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We identify interarrival-time and service-time distributions that yield tight upper and lower bounds
on the asymptotic decay rate of the steady-state waiting-time tail probability in the GI/GI/K queue,
given the first two moments of those underlying distributions plus alternative additional information.
We apply Tchebycheff systems after providing a concise review.
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1. Introduction

We consider the tail probability of the steady-state waiting
ime W , i.e., P(W > t), in the GI/GI/K queue, i.e., in the K -server
ueue with unlimited waiting room and service in order of arrival
y the first available server, where the interarrival times and
ervice times come from independent sequences of independent
nd identically distributed (i.i.d.) random variables distributed as
and V with general cumulative distribution functions (cdfs) F

and G. We are especially interested in exposing the performance
impact of the variability of these underlying cdfs F and G. To
describe the extent of the variability independent of the mean, we
let c2a and c2s be the squared coefficient of variation (scv, variance
divided by the square of the mean) of U and V .

We focus on the light-tailed case, where the service-time cdf
has finite moments of all orders. We then typically have

(W > t) ∼ αe−θW t as t → ∞, (1)

here f (t) ∼ g(t) as t → ∞ means that f (t)/g(t) → 1,
e.g., see [1]. Then we call θW the (asymptotic) decay rate. Under
regularity conditions, the decay rate θW in (1) is attained as the
unique positive real root of an equation involving the Laplace
transforms of U and V , e.g., f̂ (z) ≡

∫
∞

0 e−zt dF (t). In particular,
the equation for the decay rate is

f̂ (z)ĝ(−z) = 1. (2)
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In this light-tailed setting, we show that the theory of Tcheby-
cheff (T ) systems from [10], as used in [5,7–9,12,13], can be
applied to determine extremal models (yielding tight upper and
lower bounds) on the asymptotic decay rate θW above. We pro-
pose these extremal models as a way to provide heuristic set-
valued approximations for a variety of performance measures in
the challenging GI/GI/K model given partial information. In [4]
we provide evidence that this heuristic approach is effective for
the steady-state mean E[W ]. Here we start in Section 2 by giving
background on T systems. In Section 3 we elaborate on (2) and
obtain the extremal distributions for the decay rate.

2. Tchebycheff system foundations

To put the T system results in perspective, we start in
Section 2.1 by reviewing the classical moment problem, as in [15].
Then in Section 2.2 we specify the additional conditions needed
to get a T system and state the Markov–Krein theorem. In Sec-
tion 2.3 we develop convenient lemmas under smoothness con-
ditions.

2.1. The classical moment problem

Let ui, 0 ≤ i ≤ n, be n+1 continuous real-valued functions on
he closed interval [a, b]. The expectations of these functions are
ssumed to be known, and are called the moments mi, 0 ≤ i ≤ n.

The canonical example is ui(t) ≡ t i, 0 ≤ i ≤ n, the usual
moments. We want to draw conclusions about the unspecified
underlying probability measure P on [a, b] such that:

mi ≡ EP [ui] ≡

∫ b

ui dP, 0 ≤ i ≤ n. (3)

a
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We assume that u0(t) ≡ 1, a ≤ t ≤ b, and m0 ≡ 1, so that the
measure is necessarily a probability measure.

Let Pn be the set of all probability measures P on [a, b] with
n + 1 moments, assumed to be nonempty. Let Pn,k be the subset
of probability measures in Pn that have support on at most k
points. The following is a generalization of a standard result in
linear programming (LP), stating that the supremum (or infimum)
is attained at a basic feasible solution or an extreme point. (The
notion of extreme point extends to more general spaces; e.g., see
§III.6 of [10].)

Theorem 2.1 (A Version of the Classic Moment Problem, §2.1 of
[15]). In addition to the n + 1 functions ui introduced above, let
φ : [a, b] → R be another continuous real-valued function. Assume
that Pn is not empty. Then there exists P∗

∈ Pn,n+1 such that

sup {

∫ b

a
φ dP : P ∈ Pn} = sup {

∫ b

a
φ dP : P ∈ Pn,n+1} =

∫ b

a
φ dP∗.

(4)

The same result holds for the infimum.

Let σ (P) denote the cardinality of the support of P . Let P∗

U and
P∗

L denote upper and lower extremal distributions, yielding the
supremum and infimum in (4). Theorem 2.1 implies that there
exist extremal distributions with σ (P∗

U ) ≤ n+1 and σ (P∗

L ) ≤ n+1.

2.2. Tchebycheff systems and the Markov–Krein theorem

If we make additional assumptions about the functions ui, then
we can apply T systems to identify concrete extremal distribu-
tions P∗

U and P∗

L in (4); see the seminal book [10] and the review
papers [9,17].

2.2.1. Upper and lower principle representations.
We impose a regularity condition involving the moment space

Mn, i.e., on {(m1, . . . ,mn)} in Rn such that there exists P ∈ Pn
such that

∫ b
a ui dP = mi for all i. If (m1, . . . ,mn) is contained in

the boundary of Mn, then the probability measure is uniquely
determined. We rule out that case by assuming that (m1, . . . ,mn)
is contained in the interior of Mn.

To see what is possible, note that if σ (P) = k, then P is
specified by 2k parameters: the k atoms xi in [a, b] and the k
probabilities pi. Given the n + 1 constraints in (3), a solution P
to (4) must have 2k ≥ n + 1. When n is odd, we must have
σ (P) ≥ (n+1)/2. When n is even, we must have σ (P) ≥ 1+(n/2).
The final story under the T -system assumption is different in
these two cases. It is summarized in (5) of [5] and on p. 342 of [7].

The story (the conclusions, not the proof) is relatively simple
when n is even. Then, under the regularity conditions the ex-
tremal distributions have the minimum possible number, k =

1 + (n/2), of points in the support. But that leaves one extra
parameter. Then there is a one-parameter family of distribu-
tions satisfying all the constraints. Then upper (lower) extremal
distributions P∗

U and P∗

L (called upper and lower principal repre-
sentations in [10]), are the ones that attach mass to the upper
(lower) endpoints a (b) of the interval [a, b]. Given that additional
specification, the remaining number of unknowns matches the
number of constraints, so that the extremal distributions are
uniquely determined.

The story is more complicated when n is odd. Now there is a
unique distribution on (a, b) with the least number of points in
the support k = (n + 1)/2. That distribution turns out to be the
lower extremal distribution P∗

L . The upper extremal distribution
P∗

U has mass on both endpoints a and b. That leaves n − 1
unknowns. In fact, the remaining (n−1)/2 points inside the open

interval (a, b) are then uniquely determined.
2.2.2. The Markov–Krein theorem
The Markov–Krein theorem says that the description above

holds if certain collections of functions constitute a T system.
In [10], T system theory is first developed for continuous func-
tions on a compact interval in Chapters I–III and then extended
to unbounded intervals and discrete subsets in later chapters, but
a totally ordered set is needed. In this paper we consider the basic
case [a, b].

Definition 1 (T System). Consider the same set of n+1 continuous
real-valued functions {ui(t) : 0 ≤ i ≤ n} defined on [a, b]
introduced in Section 2.1. Assume that the moment vector lies in
the interior of the moment space. This set of functions constitutes
a T system if the (n+1)st-order determinant of the (n+1)×(n+1)
matrix formed by ui(tj), 0 ≤ i ≤ n and 0 ≤ j ≤ n, is strictly
positive for all a ≤ t0 < t1 < · · · < tn ≤ b.

Equivalently, except for an appropriate choice of sign, we
could instead require that every nontrivial real linear combina-
tion

∑n
i=0 aiui(t) of the n+1 functions (called a u-polynomial; see

§I.4 of [10]) possesses at most n distinct zeros in [a, b]. (Nontrivial
means that

∑n
i=0 a

2
i > 0.)

Theorem 2.2 (Markov–Krein, §III.1 of [10]). In the setting of
Theorem 2.1 extended by requiring that the moment vector is in the
interior of the moment space, if {u0, . . . , un} and {u0, . . . , un, φ} are
T systems on the interval [a, b], the upper and lower extremal dis-
tributions P∗

U and P∗

L described above uniquely attain the supremum
and infimum of the optimization problem in (4).

2.3. Convenient sufficient conditions for smooth functions: Wron-
skians

The major challenge for applications is showing that the two
sets of functions in Theorem 2.2 are indeed T systems. However,
there is a very tractable sufficient condition for suitably smooth
functions (having continuous derivatives of all relevant orders).
This sufficient condition is expressed using the Wronskian.

Definition 2 (Wronskian). Let u(j)
i (t) be the jth derivative of ui at

the argument t . The Wronskian of the n + 1 functions {ui(t) :

0 ≤ i ≤ n} is the determinant of the (n + 1) × (n + 1) matrix
{u(j)

i (t) : 0 ≤ i, j ≤ n} of the functions and their derivatives

Wn(ui : 0 ≤ i ≤ n) ≡ det(u(j)
i (t) : 0 ≤ i, j ≤ n). (5)

An example makes it clear. For z > 0, let w3 ≡ w(1, t, t2,
−e−zt ) be the Wronskian of the 3 + 1 = 4 indicated functions of
t , i.e., the determinant of the matrix (as a function of t)⎡⎢⎣1 t t2 −e−zt

0 1 2t ze−zt

0 0 2 −z2e−zt

0 0 0 z3e−zt

⎤⎥⎦
which clearly is 2z3e−zt > 0.

In order to verify the required T system properties, instead of
looking at n+1 functions at n+1 arguments, we look at the same
functions and their first n derivatives at a single argument. The
Wronskian is intimately related to extended complete T systems
or ECT systems, which is a special case of a T system.

Definition 3 (Complete T System, p. 1 of [10]). If each (ordered)
subset {ui(t) : 0 ≤ i ≤ m} for 1 ≤ m ≤ n of the T system of
n + 1 functions is itself a T system, then the T system is called a

complete T system or CT system or a Markov system.
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The classical CT system is the set of functions ui(t) ≡ t i, 0 ≤

i ≤ n. Then the determinant is the Vandermonde determinant

det(ui(tj) : 0 ≤ i, j ≤ m) =

∏
0≤i<j≤m

(tj − ti) for all 1 ≤ m ≤ n,

(6)

hich clearly is strictly positive for all a ≤ t0 < t1 < · · · < tm ≤

, 1 ≤ m ≤ n.
The direct definition of an extended T system in §I.2 of [10] is

omewhat complicated. Thus, we give an equivalent definition

efinition 4 (Extended T System, §I.2 of [10] and Theorem 1 of [18]).
n extended T system or ET system is characterized, except for
he sign, by the property that every nontrivial real linear combi-
ation

∑n
i=0 aiui(t) of the n+ 1 functions (called a u-polynomial;

ee §I.4 of [10]) possesses at most n zeros in [a, b], counting
ultiplicities.

The main point is that the definition of an ET system is more
estrictive than the definition of a T system; i.e., every ET system
s necessarily a T system. Completeness is defined the same for ET
ystems as for T systems. Hence every ECT system is necessarily
n CT system, which in turn is necessarily a T system.
It turns out that an ECT system can be characterized com-

letely by the Wronskian; see Definition I.2.4 on p. 6 and Theorem
I.1.1 on p. 376 of [10], Theorem 5 and Corollary 1 of [17], and
heorem 29 of [9].

heorem 2.3 (Wronskians and ECT Systems, p. 376 of [10]). Under
he smoothness condition, the system of n + 1 functions {ui : 0 ≤

≤ n} is an ECT system on [a, b], and thus necessarily a CT system,
f and only if the Wronskians wk of the first k+1 functions and their
irst k derivatives are strictly positive at all of its arguments in the
nterval [a, b] for all k, 0 ≤ k ≤ n.

For smooth functions, Theorem 2.3 tends to be easy to apply,
s illustrated by the example above. For one function in addition
o the standard moments, the following lemma applies.

emma 2.1. If ui(t) ≡ t i, 0 ≤ i ≤ n, and φ has n + 1 continuous
erivatives, then {u0(t), u1(t), . . . , un(t), φ(t)} is an ECT system if
nd only if the (n+ 1)st derivative of φ, φ(n+1)(t), is strictly positive
n [a, b].

roof. The triangular structure of the matrix of functions and
heir derivatives implies that the kth Wronskian takes the con-
tant value wk(t) = 1! × · · · × k!, 0 ≤ k ≤ n, while the last
ronskian takes the value wn(t)φ(n+1)(t). ■

In this paper we will consider only the limited class of ECT
ystems covered by the following lemma (where i, k and m are
ntegers).

emma 2.2 (Sufficient Conditions for this Paper). Consider three
rdered sets of continuous real-valued functions on the interval
0,M]: A1(m) ≡ {tk : 0 ≤ k ≤ m}, A2 ≡ {(−1)m+1e−zit : zi >

i+1 > 0 for all i} and A3 ≡ {ezit : 0 < zi < zi+1 for all i}.
et F be a finite ordered subset of A2

⋃
A3 (with the elements of

2 appearing first and the order within each set). For any m and
, 0 ≤ m < ∞ and 0 < M < ∞, the ordered set A1(m)

⋃
F

onstitutes an ECT system over [0,M] and thus a CT system over
0,M].

Before giving the proof, we give an example of an ordered
ubset of functions in A1(m)

⋃
F . For m = 2 and two elements

rom each of A2 and A3, the ordered subset is (1, t, t2, −e−z1t ,
−z2t z3t z4t
e , e , e ) where z1 > z2 > 0 and 0 < z3 < z4, so that
−z1 < −z2 < z3 < z4. Here m = 2, so (−1)m+1
= −1. Overall,

the exponential arguments are increasing as in (3.1) on p. 9 of [10]
or Example 6 of [17].

Proof. These special functions have derivatives of all orders.
Moreover, it is easy to evaluate the Wronskian. The first k deriva-
tives of t j are 0 when k ≥ j. Thus the first m Wronskians are
positive constants. The order (m + 1) determinant is a positive
constant times (−1)m+1e−s1t > 0. Then, by induction, all higher-
order determinants among the initial functions reduce to positive
constant multiple of the determinant of a matrix of exponential
functions. Finally, the determinant of the n×n matrix containing
elements exiyj , 1 ≤ i, j ≤ n, is strictly positive for all −∞ < x1 <

x2 < · · · < xn < +∞ and −∞ < y1 < y2 < · · · < yn < +∞; see
(3.1) in §I.3 on p. 9 of [10] and Example 6 of [17]. ■

3. Extremal models for the asymptotic decay rate

In Section 3.1, we provide technical background on the decay
rate for K = 1; in Section 3.2 we show that this approach also
applies to the GI/GI/K model for K > 1. In Section 3.3 we
obtain two-point extremal distributions given only the first two
moments of U and V and bounded intervals of support. Then
in Section 3.4 we obtain more useful (as shown in [4]) three-
point extremal distributions when we are also given the third
moment and values of the Laplace transform of U and V . We give
illustrative examples in Section 3.5. We discuss the extension to
unbounded support in Section 3.6.

3.1. Theory for the asymptotic decay rate with K = 1

To increase the level of generality for K = 1, instead of (1), we
can let θW be defined by the critical exponent in the Kingman–
Lundberg bound for the GI/GI/1 queue, as in §XIII.5 of [2], defined
by

θW ≡ inf {x ≥ 0 : P(W > t) ≤ e−xt , t ≥ 0}, (7)

so that large waiting times correspond to small values of θW . Un-
der regularity conditions, θW in (7) coincides with the asymptotic
decay rate studied in large-deviations theory, defined by

θW ≡ lim
x→∞

− log P(W > x)
x

. (8)

We assume that a strictly positive infimum exists in (7) and a
strictly positive limit exists in (8), which requires that the service-
time V must have a finite moment generating function E[ezV ] for
some z > 0. (We obtain θW = ∞ if P(V − U ≤ 0) = 1 and
thus P(W = 0) = 1.) Thus, we are considering the light-tail case
as in the discussion of exponential change of measure in Chapter
XIII in [2], large deviation limits in Corollary 1 in §1.2 of [6] and
approximations in [1].

Part of the appeal of this approach is that it extends directly to
K > 1, as we show in Section 3.2. Moreover, it has been observed
that the approximation P(W > t|W > 0) ≈ e−θW t is quite good
for K ≥ 1; see [14]. Indeed, for that reason, θW is displayed in the
tables there (with different scaling, i.e., with E[V ] = 1).

Under regularity conditions, the asymptotic decay rate θW in
(1), (7) or (8) is attained as the unique positive real root of equa-
tion (2) involving the Laplace transforms of U and V . Equivalently,
as in §XIII.1 of [2], κF (z)+ κG(−z) = 0, where κF (z) ≡ log (f̂ (z)) is
the cumulant generating function. (The function ĝ(−z) ≡ E[ezV ]

for z > 0 is the moment generating function (mgf).)
Given the simple structure in (2), the extremal result and alter-

native ones follow from the theory of T systems, as in Section 2.
To state the result, we impose some technical conditions.
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Assumption 1 (Finite Moment Generating Function). Assume that
there exists z∗, 0 < z∗

≤ ∞, such that the service-time cdf G has
a finite moment generating function ĝ(−z) =

∫
∞

0 ezx dG(x) for all
, 0 < z < z∗.

In general, we need to impose additional regularity conditions
o have the limit for the decay rate in (8) be well defined, as can
e seen from Corollary 1 and Proposition 2 in [6] and Theorems
.1, 5.5 and 5.3 in Chapter XIII in [2]. Instead of adding additional
ssumptions, we allow the decay rate to be defined by (7). It
oincides with (8) when the limit exists.
We still need extra conditions for (2) to have a solution; see

xample 5 in §3 and Theorem 5 in §7 of [1]. However, no extra
ondition is needed when G has support in [0,Ms], because then
[etV ] ≤ etMs for all t > 0, so that z∗

= ∞ in Assumption 1.

.2. Extension to the GI/GI/K model

As indicated in [1], the asymptotic decay rate also is well
efined for the more general GI/GI/K model. We have fixed
[U] = 1, but instead in [1] there is fixed E[V ] = 1. In (5)
f [1], with θW (K ) denoting the decay rate for the K -server model,
W (K ) = KθW (1), where U(K ) = U/K to keep ρ fixed. Since
we fix E[U] = 1, we get θW (K ) = θW (1) ≡ θW . (As a sanity
check, this can easily be verified for the P(W > t|W > 0) =

e−θW t in the M/M/K model; see Theorem 9.1 in §III.9 on p. 108
of [2].) However, we must adjust the service-time V to maintain
ρ = E[V ]/KE[U]. Thus, we leave U independent of K , but we let
V (K ) = KV . Thus the finite support of V (K ) becomes [0, ρKMs],
the pth moment of E[V (K )p] = K pE[V p

] and the Laplace trans-
forms are related by ĝV (K )(z) = ĝV (Kz). This implies that we can
apply the extremal distributions for K = 1 to directly obtain the
corresponding extremal distributions for K > 1: If V ∗(K ) is the
extremal random variable as a function of K , then V ∗(K ) = KV ∗.

In [1], it was observed that the extension to K > 1 in (5) there
was proved for the GI/PH/K by [11]. A continuity result implies
that result applies to the general GI/GI/K model.

Theorem 3.1 (Extension of Decay Rate to GI/GI/K ). If the decay
rate θW is well defined for the GI/GI/1 model with (U, V ) having
cdfs (F ,G) where E[U] = 1, then it is well defined in the associated
GI/GI/K model with (U, KV ) with the same cdf F and

θW (K ) = θW (1) ≡ θW for K > 1. (9)

Proof. Fix the interarrival-time cdf F and consider a sequence of
phase-type service-time {Gn : n ≥ 1} such that Gn is phase-type
for each n and Gn ⇒ G, where G is the given cdf, which is possible
because phase-type distributions are dense in the family of all
distributions. By [11], (9) holds for each n, as explained above. The
convergence in distribution implies the associated convergence
ĝn(z) → ĝ(z) for each z. Since the Laplace transform ĝ(z) is
continuous and strictly decreasing in the real variables z, (9) must
hold in the limit as well. ■

Remark 3.1. The GI/Ph/K model is special because P(V − U >
0) > 0, so that θW is always finite, but that is not the case for the
GI/GI/K model. However, if we consider such a general model
with infinite decay rate, then we will get an infinite limit as we
let the phase-type distribution approach the given distribution.

3.3. Two-Point extremal distributions given two moments

We now are able to present our main results. We first con-
sider the classical case in which we specify two moments. Let
P2(m,m2(c2 + 1),M) be the set of all cdfs with mean m, support
mM and second moment m2(c2 + 1), where c2 is the scv with
c2 + 1 < M < ∞. (The last property ensures that the set
P2(m,m2(c2 + 1),M) is non-empty.) The extremal distributions
for the decay rate will be the extremal distributions P∗

U and P∗

L
for T systems in Section 2.2.

In this classical setting, the extremal distributions P∗

U and P∗

L
re special two-point distributions. The set of two-point distribu-
ions is a one-dimensional parametric family. In particular, any
wo-point distribution with mean m, scv c2 and support mM has
robability mass c2/(c2 + (b−1)2) at mb, and mass (b−1)2/(c2 +

b − 1)2) on m(1 − c2/(b − 1)) for 1 + c2 ≤ b ≤ M .
Let subscripts a and s denote sets for the interarrival and

ervice times, respectively. Let F0 and Fu (G0 and Gu) be the
wo-point extremal interarrival-time (service-time) cdfs corre-
ponding to P∗

L and P∗

U , respectively, in the space Pa,2(1, c2a +

,Ma) (Ps,2(ρ, ρ2(c2s + 1),Ms)) from Section 2.2.1. (Recall our
onvention that E[U] = 1 and E[V ] = ρ. Hence, the support of V
s [0, ρMs].)

Consequently, F0 has probability mass c2a /(1 + c2a ) at 0 and
robability mass 1/(c2a + 1) at m(c2a + 1), while Fu has mass
2
a /(c

2
a + (Ma − 1)2) at the upper bound of the support, Ma, and

ass (Ma − 1)2/(c2a + (Ma − 1)2) on m(1 − c2a /(Ma − 1)).
We are especially interested in the map

W : Pa,2(1, 1 + c2a ,Ma) × Ps,2(ρ, ρ2(1 + c2s ),Ms) → R, (10)

here 0 < ρ < 1 and θW (F ,G) ≡ θW is the asymptotic decay rate
f the steady-state waiting time W (F ,G) with interarrival-time
df F ∈ Pa,2(1, 1+c2a ,Ma) and service-time cdf G ∈ Ps,2(ρ, ρ2(1+
2
s ),Ms). We also consider case in which one cdf is specified, in
hich case it need not have bounded support.

heorem 3.2 (Two-point Extremal Distributions for the Decay Rate).
et F0, Fu, G0 and Gu be the two-point extremal cdfs for the GI/GI/1
ueue defined above.
(a) For any specified G ∈ Ps,2(ρ, ρ2(c2s + 1)) satisfying

ssumption 1 such that there is a root z̄ to Eq. (2) for the Fu/G/1
odel (with service cdf G) such that 0 < z̄ < z∗, where z∗ is defined

n Assumption 1,

W (F0,G) ≤ θW (F ,G) ≤ θW (Fu,G) (11)

or all F ∈ Pa,2(1, c2a + 1,Ma).
(b) For any specified F ∈ Pa,2(1, (c2a + 1)),

W (F ,Gu) ≤ θW (F ,G) ≤ θW (F ,G0) (12)

or all G ∈ Ps,2(ρ, ρ2(c2s + 1),Ms)
(c) for all F ∈ Pa,2(1, c2a +1,Ma) and G ∈ Ps,2(ρ, ρ2(c2s +1),Ms),

W (F0,Gu) ≤ θW (F ,G) ≤ θW (Fu,G0). (13)

roof. We make extra conditions in part (a) to ensure that
quation (2) has a solution z̄ strictly less than the upper limit z∗,
ut no extra conditions are needed in parts (b) and (c) because
hen G has bounded support, implying that z∗

= +∞.
We apply (2) to see that order for the Laplace transforms

ranslates into order for θW , recalling that (i) (2) is equivalent to
ˆ(z) = 1/ĝ(−z), (ii) Laplace transforms are continuous strictly
ecreasing functions of a real variable argument and (iii) large
aiting times are associated with smaller θW . For part (a), we see
hat

ˆu(z) ≤ f̂ (z) ≤ f̂0(z) for z > 0. (14)

rom (2) and (14), we see that, for any ĝ , θW is maximized by f̂u
n (14). Hence, (2) holds for all F in Pa,2(1, c2a + 1,Ma) if it holds
or Fu.

To establish (b), we use

/ĝ (−z) ≤ 1/ĝ(−z) ≤ 1/ĝ (−z) for z > 0. (15)
u 0
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From (2) and (15), we see that, for any f̂ , θW is maximized by
/ĝ0(−z) in (15).
To justify all the inequalities, we can apply the T -system

theory working with bounded support sets, as in Section 2.2 and
§2 of [5]. To treat F , we apply Lemma 2.2 to show that {1, t, t2}
and {1, t, t2, −e−zt

} are T systems on [0,Ma] for any z > 0 and
Ma > 0; to treat G, we apply Lemma 2.2 again to show that
and {1, t, t2} and {1, t, t2, ezt} is a T -system on [0, ρMs] for any
z > 0 and Ms > 0. We obtain the extremal distributions from
Section 2.2.1 the case n = 2 in Section 2.2.1 or in (5) of [5]. ■

Based on Theorem 3.2, the overall extremal GI/GI/1 models
are thus (F0,Gu) and (Fu,G0). Our assumption that the distri-
butions have bounded support plays an important role. That is
evident from the following elementary proposition.

Proposition 3.1 (Limits as the Support Increases). Under the as-
sumptions of Theorem 3.2, for all F ∈ Pa,2(1, c2a + 1,Ma) and
G ∈ Ps,2(ρ, ρ2(c2s + 1),Ms),

θW (F ,Gu) → 0 as Ms → ∞, (16)

while

θW (Fu,G) → θW (F1,G) as Ma → ∞, (17)

where F1 is the cdf of the unit point mass on 1, associated with the
D/GI/1 model.

Remark 3.2 (The Decay Rates of Other Steady-State Distributions.).
Analogs of Theorem 3.2 (and the later Theorem 3.3) hold for
the steady-state continuous-time queue length and workload,
because there are simple relations among all these decay rates.
That follows from Theorem 6, Proposition 9 and Proposition 2
of [6]. For the workload, the decay rate is the same; for the queue
length, θQ = ĝ(−θW ).

Remark 3.3 (Comparison to the Mean). In the GI/GI/1 queues,
the extremal model (F0,Gu) in Theorem 3.2 yielding the smallest
decay rate coincides with the frequently conjectured upper bound
model for the mean E[W ], but the extremal model (Fu,G0) in
Theorem 3.2 yielding the largest decay rate does not coincide
with the lower bound for the mean; see [3].

3.4. Additional constraints

We now add additional constraints on the cdfs F and G. In
particular, we add a third moment and a value of the Laplace
transform. With (2) in mind, we now impose constraints on the
Laplace transform f̂ (z) at z = µa > 0 and on the reciprocal of the
mgf, 1/ĝ(−z), at z = µs, 0 < µs < z∗, for z∗ in Assumption 1.

For the new extremal distributions, let Pa,2(1, c2a +1,ma,3, µa,
Ma) be the subset of F in Pa,2(1, c2a + 1,Ma) having specified
third moment ma,3 and Laplace transform value f̂ (µa). Since we
are working with the mgf ĝ(−z) for z > 0, let Ps,2(ρ, ρ2(c2s +

),ms,3, µs,Ms) be the subset of G in Ps,2(ρ, ρ2(c2s +1),Ms) having
pecified third moment ms,3 and mgf value ĝ(−µs) at µs for 0 <

s < z∗. (Recall that z∗
= +∞ if G has bounded support.)

Let FL and FU (GL and GU ) be the three-point extremal
nterarrival-time (service-time) cdfs corresponding to P∗

L and P∗

U ,
espectively, in the space Pa,2(1, c2a + 1,ma,3, µa,Ma) (Ps,2(ρ, ρ2

c2s + 1),ms,3, µs,Ms)) based on Section 2.2.1. (Recall our con-
ention that E[U] = 1 and E[V ] = ρ.) In particular, FL (FU ) is the
nique element of Pa,2(1, c2a+1,ma,3, µa,Ma) with support on the
et {0, x1, x2} (on the set {x1, x2,Ma}) for 0 < x1 < x2 < Ma, while
L (GU ) is the unique element of Ps,2(ρ, ρ2(c2s + 1),ms,3, µs,Ms)
ith support on the set {0, x̄1, x̄2} (on the set {x̄1, x̄2, ρMs}) for
< x̄1 < x̄2 < ρMs.
heorem 3.3 (Three-Point Extremal Distributions for the Decay
Rate). Let FL, FU ,GL and GU be the three-point extremal cdfs for the
GI/GI/1 queue defined above.

(a) For any F ∈ Pa,2(1, c2a + 1,ma,3, µa,Ma) with µa > 0
and G ∈ Ps,2(ρ, ρ2(c2s + 1)) satisfying Assumption 1, where Eq. (2)
holds for the FL/G/1 and FU/G/1 models (with service cdf G), the
unique positive solution of (2), θW (F ,G), is well defined. Moreover,
if µa ≥ θW , then

θW (FU ,G) ≤ θW (F ,G) ≤ θW (FL,G); (18)

if µa ≤ θW , then

θW (FL,G) ≤ θW (F ,G) ≤ θW (FU ,G). (19)

(b) For any F ∈ Pa,2(1, c2a + 1) and G ∈ Ps,2(ρ, ρ2(c2s +

1),ms,3, µs,Ms), the unique positive solution of (2), θW (F ,G), is well
defined. Moreover, if µs ≤ θW , then

θW (F ,GU ) ≤ θW (F ,G) ≤ θW (F ,GL); (20)

if θW < µs < z∗, then

θW (F ,GL) ≤ θW (F ,G) ≤ θW (F ,GU ). (21)

(c) As a consequence, for all F ∈ Pa,2(1, c2a +1,ma,3, µa,Ma)with
µa > 0 and G ∈ Ps,2(ρ, ρ2(c2s + 1),ms,3, µs,Ms) with µs > 0, the
unique positive solution of (2), θW (F ,G), is well defined. Moreover,
for all (F ,G) in these sets, the following four pairs of lower and upper
bounds for θW (F ,G) are valid:

(i) θW (FL,GU ) ≤ θW (F ,G) ≤ θW (FU ,GL) if µs, µs ≤ θW

(ii) θW (FU ,GU ) ≤ θW (F ,G) ≤ θW (FL,GL) if µs ≤ θW ≤ µa (22)
(iii) θW (FU ,GL) ≤ θW (F ,G) ≤ θW (FL,GU ) if θW ≤ µs, µa, µs < z∗

(iv) θW (FL,GL) ≤ θW (F ,G) ≤ θW (FU ,GU ) if µa ≤ θW ≤ µs < z∗.

(d) The bounds on θW get tighter as µa and µs move closer to
θW (F ,G). The bounds coincide with θW when µa = θW in (a) and
µs = θW in (b).

Proof. The proof is essentially the same as for Theorem 3.2,
but now we have n = 4 for (a) and (b) instead of n = 2 in
Section 2.2.1 and (5) of [5]. As before, we apply the T -system
theory from Section 2, but care is needed with the sign of the
exponential arguments when we apply Lemma 2.2. To treat F ,
we apply Lemma 2.2 to show, first, that {1, t, t2, t3, e−µat} is a
T system on [0,Ma] for all µa > 0. (Recall that m = 3 now,
so that (−1)m+1

= 1.) But we also need to consider the set
{1, t, t2, t3, e−µat , e−zt

}. For this second collection of functions,
we require that −µa < −z or µa > z > 0. If instead z >

µa > 0, then the set of functions becomes a T system if we
change the order of the last two functions. But changing the order
of two adjacent columns of a square matrix causes the sign of
the determinant to change. That means that the supremum and
infimum get switched.

For part (a), we see that all possible cases for F are covered by
the two cases µa > z > 0 and z > µa > 0. Hence, if the decay
rate θW is well defined for the two models FL/G/1 and FU/G/1
models, it is well defined for all F with the given constraints. The
we get (18) and (19) in the two cases.

To treat G in part (b), the root θW is always well defined
because G has bounded support. We apply Lemma 2.2 to show,
first, that {1, t, t2, t3, eµst} is a T system on [0, ρMs] for all µs > 0,
but then we also need to consider the set {1, t, t2, t3, eµst , ezt}. For
this second collection of functions, we require that µs < z < z∗. If
instead 0 < z < µs, then the set of functions becomes a T system

if we change the order of the last two functions. But changing the
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order of two adjacent columns of a square matrix causes the sign
of the determinant to change. That means that the supremum
and infimum get switched. For G, the order also gets switched
when we consider 1/ĝ(−z) instead of ĝ(−z). Then combine the
conclusions above.

Finally, part (c) is obtained by combining (a) and (b), while (d)
follows easily from (2). ■

3.5. Illustrative examples

We now illustrate Theorems 3.2 (c) and 3.3(c) (i) by showing
how the extremal models perform for the steady-state mean EW .
In doing so, we are providing a small sample from our companion
study [4] to which we refer for more details and examples. We
emphasize that we have not shown that the extremal models for
the decay rate θW necessarily determine associated bounds for
the mean EW . Nevertheless, our study indicates that we obtain
useful estimates of the intervals of likely values for the mean EW .

Table 1 shows the mean steady-state waiting time EW along
ith the decay rate in four base models: H2/H2/1 with c2a = c2s =

.0, E2/E2/1 with c2a = c2s = 0.5, E2/H2/1 with c2a = 0.5, c2s = 4.0,
nd H2/E2/1 with c2a = 4.0, c2s = 0.5, all with ρ = 0.7. The
hird parameter of the H2 distribution is specified by stipulating
alanced means as in (3.7) on p. 137 of [16]. For each model, the
xact values are shown in the middle columns of Table 1.
Theorem 3.3(c) requires specification of µa and µs. Consistent

ith case (i), we let them be θW/20. The lower-bound extremal
odel is then FU/GL, while the upper-bound extremal model is

hen FL/GU . The decay rates are shown below the mean in each
ase.
The outer columns of Table 1 refer to bounds based only on

he first two moments of F and G; see §2 of [3]. First LB is the
stablished tight lower bound, while UB is the conjectured tight
pper bound, which is the limit of EW (F0,Gu) as the upper limit

of support Ms approaches infinity. The mean values EW for the
extremal models Fu/G0 and F0/Gu based on Theorem 3.2 require
specification of the upper limits of support Ma for F and Ms for
G. The specific values used were M = 39.9 for c2 = 4 and 4.5 for
c2 = 0.5. These were chosen so that

P(V/EV > Ms) ≈ e−θVMs = ϵ, (23)

where θV is the decay rate of the distribution of V and ϵ = 0.001.
In summary, Table 1 shows that the extremal models FU/GL

and FL/GU obtained from Theorem 3.3(c) (i) with judiciously
chosen parameters provide a reasonably short range for the mean
EW , whereas the Fu/G0 and F0/Gu models from Theorem 3.2 do
not.

Table 1
Comparing bounds and approximations for the steady-state mean E[W ] using
Theorems 3.2(c) and 3.3(c) (i), starting with the base models H2/H2/1 with
c2a = c2s = 4.0, E2/E2/1 with c2a = c2s = 0.5, H2/E2/1 with c2a = 4.0, c2s = 0.5
nd E2/H2/1 with c2a = 0.5, c2s = 4.0, all with ρ = 0.7.

LB Fu/G0 FU/GL Exact FL/GU F0/Gu UB

c2a = 4.0, c2s = 4.0 2.92 4.30 6.12 6.61 6.73 8.39 8.44
decay rates 0.190 0.107 0.106 0.106 0.075
c2a = 0.5, c2s = 0.5 0.058 0.470 0.704 0.725 0.729 0.982 1.017
decay rates 2.002 0.865 0.857 0.852 0.631
c2a = 0.5, c2s = 4.0 2.92 2.92 3.51 3.56 3.68 3.85 3.88
decay rates 0.226 0.155 0.153 0.151 0.097
c2a = 4.0, c2s = 0.5 0.058 0.342 3.06 3.37 3.63 5.53 5.58
decay rates 2.417 0.286 0.260 0.243 0.165
3.6. Extending the extremal models to unbounded support

The T -system theory and the Markov–Krein theorem extend to
unbounded support intervals as shown by [10] and as indicated
in [5] and [7]. The extension is easy if the extremal distribution
places no mass on the upper endpoint. Then the same extremal
distribution holds for all larger support bounds, including the
unbounded interval [0, ∞).

First, in the setting of the two-point extremal distributions in
Theorem 3.2, the extremal cdfs F0 and G0 have support on {0, x}
for appropriate x and so remain valid if we increase Ma and Ms.
(The x depends on the cdf.)

Similarly, in the setting of the three-point extremal distribu-
tions in Theorem 3.2, the extremal cdfs FL and GL have support
on {0, x1, x2} for appropriate x1 and x2 and so remain valid if we
increase Ma and Ms. (Again, the points x1 and x2 depend on the
cdf.)

Consequently, we need to make no adjustments for truncation
provided we use the following special case of (22):

θW (FL,GL) ≤ θW (F ,G) for µa ≤ θW ≤ µs < z∗

θW (FL,GL) ≥ θW (F ,G) for µs ≤ θW ≤ µa. (24)

This recipe also eliminates the need to consider multiple cases.
We state the result formally in the following corollary. To

simplify, we make the following stronger assumption.

Assumption 2 (Uniformly Good cdf G). In addition to
Assumption 1, assume that, for the service-time cdf G, Eq. (2) has
a finite solution for all F ∈ Pa,2(1, c2a + 1).

Note that Assumption 2 is satisfied by the M , Hk and Ek distri-
butions considered here and many others, but we need to avoid
pathological examples like Example 5 of [1].

Corollary 3.1 (Extension to Unbounded Support). Consider the set-
ting of Theorem 3.3 extended by allowing unbounded support, i.e.,
Ma = Ms = ∞.

(a) For any G ∈ Ps,2(ρ, ρ2(c2s + 1)) satisfying Assumption 2, the
decay rate θW (F ,G) is well defined as the unique positive solution of
(2). Moreover, if µa ≤ θW , then

θW (FL,G) ≤ θW (F ,G) (25)

for all F ∈ Pa,2(1, c2a + 1,ma,3, µa).
(b) For any G ∈ Ps,2(ρ, ρ2(c2s + 1),ms,3, µs) satisfying

Assumption 2, the decay rate θW (F ,G) is well defined as the unique
positive solution of (2). Moreover, if θW ≤ µs < z∗, then

θW (F ,GL) ≥ θW (F ,G) (26)

for all F ∈ Pa,2(1, c2a + 1).
(c) For all (F ,G) such that Assumption 2 holds, the decay rate

θW (F ,G) is well defined as the unique positive solution of (2) and
(24) holds.
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