matrix A in (5) is a generalized Vandermonde matrix with

positive real “points” 1/αk and “exponents” pk + 1, k = 1, . . . , n, with pk > −1. Since

these generalized Vandermonde matrices are notoriously ill-conditioned, we rely on the high

precision of Mathematica.

Restricting attention to real-variable algorithms, we investigate possible node sets and

possible power sets. We will be giving more details about those investigations here in this

supplement. We find that the default node set N ∗ ≡ {1, 2, . . . , n} is effective. We find no

incentive to use other real node sets. In contrast, efficiency gains can be achieved by carefully

considering the power set, as we show in Section 3 of the main paper. But we suggest the

following power set as a default power set:

P∗ ≡ P
(
−5j

n
;
k

2

)
≡

{
−5j

n
: 1 ≤ j ≤ n

5
− 1

}
∪

{
k

2
: 0 ≤ k ≤ 4n

5

}
, (6)

as in Step 3 in Figure 1.

Organization of this Supplement. We start in Section 2 be summarizing the algorithm

to create power algorithms and the default power algorithm; i.e., we repeat Figure 1 from

the main paper. Next, in Section 3, we list the Laplace transforms and their known inverses

that we consider in this experimental study. They are mostly taken from Table 1 of Valko

and Abate (2004).
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In Section 4 we present additional material on choosing the powers. In Section 5 we

present additonal material on choosing the nodes. In Section 6 we give additional detail

about the default power weights. We show that the default power weights are similar to the

Gaver-Stehfest weights. In Section 7 we discuss accuracy and precision.

In Section 8 we give additional information about Zakian’s algorithm. In Section 9 we

show how the power test functions can be used to evaluate existing algorithms T , E , Z and

G. We start by reviewing the structure of the nodes and weights for these other algorithms.

The nodes are complex for T , E and Z. In Section 10 we compare all the main inversion

algorithms applied to the test functions in Section 3 over a range of function arguments. In

Section 11 we discuss these numerical results. Finally, in Section 12 we discuss difficulties

encountered with Mathematica in properly treating complex functions involving
√

s.

2. The Default Power Algorithm

In this section we repeat Figure 1 of the main paper, which summarizes the algorithm to

create power inversion algorithms. It also specifies the default power algorithm, which is

based on the default node set N ∗ and the default power set P∗. Furthermore, we give the

numerical values of the nodes and the weights for the base case n = 30 in table 1.

5



Constructing A Real-Variable Power Inversion Algorithm

1. Let the number of terms be n; e.g., n = 30.

2. Let the computer precision be 1.5n; e.g., 45 significant digits.

3. Choose n distinct real numbers p > −1 to form the power set P ; e.g., with an
integer n divisible by 5, let

P = P∗ ≡ P
(
−5j

n
;
k

2

)
≡

{
−5j

n
: 1 ≤ j ≤ n

5
− 1

}
∪

{
k

2
: 0 ≤ k ≤ 4n

5

}
.

4. Choose n distinct positive real numbers to serve as the node set N ; e.g.,

N ≡ {αk : 1 ≤ k ≤ n} = N ∗ ≡ {1, . . . , n} .

5. Using the specified computer precision, solve the system of n linear equations

n∑

k=1

Γ(p + 1)

αp+1
k

ωk = 1, p ∈ P ,

to obtain the n real weights ω1, . . . , ωn.

6. Apply the created power inversion algorithm: Using the computer pre-
cision, nodes and weights specified above, calculate the required transform
values f̂(αk/t) and the weighted sum to obtain the real-variable numerical
inversion

fn(t) ≡ fn,α,ω(t) =
1

t

n∑

k=1

ωkf̂
(αk

t

)
.

Figure 1: Summary of the (P∗,N ∗) power algorithm.
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Table 1: The nodes and weights of the default power algorithm (P∗,N ∗)
k αk ωk

1 1 −2.75248363738488651043256823709168274464977829e− 13
2 2 9.20645093009887617275157098068080118815800107e− 7
3 3 −1.69586066739768270489313481433687452763380669e− 2
4 4 2.96840624780697663383723630134017658774355531e1
5 5 −1.27272469564568042787911496756761076789273671e4
6 6 2.08011611751266511621086464984984205768018921e6
7 7 −1.65675778556606368309332229648401768030717922e8
8 8 7.48521249402337956613097957022842092940812989e9
9 9 −2.12221838175513680715102491731147076398612972e11
10 10 4.05290116724950279365530679075090290442765742e12
11 11 −5.48956264084973653720704057905070525888456048e13
12 12 5.48155095104990024537080179875025820690615774e14
13 13 −4.15633755181301601131302840919914778900500071e15
14 14 2.44852229905872661078229716626179618354688137e16
15 15 −1.14079385506738046123244067984455278150438959e17
16 16 4.26166377320308832022702693917573366748815190e17
17 17 −1.28979231411823273080567708258207421725694197e18
18 18 3.18617733295292344807571229058049006278936549e18
19 19 −6.45553745889958591580246822937070819361079826e18
20 20 1.07528497188725690271049372122289383916645564e19
21 21 −1.47216876376562228294233658264363034472139148e19
22 22 1.65177994616022494204123150444053914868052786e19
23 23 −1.50948891221291777328432190631852972861972162e19
24 24 1.11214425815903251021975827971606112258426328e19
25 25 −6.50337979051705418381739977388051672879744064e18
26 26 2.94750123102732477941355507576088336904017541e18
27 27 −9.97950885353242690031983522450358760907704068e17
28 28 2.37488003652140499897801060815372177354807782e17
29 29 −3.54258304870155391524751812346204148321823780e16
30 30 2.49172474102460812600448155993636194027580666e15
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3. Test Transforms

Table 2 shows the transforms we used to test our numerical inversion procedures. They all

have known inverses. We started with transforms in Table 1 of Valko and Abate (2004).

Many appear again here with the same indices. Transforms f̂2 and f̂4 from this list were also

used by Abate and Whitt (2006). We then considered additional transforms. The new ones

introduced here are f̂9, f̂12, f̂13 and f̂14.

Table 2: The transforms and their inverses

Name f̂(s) f(t)

f1
1

s2+1
sin(t)

f2
1√

s+
√

s+1
1−e−t

2
√

πt3

f3
1√

s(s+2)
e−tI0(t)

f4
1

s+
√

s
eterfc(

√
t)

f5 e−2
√

s e−1/t√
πt3

f6
e−
√

s cos(
√

s)√
s

cos(1/2t)√
πt

f7
e−1/s√

s3

sin(2
√

t)√
π

f8
log(s)

s
log(t) + γ

f9
1

s+1
e−t

f10
1
2
log2(s) log(t)+γ

t

f11 s3 log(s) 6
t4

f12
s

s2+1
cos(t)

f13 f̂4(s) + Γ(1/2)√
s

f4(t) + 1√
t

f14
Γ(5/4)

s5/4 + Γ(11/4)

s11/4 t1/4 + t7/4

4. Choosing the Powers

In this section we present additional material related to our investigation into the choice of

the power set. As indicated in Section 3 of the main paper, we considered the following 6

alternatives for the power set, each containing n = 30 powers:

1. Nonnegative integers: P(k) ≡ {k : 0 ≤ k ≤ n− 1}
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2. Nonnegative even integers: P(2k) ≡ {2k : 0 ≤ k ≤ n− 1}

3. Nonnegative odd integers: P(2k + 1) ≡ {2k + 1 : 0 ≤ k ≤ n− 1}

4. Nonnegative integer multiples of 1/2: P(k/2) ≡ {k/2 : 0 ≤ k ≤ n− 1}

5. All integer multiples of 1/2: P((k − 1)/2) ≡ {k/2 : −1 ≤ k ≤ n− 2}

6. The default power set with n/5 negative fractional powers and 4n/5 nonnegative integer

multiples of 1/2, i.e., P∗ in (6) .

We repeat Figure 2 in the main paper here in Figure 2. It displays the base-10 logarithm

of the absolute error |f(t)− fn(t)| between the function f and the numerical inversion fn as

a function of t, 0.5 ≤ t ≤ 10.0, for the six different transforms f̂ with known inverses f . For

clarity, we do not show the performance of all power sets in each plot.

We also conducted several related investigations not shown in the main paper. In each

case we use n = 30 and the default node set N ∗. First, we found that the Gaver-Stehfest

algorithm outperformed the six power algorithms above for the transform f̂5, as shown in

Figure 4. So we considered alternative power sets. Figure 4 shows the inversion results with

new specially constructed power sets. Figure 4 shows that these alternative power algorithms

do outperform Gaver-Stehfest.

We found that negative powers greatly help inverting f̂5. The set “special” has two

powers in (−1, 0], i.e., it is the set {− 9
10

,−1
2
, 0, 1

2
, 1, . . . , 27

2
}. The set “special 2” has one

third of the powers in (−1, 0], {− 9
10

,− 8
10

, . . . ,− 1
10

, 0, 1
2
, 1, . . . , 10}. The set “special 3” has

just as many negative powers as positive, {−14
15

, . . . ,− 1
15

, 0, 1
2
, 1, . . . , 15

2
}. Finally, the set

“special 4”, which gives the best performance, has all 30 powers in the interval (−1, 0],

{−29
30

, . . . ,− 1
30

, 0}.
We can give a partial explanation. The function f5(t) does not have a series expansion

about t = 0. Instead, it has an integral representation. Indeed, from the dual pair of

functions f5 and f7, we can immediately identify the spectral representation. Since the

transform f̂7, as a function of t, coincides with the function f5(t), we know that the function

f5(t) has the integral representation

f5(t) =

∫ ∞

0

e−xt sin (2
√

t)√
π

dt .
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f4 : f(t) = eterfc(
√

t), f̂(s) = 1
s+
√

s
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t
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log10È f HtL- fnHtLÈ
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-10

-5

log10È f HtL- fnHtLÈ

PHkL

PHk�2L

G

P*

PHHk-1L�2L

f1 : f(t) = sin(t), f̂(s) = 1
s2+1

f13 : f(t) = f4(t) + 1√
t
, f̂(s) = f̂4(s) + Γ(1/2)√

s

Figure 2: Comparison of performance for different P with the Gaver-Stehfest algorithm.

To provide additional insight, we plot f5 and f7 in Figures 5 and 6. We plot each in two

time scales in order to show the behavior near 0 as well as the values over a longer interval.

Note that f5(t) is essentially 0 in a neighborhood of t = 0.

Several of the transforms on our list involve half powers. However, we could require

other fractional powers. To illustrate, we considered the function f14, which is the sum of

two quarter powers. The associated Laplace transform f̂14(s) would be inverted exactly if

we used quarter powers. Figure 7 shows how our standard power algorithms perform on this
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k
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Figure 3: Comparison of some standard P for f5 : f(t) = e−1/t√
πt3

, f̂(s) = e−2
√

s.
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-14
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special 4

special 3
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G

Figure 4: Comparison of some “exotic” P for f5 : f(t) = e−1/t√
πt3

, f̂(s) = e−2
√

s.
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Figure 5: The function f5(t) = e−1/t√
πt3

.
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Figure 6: The function f7(t) = sin(2
√

t)√
π

.

example. This example further shows the possible improvements in inversion efficiency if we

carefully tune the powers.
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t
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-10
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log10È f HtL- fnHtLÈ

PHkL

G

P*

PHk�2L

Figure 7: Comparison of different P for f14 : f(t) = t1/4 + t7/4, f̂(s) = Γ(5/4)

s5/4 + Γ(11/4)

s11/4 .
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5. Choosing the Nodes

As indicated in Section 4 of the main paper, we examined the impact of the node set on the

inversion, restricting attention to positive real nodes. We did many more experiments than

described in the main paper. We describe some of those here.

We carry out a series of numerical experiments on inversions of three transforms, f9, f2

and f4 from the Table 2. Our reference node set is the default node set N ∗ = {1, 2, . . . , n}.
We examine the effects of the following modifications: increasing and decreasing the

length of the node interval, increasing the value of the largest node, spacing the nodes

geometrically instead of linearly, varying the spacing between the nodes and the distance of

the nodes from the origin linearly and, lastly, selecting and perturbing the nodes randomly.

5.1 Varying the Node Interval

We start our investigation of where to place the nodes by considering n = 30 nodes that are

spaced equally in an interval of varying size. In our first experiment we hold the leftmost

node fixed at α1 = 1 and we place the rightmost node at αn = k, k = 2, 3, . . . , 62, thus

obtaining 61 node intervals of increasing length. Then we solve the power relations to get

the corresponding weights for each interval and we carry out the inversions for transforms f9,

f2 and f4. We show the absolute errors of every fifth inversion thus obtained (i.e. inversions

with αn = 2, 7, . . . , 62) in figures 8, 9 and 10. We can see that increasing the length of the

interval initially helps improve inversion performance, but then the marginal gain decreases.

These pictures support the notion that there is great flexibility in the node set provided that

it is not put in too small an interval.

2 4 6 8 10
t

-22.5

-20

-17.5

-15

-12.5

-10

-7.5

log10È f HtL- fnHtLÈ

lengthening interval

Figure 8: The error plot as the node interval lengthens for f9 : f(t) = e−t, f̂(s) = 1
s+1

.
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Figure 9: The error plot as the node interval lengthens for f2 : f(t) = 1−e−t

2
√

πt3
, f̂(s) = 1√

s+
√

s+1
.

2 4 6 8 10
t

-22.5

-20

-17.5

-15

-12.5
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log10È f HtL- fnHtLÈ
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Figure 10: The error plot as the node interval lengthens for f4 : f(t) = eterfc(
√

t), f̂(s) =
1

s+
√

s
.
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Next we turn to shortening the interval of the node set. We perform the same experiments

as above except that we now hold the rightmost node fixed at α1 = 62 (the largest node value

tested above) and we place the leftmost node at αn = k, k = 61, 60, . . . , 1, thus obtaining 61

node intervals of decreasing length. We solve for the weights for each interval and we carry

out the inversions for f9, f2 and f4. We again show the absolute errors of every fifth inversion

thus obtained (i.e. inversions with αn = 61, 56, . . . , 1) in Figures 11, 12 and 13. These results

show less variation than in Figures 8, 9 and 10, so that we conclude that having a relatively

large node is the key requirement for a good inversion.

2 4 6 8 10
t

-27.5

-22.5

-20

-17.5

-15

-12.5

-10

log10È f HtL- fnHtLÈ

Figure 11: The error plot as the node interval shortens for f9 : f(t) = e−t, f̂(s) = 1
s+1

.

2 4 6 8 10
t

-27.5

-22.5

-20

-17.5

-15

-12.5

log10È f HtL- fnHtLÈ

Figure 12: The error plot as the node interval shortens for f2 : f(t) = 1−e−t

2
√

πt3
, f̂(s) = 1√

s+
√

s+1
.
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t
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Figure 13: The error plot as the node interval shortens for f4 : f(t) = eterfc(
√

t), f̂(s) = 1
s+
√

s
.

5.2 Moving Only the Largest Node

Section 5.1 shows that having larger nodes is beneficial, but it seems that if a few large

nodes are present in the node set, the effect of adding even larger nodes is not adding much.

We investigate this further by moving only the largest node. We move the largest node of

the default node set N ∗ = {1, 2, . . . , n} while leaving the rest of the nodes in N ∗ intact. In

particular, we perform inversions after replacing the largest node at n with n+k, k = 0, . . . , n

(and re-solving to get new weights) and examine the effect on the inversion error. We plot

the superposition of the resulting error plots in Figures 14, 15 and 16 for three different

transforms. We observe that the dispersion in the error plots is not significant, implying

that placing the largest node further out than at n does not yield much improvement.
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Figure 14: The error plot with increasing only the largest node for f9(t) = e−t, f̂9(s) = 1
s+1

.
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Figure 15: The error plot with increasing only the largest node for f2(t) = 1−e−t
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Figure 16: The error plot with increasing only the largest node for f4(t) = eterfc(
√

t), f̂4(s) =
1

s+
√

s
.

5.3 Linear versus Geometric Spacing

All the examples above have the nodes spaced linearly. We investigated whether or not it

would be better to have the nodes spaced geometrically in the same interval [1, 30]. Specif-

ically, we considered letting node k be placed at rk−1, 1 ≤ k ≤ 30, where r29 = 30. The

results are displayed in Figures 17, 18 and 19. Linear spacing is evidently better.

17



2 4 6 8 10
t

-22

-20

-18

-16

-14

-12

-10

log10È f HtL- fnHtLÈ

Linear

Geometric

Figure 17: Linear versus geometric spacing for f9(t) = e−t, f̂9(s) = 1
s+1

.
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Figure 18: Linear versus geometric spacing for f2(t) = 1−e−t
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Figure 19: Linear versus geometric spacing for f4(t) = eterfc(
√

t), f̂4(s) = 1
s+
√

s
.
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5.4 Spacing and Offset

As described in Section 4 of the main paper, we considered node sets of the form

αk = θ + kδ, 1 ≤ k ≤ n = 30 , (7)

as a function of a positive real shift θ and a positive real spacing δ. For each candidate

node set over a wide range of parameters θ and δ, we solve the system of linear equations

to obtain the corresponding weights and examine the resulting inversion error. Figure 4 in

the main paper shows the surface of the average error (measured in the logarithm to base

10) in the inversion of the standard exponential transform f̂9, for θ ∈ {0, 0.25, . . . , 4.75} and

δ ∈ {0.1, 0.25, . . . , 2.95}.
Below we display figures like Figure 4 in the main paper. Here we treat three different

transforms and consider three values of n: n = 20, n = 30 and n = 40. We also give two

different views of each surface. These appear in Figures 20, 21 and 22.
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Figure 20: The error surfaces for f9(t) = e−t, f̂9(s) = 1
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.
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Figure 21: The error surfaces for f2(t) = 1−e−t
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Figure 22: The error surfaces for f4(t) = eterfc(
√

t), f̂4(s) = 1
s+
√

s
.
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5.5 Sensitivity Analysis

Perturbing all the nodes or all the weights at the same time destroys the inversion, provided

that we do not re-solve the linear system. This also extends to perturbing a single node or

a single weight.

5.6 The Impact of Randomization

We now describe experiments with randomly generated sets of nodes to check the impact of

randomization. We generate n = 30 i.i.d. nodes, uniformly distributed in the closed interval

[1, 30]. We then solve the system of linear equations based on these random nodes to obtain

the weights and to do the inversion. We carry out M = 100 independent replications of this

experiment for transforms f9, (Figure 23), f2, (Figure 24) and f4, (Figure 25). In each case,

we observe a relatively narrow band of performance results.

Let f i
n(t) be the inverse obtained by the nodes and weights of the ith replication. Define

fn(t) =
1

M

M∑
i=1

f i
n(t)

|f − fn|(t) = |f(t)− fn(t)|

|f − fn|(t) =
1

M

M∑
i=1

|f(t)− f i
n(t)|

|f − fn|∗(t) = max
1≤i≤M

|f(t)− f i
n(t)|

|f − fn|∗(t) = min
1≤i≤M

|f(t)− f i
n(t)|

and let |f−fn|q(t), 0 < q < 1 denote the qth-quantile of the values {|f(t)−f 1
n(t)|, . . . , |f(t)−

fM
n (t)|}. Figures 23, 24 and 25 show these errors together with the absolute error of (N ∗,P∗)

(the unperturbed version of the inversion) over t for functions f9, f2 and f4. We note that,

although not shown in the plots, the error of the Gaver-Stehfest algorithm is similar to

|f − fn|∗ for functions f9 and f2. On the other hand, for f4, the error of G is worse than the

error of (N ∗,P∗) for small t and crosses over at around t = 10.
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Figure 23: Performance of the randomized inversions and (N ∗,P∗) for f9(t) = e−t, f̂9(s) =
1

s+1
.
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Figure 24: Performance of the randomized inversions and (N ∗,P∗) for f2(t) = 1−e−t
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6. The Structure of the Weights

Here we compare the weights of the default (P∗,N ∗) power algorithm to the the weights

of G. A fundamental property of Gaver-Stehfest is that the sign of its weights alternates.

As we can see in Figures 26–30, the (P∗,N ∗) power algorithm closely mimics this pattern,

but does not follow it exactly. These figures depict the base-10 logarithm of the absolute

value of the weights ω1, . . . , ωn of G and P∗, N ∗ for a few values of n. The G weights appear

as circles, filled in if ωk > 0 and empty if ωk < 0 whereas the (P∗,N ∗) weights appear as

squares, filled in if ωk > 0 and empty if ωk < 0.
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Figure 26: The weights of G (circles) and (P∗,N ∗) (squares) for n = 20.

Let N G denote the node set of the Gaver-Stehfest algorithm G, and let (P∗,N G) denote

the algorithm given if we solve the power relations using the node set N G with the power

set P∗. Then we can also examine how the application of P∗ (via the power relations) on

the weights of G affects the structure of the weights. We show this in Figures 31–35.

We have also compared the weights of (P∗,N ∗) to the weights of (P∗,N G) to get a feel

of the sensitivity of the weights to changes in the node sets. These two sets of weights

have almost the same sign change structure, but the magnitude of the weights are slightly

different.
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Figure 27: The weights of G (circles) and (P∗,N ∗) (squares) for n = 30.
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Figure 28: The weights of G (circles) and (P∗,N ∗) (squares) for n = 40.
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Figure 29: The weights of G (circles) and (P∗,N ∗) (squares) for n = 50.
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Figure 30: The weights of G (circles) and (P∗,N ∗) (squares) for n = 60.
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Figure 31: The weights of G (circles) and (P∗,N G) (squares) for n = 20.
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Figure 32: The weights of G (circles) and (P∗,N G) (squares) for n = 30.
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Figure 33: The weights of G (circles) and (P∗,N G) (squares) for n = 40.
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Figure 34: The weights of G (circles) and (P∗,N G) (squares) for n = 50.
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Figure 35: The weights of G (circles) and (P∗,N G) (squares) for n = 60.
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7. Accuracy and Precision Requirements

Here we slightly amplify Section 5 of the main paper. We investigate accuracy and precision,

measured in the number of digits. We first investigate how the number n of terms in the sum

(1) and the computer precision affect the precision of the weights obtained by solving the

linear system (4) using the default node set N ∗ and power set P∗. Table 3 shows results as

a function of the two variables, with each ranging over several multiples of 10. From Table

3, we see that the required computer precision to solve the linear system as a function of

n is approximately 1.2n. We have used 1.5n as the precision requirement in Figure 1 to be

safe. For any given n, the precision of the weights increases with the computer precision, as

shown in Table 3.

We find that the precision of the inversion, as measured by the base-10 logarithm of the

absolute error |fn(t) − f(t)| primarily depends on n provided that the computer precision

is above the threshold 1.2n. The performance of the default power algorithm with node set

N ∗ and power set P∗ tends to be similar to Gaver-Stehfest, as described in Section 7 of

Abate and Whitt (2006), but the power algorithm performs slightly better for 0 < t ≤ 10,

significantly so for smaller values of t. The ordering is reversed for larger t, though; see

Section 10. Specific comparisons appear in Figures 36, 37 and 38.

Table 3:
∣∣∣log10

∣∣∣wp+1−wp

wp

∣∣∣
∣∣∣ as a function of n, where wp stands for the weight computed with

precision p.

n

precision 20 30 40 50 60

10 0.5 × × × ×
20 13 1.7 × × ×
30 26 14 × × ×
40 35 23 10 × ×
50 44 32 19 7 ×
60 55 42 29 19 2

70 64 52 39 29 19

100 95 81 69 60 47
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Figure 36: Inversion of f9(t) = e−t, f̂9(s) = 1
s+1

with P∗, N ∗ (left) versus G (right) for
n = 20, 30, 40, 50, 60
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Figure 37: Inversion of f2(t) = 1−e−t
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s+1
with P∗, N ∗ (left) versus G (right)

for n = 20, 30, 40, 50, 60.
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Figure 38: Inversion of f4(t) = eterfc(
√

t), f̂4(s) = 1
s+
√

s
with P∗, N ∗ (left) versus G (right)

for n = 20, 30, 40, 50, 60.
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8. Zakian’s Algorithm

Zakian’s algorithm obtains nodes and weights through the Padé approximant of the com-

plex exponential function e−z; see Baker and Graves-Morris (1996). We have implemented

Zakian’s algorithm based on the ((n−1)/n) Padé approximant of e−z. The details of how to

compute the nodes and weights of the algorithm are given on pages 522 and 523 of Zakian

and Edwards (1978). The nodes and weights are displayed below in Figures 39 and 40 below

for the case n = 30. Note that both the nodes and weights appear in complex conjugates

3.93956425452757459825745847076077335755988546e1 + 1.71198870255437172929360044776474931594386669e0 i

3.93956425452757459825745847076077335755988546e1 - 1.71198870255437172929360044776474931594386669e0 i

3.91883222192732795684441684933600570898413038e1 + 5.13783491687593655660273242053407074544832539e0 i

3.91883222192732795684441684933600570898413038e1 - 5.13783491687593655660273242053407074544832539e0 i

3.87712269460169068481138126722746219101047269e1 + 8.56937455882171202431149609804705790697988140e0 i

3.87712269460169068481138126722746219101047269e1 - 8.56937455882171202431149609804705790697988140e0 i

3.81392985429808568271973124907477478752838376e1 + 1.20107031717667902339840366387941108285853879e1 i

3.81392985429808568271973124907477478752838376e1 - 1.20107031717667902339840366387941108285853879e1 i

3.72845550771084798089091259335093755420330966e1 + 1.54664031441502568519888231084327348595138365e1 i

3.72845550771084798089091259335093755420330966e1 - 1.54664031441502568519888231084327348595138365e1 i

3.61955484293976229166191792196526058795002500e1 + 1.89418212049373824909690156198635970540796156e1 i

3.61955484293976229166191792196526058795002500e1 - 1.89418212049373824909690156198635970540796156e1 i

3.48565041164394290360845530170683572758522477e1 + 2.24434529361056356235449956004773819496026210e1 i

3.48565041164394290360845530170683572758522477e1 - 2.24434529361056356235449956004773819496026210e1 i

3.32459697391676445802471514113473830554096014e1 + 2.59795112252544408263375168364128713897104242e1 i

3.32459697391676445802471514113473830554096014e1 - 2.59795112252544408263375168364128713897104242e1 i

3.13346480443810943083456607217317912119032934e1 + 2.95608196205799292057050365582779301986233761e1 i

3.13346480443810943083456607217317912119032934e1 - 2.95608196205799292057050365582779301986233761e1 i

2.90817750959210109968040310442635538281079001e1 + 3.32023100986993798741935160733645735130055277e1 i

2.90817750959210109968040310442635538281079001e1 - 3.32023100986993798741935160733645735130055277e1 i

2.64286744719336217380573277198786137637120081e1 + 3.69257323931102109409703458952281986388612708e1 i

2.64286744719336217380573277198786137637120081e1 - 3.69257323931102109409703458952281986388612708e1 i

2.32862104795555920167683972699600499781443398e1 + 4.07650560663401808849420999420804720994094649e1 i

2.32862104795555920167683972699600499781443398e1 - 4.07650560663401808849420999420804720994094649e1 i

1.95069617422142682132598547575099387711076147e1 + 4.47788041160478981705971271905503678227647263e1 i

1.95069617422142682132598547575099387711076147e1 - 4.47788041160478981705971271905503678227647263e1 i

1.48094522019718918723066184711490992030165825e1 + 4.90847594686780159789355578610551429021963524e1 i

1.48094522019718918723066184711490992030165825e1 - 4.90847594686780159789355578610551429021963524e1 i

8.47521034836255528626822206993907104038434279e0 + 5.40039749298103365062230396247192372331109523e1 i

8.47521034836255528626822206993907104038434279e0 - 5.40039749298103365062230396247192372331109523e1 i

Figure 39: The Zakian complex nodes for n = 30.

We display the Zakian nodes in the complex plane for five values of n, ranging from

n = 20 to n = 60 in Figure 41.
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-1.19611070077168249961977137046486211793720410e16 + 6.91015997689619104399512096800264099511001979e16 i

-1.19611070077168249961977137046486211793720410e16 - 6.91015997689619104399512096800264099511001979e16 i

2.82616771939751403177137487506325341389227409e16 - 4.98105686531897035773548358441448899619536023e16 i

2.82616771939751403177137487506325341389227409e16 + 4.98105686531897035773548358441448899619536023e16 i

-2.90384944478885663628127085290197312325415641e16 + 2.46687098279895399901164408064862799164591507e16 i

-2.90384944478885663628127085290197312325415641e16 - 2.46687098279895399901164408064862799164591507e16 i

1.93499271779553851009685529467615505990819984e16 - 6.92668692687610245581845796721693312993298966e15 i

1.93499271779553851009685529467615505990819984e16 + 6.92668692687610245581845796721693312993298966e15 i

-8.91477790208767856374588313147479359235974378e15 - 2.79392175966367273848593719118056637724550410e14 i

-8.91477790208767856374588313147479359235974378e15 + 2.79392175966367273848593719118056637724550410e14 i

2.80417287265620509621426236929986114786376492e15 + 1.27415781969126828488288860093976412186711782e15 i

2.80417287265620509621426236929986114786376492e15 - 1.27415781969126828488288860093976412186711782e15 i

-5.51262518153053613470415362577599230445468660e14 - 6.25414273415075313235286303656540446220783398e14 i

-5.51262518153053613470415362577599230445468660e14 + 6.25414273415075313235286303656540446220783398e14 i

4.54784004443981084571791337085703252636302042e13 + 1.67197742076499693513410431013538354413117108e14 i

4.54784004443981084571791337085703252636302042e13 - 1.67197742076499693513410431013538354413117108e14 i

6.32297396192824551615611062500172304279089906e12 - 2.61362778765734559318676349294482211149169685e13 i

6.32297396192824551615611062500172304279089906e12 + 2.61362778765734559318676349294482211149169685e13 i

-2.15350175163308650156185879950446129941324433e12 + 2.08501822420984412391766795337979526714369315e12 i

-2.15350175163308650156185879950446129941324433e12 - 2.08501822420984412391766795337979526714369315e12 i

2.25353427227011612057418264199634473537204068e11 - 2.75547995211968873173901563621510333957222848e10 i

2.25353427227011612057418264199634473537204068e11 + 2.75547995211968873173901563621510333957222848e10 i

-8.59323262800736106379591541213455870715956412e9 - 6.44956838484793819635795472175320855649673668e9 i

-8.59323262800736106379591541213455870715956412e9 + 6.44956838484793819635795472175320855649673668e9 i

-4.44662827437447308827383730579984509505508684e6 + 2.76917647716677172069117421693700925625914946e8 i

-4.44662827437447308827383730579984509505508684e6 - 2.76917647716677172069117421693700925625914946e8 i

2.85686530099259549623213867571097978931745342e6 - 9.29033080737060129296001213286669491982151617e5 i

2.85686530099259549623213867571097978931745342e6 + 9.29033080737060129296001213286669491982151617e5 i

-1.51277010732754814357107982659367571818900245e2 - 7.24360502583308547743708762845776094848372000e3 i

-1.51277010732754814357107982659367571818900245e2 + 7.24360502583308547743708762845776094848372000e3 i

Figure 40: The Zakian complex weights for n = 30.

In the main paper we observe that the Zakian algorithm (Z) is especially effective for

smooth functions. Unfortunately, that special focus comes at a penalty, because the Zakian

algorithm tends to perform poorly for non-smooth functions. We illustrate this sharply

diverging performance in Figure 42. For comparison, we show results for the algorithms G, E
and T together with Z in Figure 42. For the smooth function f1 ≡ sin(t), Zakian produces

far better accuracy than any of the other algorithms, but for the non-smooth function f2,

Zakian performs worse than the other algorithms.

We also exhibit this diverging performance by considering inversions of different functions

only for Z. In Figure 43 we show the error performance of Z for the two smooth functions

f9 and f3, which correspond to the transforms that Z inverts the best, versus the two non-
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Figure 41: The nodes of Zakian (Z) for n = 20, 30, 40, 50, 60.

smooth functions f2 and f4, which correspond to transforms that Z inverts the worst.
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√
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Figure 42: The two extremes of Zakian’s algorithm.
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Figure 43: The extremes of Zakian’s algorithm.
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9. Evaluating Established Algorithms

In this section we supplement Section 7 of the main paper, where we showed that the power

test functions can be used to evaluate other algorithms. In particular, we used the power

functions to evaluate Talbot’s algorithm (T ), the Euler algorithm (E), the Gaver-Stehfest

algorithm (G) and Zakian’s algorithm (Z). As shown by Abate and Whitt (2006), these

other algorithms all can be expressed in the unified framework (1) by appropriate node and

weight vectors α and ω. Thus the algorithms are characterized by these vectors α and ω,

which are specified in Abate and Whitt (2006). Here we present some additional detail.

9.1 Nodes and Weights

We start by giving more information about these other algorithms. We described Zakian’s

algorithm in the previous section. For example, Figure 41 shows the Zakian nodes for various

n. The algorithms T , E and G are described in Abate and Whitt (2006).

Figures 44 and 45 show the Talbot nodes for various n. Figures 46 and 47 show the nodes

of the Gaver-Stehfest (G), Euler (E), Talbot (T ) and Zakian (Z) algorithms for n = 30 in

the same plot. Figures 48 and 49 show the Talbot and Euler weights for n = 30.

-150 -100 -50
ReHΑL

10

20

30

40

50

60

70

ImHΑL

n=20

n=30

n=40

n=50

n=60

Figure 44: The nodes of Talbot (T ) for various n. The last few nodes for high n are not
shown.
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Figure 45: The entire range of the Talbot nodes for various n.
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Figure 46: The nodes of Gaver-Stehfest (G), Euler (E), Talbot (T ) and Zakian (Z) for
n = 30. The last two nodes of T , at (56π/5)(i + cot(14π/15)) and (58π/5)(i + cot(29π/30))
are not shown.
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Figure 47: All the nodes of the Gaver-Stehfest (G), Euler (E), Talbot (T ) and Zakian (Z)
for n = 30.
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3.25509582838007841616010409796973566340418569e4

1.51106571900048712806711917225254391493891027e4 + 6.06026059986219652370507043327928844958043595e4 i

-4.86770730215046319485101992546477763202185679e4 + 2.58877364259163819523143321915344193863414624e4 i

-2.99384175448156386944639984917936364411644951e4 - 3.32294147873374662660282920724409086738831200e4 i

1.85917568584221435003980435576517466756450831e4 - 2.76069824317462854316469562272054536293827672e4 i

2.13009180888419515085285936831089514039833311e4 + 7.71826614401200062831547561111958546436073560e3 i

-1.43419349690908332394898964098887659546393375e3 + 1.39811435573641275471171534375831732238511691e4 i

-7.82590996007218345235605437314433075552332778e3 + 1.13173832954897563935296789393198720556146274e3 i

-1.52463412969585716743694237772996376247892229e3 - 3.70928921218008889694699423853608123928479081e3 i

1.46288781570624110683156531346513437045140800e3 - 1.08226649105411038451345000352403423053202639e3 i

5.66176985788079650645966104556737723976757649e2 + 4.63649768927811872234861303997686475472251975e2 i

-1.09269144015688774359977330038008218311538053e2 + 2.33508362383850773827330791519948371622336162e2 i

-7.70381813691551500445033973311886328173638736e1 - 1.46768173055997074910529973998355235278214536e1 i

-1.25782591231270483200063578812453153207050920e0 - 2.01906650876328610337480682555318945648347952e1 i

4.11431879677159765335344870829689000777801020e0 - 1.33558853387101327990102690072754558294893351e0 i

4.00000000000000000000000000000000000000000000e-1 + 6.28318530717958647692528676655900576839433880e-1 i

-6.77726615261110788331491016691701969237929446e-2 + 7.28462794468055965707978472174725497849057342e-2 i

-8.64967044374482473294324192612359186525155580e-3 - 4.64765535377239337651689943954476160126659027e-3 i

1.56068108910999024124543187440389186741123139e-4 - 6.52320853621824356842016512399638197369351131e-4 i

2.90046837237078481112254920465093802128884343e-5 - 7.42074632164382304452874611977165812800536525e-7 i

1.99652866533243689754398467406208838680919082e-7 + 6.72805617365432550696860596646483082131007119e-7 i

-6.74380619552938816602872234038384012118414977e-9 + 4.17328434264709317965458255439941142958172398e-9 i

-2.34433100130619613941414707744196580894541977e-11 - 2.17441939777738696274602983820253351019522884e-11 i

1.37819009340326527821358683247252767449107578e-14 - 2.67700022095979265499900953060898158311275642e-14 i

3.20236436867707786781551184817779550489943042e-18 + 6.46067232004637689533943990478344375835260475e-19 i

9.34046153545159597001968615361755333169010662e-25 + 1.13991238415254219035455483558230729129472247e-23 i

-9.42798794794905794254603656127467129359498022e-32 + 3.63046978611772777610535491623211952842728701e-32 i

-3.57342331313026855182704805169930016549475071e-45 - 4.61475455595475465428611931487755359119222216e-45 i

2.14776405051308980691897977765435390915282351e-71 - 3.04350454218261916322519072908430460667195271e-71 i

2.86889736450694453760188977841240094622214019e-149 + 9.21139863842759136712884894166605210811283056e-150 i

Figure 48: The Talbot complex weights for n = 30.
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Figure 49: The Euler real weights for n = 30.
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9.2 Scoring the Algorithms with Power Test Functions

We now turn to evaluating the algorithms using the power test functions. In order to see how

well these inversion algorithms perform in the inversion of power functions, we numerically

identify the set of powers p for which the power relation (3) holds to within a small specified

error ε, and the complementary set where it is violated. For that purpose, let p+
ε (n) to be

the smallest nonnegative number p for which the pth power condition is violated by at least

a small positive number ε,

p+
ε (n) ≡ min{p ≥ 0 :

∣∣∣∣∣<
{

n∑

k=1

Γ(p + 1)

αp+1
k

ωk

}
− 1

∣∣∣∣∣ > ε} . (8)

Similarly, let

p−ε (n) ≡ max{p ≤ 0 :

∣∣∣∣∣<
{

n∑

k=1

Γ(p + 1)

αp+1
k

ωk

}
− 1

∣∣∣∣∣ > ε} . (9)

We call these functions of n, p+
ε (n) and p−ε (n), the positive power threshold and the negative

power threshold, respectively. As candidate powers p, we consider all numbers k/2, −200 ≤
k ≤ 200. As mentioned in Section 1, for p ≤ −1, the powers correspond to psudofunctions,

as discussed in Sections 12-14 of Doetsch (1974) and the Appendix there, and possibly to

asymptotic behavior for large t, as characterized by Heaviside’s theorem on p. 254 of Doetsch

(1974). We will show that these algorithms, with the exception of Zakian, tend to satisfy

the power relations for negative powers.

Thus the range (p−ε (n), p+
ε (n)) is the smallest contiguous interval of p among half powers

for which the pth power relation is satisfied within ε. In Figure 50 we show p+
ε (n) and p−ε (n)

for the four algorithms G, E , T and Z for 2 ≤ n ≤ 40 and ε = 0.05. We obtain the points

shown by fixing n and evaluating the power conditions numerically. For p ≥ 0, the points to

the right and under each curve meet the power conditions within ε, while the points to the

left and over do not. Similarly, for p ≤ 0, the points to the right and over each curve meet

the power conditions within ε, while the points to the left and over do not.

The single most striking observation from Figure 50 is that the positive and negative

power thresholds p+
ε (n) and p−ε (n) are linear in n, demonstrating consistent regular behavior

as n changes. Moreover, for p ≥ 0, all four existing algorithms meet the first few power

conditions within ε, although they vary widely in how many they meet. Figure 50 shows

that Euler performs slightly better than Gaver-Stehfest and that Talbot performs much

better than either of them, which is consistent with extensive experience, including numerical

inversion examples here in Section 10.
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Table 4: The positive power threshold p+
ε (n) = cn ·n+cε · log10(ε)+c for different algorithms

Algorithm cn cε c

Gaver-Stehfest 0.475 0.794 0.239

Euler 0.701 2.08 −0.523

Talbot 1.39 0.474 −0.174

Zakian’s algorithm is the best for p ≥ 0, which translates into the spectacular inversion

for f1 shown in Sections 8 and 10. On the other hand, for p < 0, Zakian’s algorithm does

not satisfy any power conditions; p−ε (n) = 0 for all n. In contrast, the Gaver-Stehfest, Euler

and Talbot algorithms do meet some power conditions within ε for p < 0 with the same

ranking as for p ≥ 0. Figure 50 helps explain why the Zakian algorithm is fundamentally

different from the other algorithms. The Zakian algorithm evidently is highly tuned for

smooth functions (i.e., analytic functions, with derivatives of all orders) at the expense of

non-smooth functions.

We also observed that when p /∈ (p−ε (n), p+
ε (n)), the pth power conditions rapidly diverge

from 1. Further analysis indicates that the lines in Figure 50 have additional regularity as

we change the error tolerance ε. That is illustrated by Figures 51, 52 and 53, which plots

p+
ε (n) and p−ε (n) as functions of ε for each algorithm. Our experiments lead us to conclude

that the power thresholds are approximately linear in the two variables n and log10(ε). The

positive power threshold p+
ε (n) has approximately the linear formula

p+
ε (n) ≈ cn · n + cε · log10(ε) + c , (10)

where the three parameters cn, cε and c depend on the algorithm, as indicated in Table 4.

A similar, but less precise, linear relation holds for the negative power threshold, as shown

in Table 5. We note that for Euler and Talbot, the slope cε of the negative power threshold

p−ε (n) does vary a little. In this case, the value quoted in table is the average of the 5 slightly

different slopes.
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Figure 50: Scoring the Gaver-Stehfest (G), Euler (E), Talbot (T ) and Zakian (Z) algorithms
using power test functions in half powers. The error tolerance is ε = 0.05.

Table 5: The negative power threshold p−ε (n) = cn ·n+cε · log10(ε)+c for different algorithms

Algorithm cn cε c

Gaver-Stehfest −0.095 −0.266 −1.81

Euler −0.341 −0.793 −1.16

Talbot −0.565 −1.06 −1.04
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Figure 51: p+
ε (n) and p−ε (n) for ε = 5×10−j, j = 1, 2, 3, 4, 5 for the Gaver-Stehfest algorithm.
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Figure 52: p+
ε (n) and p−ε (n) for ε = 5× 10−j, j = 1, 2, 3, 4, 5 for the Euler algorithm.
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Figure 53: p+
ε (n) and p−ε (n) for ε = 5× 10−j, j = 1, 2, 3, 4, 5 for the Talbot algorithm.
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10. Extensive Comparison of Performance

This section compares the performance of the established algorithms Gaver-Stehfest (G),

Euler (E), Talbot (T ), Zakian (Z) and our default power algorithm (N ∗,P∗)). We show

inversion errors for the transforms of Table 2 in Figures 54–73. We show both the absolute

error |fn(t) − f(t)| and the relative error |fn(t) − f(t)|/|f(t)|, both measured in log scale,

so that we are showing number of digits accuracy. In particular, we display the base-10

logarithms: log10 (|fn(t)− f(t)|) (absolute error) and log10 (|fn(t)− f(t)|/|f(t)|) (relative

error). Results for one function appear on each page. The absolute errors appear in the left

column, while the relative errors appear in the right column. We calculate the values f(t)

for a wide range of times (function arguments) t: small values (0.5 ≤ t ≤ 10), medium values

(10 ≤ t ≤ 100) and large values (100 ≤ t ≤ 1000). The time intervals increase moving down

on each page, so that there are 6 plots on each page for each function. We discuss these

numerical results in the next section.

For some transforms – f̂1, f̂3, f̂9, and f̂12 – Z performs much better than G, E ,T and

P∗, at least for small values of t. As a consequence, it is difficult to distinguish visually how

the other algorithms perform. For these cases (for small t), we show extra plots with the

inversions of G, E ,T and P∗ only (leaving out Z).

For the two transforms f̂3 and f̂7, we encounter difficulties because of the way Mathe-

matica handles complex functions involving powers of
√

s. The direct versions

f̂3(s) =
1√

s(s + 2)
and f̂7(s) =

e−1/s

√
s3

cause problems, so we label those f̂3w and f̂7w (w for “wrong”). We avoid those difficulties

by writing these transforms as

f̂3(s) =
1√

s
√

s + 2
and f̂7(s) =

e−1/s

s
√

s

We display inversion results for both cases. We discuss this issue in Section 12.
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Figure 54: Comparison of inversion for f1(t) = sin(t), f̂1(s) = 1
s2+1

with n = 30.
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Figure 55: Comparison of inversion for f1(t) = sin(t), f̂1(s) = 1
s2+1

with n = 60.
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Figure 56: Comparison of inversion for f2(t) = 1−e−t

2
√

πt3
, f̂2(s) = 1√

s+
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s+1
with n = 30.
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Figure 57: Comparison of inversion for f3(t) = e−tI0(t), when the transform is implemented
as f̂3(s) = 1√

s(s+2)
with n = 30.
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Figure 58: Comparison of inversion for f3(t) = e−tI0(t), f̂3(s) = 1√
s
√

s+2
with n = 30.
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Figure 59: Comparison of inversion for f3(t) = e−tI0(t), f̂3(s) = 1√
s
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s+2
with n = 60.
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Figure 60: Comparison of inversion for f4(t) = eterfc(
√

t), f̂4(s) = 1
s+
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s
with n = 30.
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Figure 61: Comparison of inversion for f5(t) = e−1/t√
πt3

, f̂5(s) = e−2
√

s with n = 30.
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Figure 62: Comparison of inversion for f6(t) = cos(1/2t)√
πt

, f̂6(s) = e−
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s cos(
√

s)√
s

with n = 30.
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Figure 63: Comparison of inversion for f7(t) = sin(2
√

t)√
π

when the transform is implemented

as f̂7(s) = e−1/s√
s3

with n = 30.
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Figure 64: Comparison of inversion for f7(t) = sin(2
√

t)√
π

, f̂7(s) = e−1/s

s
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s
with n = 30.
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Figure 65: Comparison of inversion for f8(t) = log(t) + γ, f̂8(s) = log(s)
s

with n = 30.
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Figure 66: Comparison of inversion for f9(t) = e−t, f̂9(s) = 1
s+1

with n = 30.
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Figure 67: Comparison of inversion for f9(t) = e−t, f̂9(s) = 1
s+1

with n = 60.
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Figure 68: Comparison of inversion for f10(t) = log(t)+γ
t

, f̂10(s) = 1
2
log2(s) with n = 30.
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Figure 69: Comparison of inversion for f11(t) = 6
t4

, f̂11(s) = s3 log(s) with n = 30.
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Figure 70: Comparison of inversion for f12(t) = cos(t), f̂12(s) = s
s2+1

with n = 30.
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Figure 71: Comparison of inversion for f12(t) = cos(t), f̂12(s) = s
s2+1

with n = 60.
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Figure 72: Comparison of inversion for f13(t) = f4(t)+
1√
t
, f̂13(s) = f̂4(s)+

Γ(1/2)√
s

with n = 30.
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Figure 73: Comparison of inversion for f14(t) = t1/4 + t7/4, f̂14(s) = Γ(5/4)

s5/4 + Γ(11/4)

s11/4 with
n = 30.
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11. Commentary

In this section we discuss the numerical results in Section 10. We applied 5 different numerical

inversion algorithms – T , E , G, Z, and P∗ – to the 14 different Laplace transforms with known

inverses displayed in Table 2.

We calculated the values f(t) for a wide range of times (function arguments) t: small

values (0.5 ≤ t ≤ 10), medium values (10 ≤ t ≤ 100) and large values (100 ≤ t ≤ 1000).

The time intervals increase moving down on each page, so that there are 6 plots on each

page for each function. We should point out that the function argument has no meaning

independent of the function itself. That is easy to see by considering the scaled function

fc(t) ≡ f(ct), t ≥ 0 , (11)

where c is a positive real number. Clearly the value of the function fc at t is the same as the

value of the function f at ct.

Perhaps the most important observation from the 14 tables is that the results are not

uniformly good. Indeed some of the results are horrendous. Moreover, in many cases, the

results strongly depend on the function argument t. That is immediately apparent from the

first function f1(t) ≡ sin (t). For f1, the inversion results – as measured by absolute error or

relative error – are useless for all algorithms for all sufficiently large t, in particular, for all

t ≥ 60. Essentially the same results are seen for the closely related function f12(t) ≡ cos (t).

On the positive side, for both of these functions the results are good for all suitably small t,

e.g., for t ≤ 4.

A similar, and more easily understood, story holds for the simple function f9(t) ≡ e−t.

For t ≥ 40, no algorithm produces a single significant digit: The relative errors satisfy

log10 {|fn(t)− f(t)|/|f(t)|} ≥ 0 for all 5 algorithms. This example is easy to understand,

because f9(t) rapidly approaches 0 as t increases; e.g., f9(40) ≈ 2.35 × 10−18. The first

conclusion to draw from these results is that numerical inversion should not be viewed as

a method that will be effective for all functions when applied blindly. Some care may be

needed.

On the positive side, note that all inversion algorithms with the exception of Zakian (Z)

are consistently effective, yielding at least a few significant digits for all times considered,

for 9 of the 14 transforms: f2, f3, f4, f5, f6, f8, f10, f13, and f14. The serious difficulties are

confined to f1, f7, f9, f11, and f12.
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First, we point out that f̂10 and f̂11 are not bonafide Laplace transforms, because the

transform integrals are not properly defined. (The function 1/tp is not integrable over the

interval (0, 1) for p ≥ 1.) Instead, f̂10 and f̂11 are pseudotransforms, as discussed in Sections

12-14 and the Appendix of Deutsch (1974). Thus we should not accept responsibility for

numerically inverting them correctly. We should take the good performance for f̂10 as an

added bonus. Moreover, the difficult function f11(t) ≡ 6t−4 is itself a power, but a negative

power, so it can be addressed by power algorithms. However, we report results only for the

default power set P∗, which contains no powers less than −1.

But there are still remaining issues with some of the bonafide transforms. At this point,

it is worth repeating a point made in Abate and Whitt (1992, 1995). In many applications,

functions of interest are known to have special structure, and that special structure can often

be used to advantage to make numerical inversion easier. In particular, we have emphasized

probability applications, where it is often of interest to compute probability cumulative

distribution functions (cdf’s) F (t) on the positive halfline, which are nondecreasing functions

with F (0) = 0 and limt→∞ F (t) = 1; i.e., cdf’s are monotone functions with 0 ≤ F (t) ≤ 1 for

all t. Equivalently, we can calculate complementary cdf’s (ccdf’s) F c(t) ≡ 1 − F (t), which

converge to 0 as t →∞.

In contrast, numerical inversion can be difficult with rapidly oscillating functions such as

hc(t) ≡ sin (ct), t ≥ 0 , (12)

which has associated Laplace transform

ĥc(s) =
c

s2 + c2
. (13)

For real s, we have

|ĥc(s)| ≤ 1

c
, (14)

so that |ĥc(s)| can be made arbitrarily small by making c suitably large (and making hc

rapidly oscillating).

These functions show the fundamental instability of the inverse operation: a small change

in any Laplace transform can produce a big change in its inverse function. To see that, let

f be a real-valued function with Laplace transform f̂ . Then let

fc(t) ≡ f(t) + hc(t), t ≥ 0 , (15)
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where hc is defined in (12). Correspondingly, let

f̂c(s) ≡ f̂(s) + ĥc(s) . (16)

As c increases f̂c approaches f̂ , but fc remains distant from f . Such difficulties with rapidly

oscillating functions are avoided if we restrict attention to monotone functions f .

Nevertheless, one of the functions causing difficulties here is the monotone function

f9(t) ≡ e−t. Indeed, it is a relatively simple ccdf. We have no difficulties for smaller t,

such as t = 1, but we do have difficulties for large t, when e−t itself can be extremely small.

Fortunately, that problem for large t for the exponential function is well understood. It is

easily addressed by scaling, as shown by Choudhury and Whitt (1997). Indeed, the expo-

nential function is treated in Example 4.1 of Choudhury and Whitt (1977). For that reason,

we evaluate the performance of the inversion algorithms for inverting f̂9 by focusing on the

single time t = 1. We conclude that the bad performance observed for t ≥ 60 in Figure 66

can be disregarded.

That leaves only the trigonometric functions. From the discussion above, we are not

surprised by the inversion problems encountered for the oscillating functions f1(t) ≡ sin (t),

f7(t) ≡ sin (2
√

t)/
√

π, f12(t) ≡ cos (t) for large t. They all involve sines and cosines. That

corresponds to considering the function hc for c = t and t = 1. Difficulties with the transforms

f̂1(s) ≡ 1/(1+s2) and f̂12(s) ≡ s/(1+s2) were noted by Abate and Valko (2004), because they

both have singularities off the real axis, in particular at +i and −i. Thus these transforms

fail to be in their class of “good” transforms F.
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12. Branch Cuts in Mathematica

There is a difficulty with computing half powers of complex s in Mathematica that can cause

difficulties in the numerical inversions of f̂3 and f̂7. Direct applications of Mathematica put

the branch cuts in the positive half plane. That is avoided by expressing

f̂3(s) ≡ 1√
s
√

s + 2
instead of f̂3w(s) ≡ 1√

s(s + 2)
(17)

and

f̂7(s) ≡ e−1/s

s
√

s
instead of f̂7w(s) ≡ e−1/s

√
s3

. (18)

We add the subscript w to indicate the natural but wrong form to use. We displayed results

for both the good and bad forms.

Figure 74 shows the real (left) and imaginary (right) parts of the transform f̂3(s) =

1√
s
√

s+2
. We can see that this transform has a branch cut on the left half of the real axis

from s = 0 to s = −2. In Figure 75 we see the transform of the same inverse when it

is implemented as f̂3w(s) = 1√
s(s+2)

. The transform f̂3w(s) has, in addition to the branch

cut from s = 0 to s = −2, another branch cut parallel to the imaginary axis along the

line −1 + ic, c ∈ (−∞,∞). As we can see in Figure 76, the additional branch cut of this

implementation of the transform of f3 intersects with the path of nodes prescribed by the

Talbot nodes, which explains why, as shown in Figure 57, Talbot’s algorithm does not work

well on f̂3w(s).
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In a similar vain, Figure 77 shows the real (left column) and imaginary (right column)

parts of the transform f̂7(s) = e−1/s

s
√

s
from two different viewpoints. This transform has a

branch cut that coincides with the left half of the real axis. In Figure 78 we see the transform

of the same inverse when it is implemented as f̂7w(s) = e−1/s√
s3

. The transform f̂7w(s) has 3

branch cuts at angles 2π/3 radians with each other, where one of them is the left half of the

real axis. As we can see in Figure 79, the 2 additional branch cuts of this implementation

of the transform of f7 intersect with the path of nodes prescribed by the nodes of Talbot,

Euler and Zakian, which explains why, as shown in Figure 63, the Talbot, Euler and Zakian

algorithms do not work well on f̂7w(s). We note that Zakian’s algorithm does not work even
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on f̂7(s), because the function f7 is not analytic around the origin.
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