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Two decompositions are established for the probability transition function of the queue
length process in the /M /1 queue by a simple probabilistic argument. The transition
function is expressed in terms of a zero-avoiding probability and a transition probability to
zero in two different ways. As a consequence, the M /M /1 transition function can be
represented as a positive linear combination of convolutions of the busy-period density.
These relations provide insight into the transient behavior and facilitate establishing related
results, such as inequalities and asymptotic behavior.
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1. Imtroduction

Let Q(t) represent the number in system at time ¢ in an M/M /1 queue with
service rate 1 and arrival rate p, 0 <p <. Let F;(t) be the transition probabil-

1ty

Py (1) =P(Q(t) =il Q(0) =i). (1)
We wish to express P () in terms of more elementary building blocks. In
particular, as we and many others have done before (see pp. 5-17 of Prabhn
[16], Baccelli and Massey [7], p. 163 of Abate and Whitt [2] and p. 341 of Abate

and Whitt [3]), we use related unrestricted and absorbing processes. In section 2
we provide background and in section 3 we establish two decompositions, i.e.,
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two representations of P‘-_,-(t) in terms of the probability transition functions of
the unrestricted and absorbing processes. In the remaining sections we deduce
consequences of the decompositions and establish related results. Sections 4 and
5 contain new representations and inequalities, while section 6 describes the
asymptotic behavior as ¢ — ., In section 6 we include a description of the
asymptotic behavior with a general geometric initial distribution. As noted by
Massey [15], this is interesting because it shows that the relaxation time
parameter actually depends on the initial distribution, even though it does not
for the initial distributions with compact support.

2. Background

The unrestricted process, say X(t), is a birth-and-death process on all the
integers with birth rate p and death rate 1. Let its transition probability be

U._;(t) =P(X(t) =il X(0) =i). (2)

We are justified in writing U;_(¢) as a function of j —i because X(¢) is spatially
homogeneous. It is well known that U, () =p’U_,(t) and

U_(t)=p™"? e‘(”")‘I-(ZJEt), (3)

where I, (t) is the modified Bessel function; see p. 377 of Abramowitz and
Stegun [6] and p. 9 of Prabhu [16].

The absorbing process, say °Q(t), is the queue length process Q(¢) modified to
be absorbing in state 0. Let its transition probability be

0 . .

°P,(1) =P('Q(1) =i1°Q(0) =i). @
For i, j>0,°P, 1) is also called the zero-avoiding transition probability or the
busy period transition probability, because

"P(1)=P(Q(1)=j, inf {O(s)}>01Q(0)=i). - (5)

It is well known that the zero-avoiding probabilities can be expressed in terms of
the transition probabilities of the unrestricted process by

OP(t) =U_i(t) —p7U_(;,5(2)- (6)

Formula (6) was first obtained by Bailey [8] by transform inversion. A probabilis-
tic derivation was provided by (1.63) of Prabhu [16]. A related probabilistic
derivation is theorem 3 of Baccelli and Massey [7].

To put our new results in perspective, we describe some of our previous
results, In theorem 4.3 of [2] we expressed the Laplace transform P {(s) of P,(t)
in terms of the Laplace transform Poj(s) of the transition probabxhty from 0,
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Py (t), and the Laplace transform foi(s) of the density f,(¢) of the first passage
time from 0 to i, i.e.,

}sij(s) = Poi(5) /foi(s)- (7)
Moreover, in corollary 4.22 of [2] we showed that the transition probabilities

from 0 have a relatively simple expression in terms of the M /M /1 busy-period
cdf, ie.,

Py;(t) =p’F(t) —p" " 'Fy15(2), (8)

where Fj,(¢) is the cdf of the first passage time from j to 0, which is just the
J-fold convolution of the busy-period cdf. Of course, if p > 1, then F}D(t) is a
defective cdf. The density f;,(¢) is directly related to U_,(¢) by

Fio(t)=(i/)U_2); (9)
see (1.65) of [16]. Unfortunately, however, (7) does not seem so useful because
Folls) is complicated. (We do know that f,,(s) = 1/q,(—s), where g,(x) is the ith
orthogonal polynomial in the spectral representation; see p. 378 of [13] and

theorem 8.1 of [3].) Relation (8) is very useful though, and we obtain a new
proof via the decompositions; see remark 6 below.

3. The decompositions

- Now we establish decompositions that express P, j(t) directly in terms of a
zero-avoiding transition probability and a transition probability to 0. We focus
on P, (t), because

n n+k(t) =p Pn+k n(t) and OP n+k(t) ( ) n+k n(t) (10)

by reversibility. (For p > 1, consider the finite state space model on the integers
from 0 to N, so that there is a proper limiting distribution, and then let N — oo,
For the zero-avoiding probabilities, let the birth rate in state 0 approach 0 in the
original model, so that P;(¢) approaches °P,(¢).) By (3), (6), (8) and (9), the two
components are relatively tractable. It is significant that we establish our main
decomposition result by a simple probabilistic argument.

THEOREM 1
For all ¢t > 0 and all mtegcrs k>0and n>0,

(@) P n(t) ! n(t) +p"Popik O(t)
() Pk n(t) Py ks, ni1(t) F P " Popirn O(t)

Proof
(a) Partition the event whose probability we are computing into two subsets,
one in which 0 is never hit and the other in which it is. Further partition the
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event in which 0 is hit according to the first time that it is hit. Hence, we have

B, ixa(t) =P sin(t) + Frarn(t) * Pon(2), (11)

where * denotes convolution. Next note that Py, (t) =p"P,(¢) by (10), f, ., o(t)
= fan+r.(t) and, conditioning on the first visit to n,

Py iieoft) =Fonana(2) * Poo(t). (12)

(b) Now assume that Q(¢) is defined in terms of the unrestricted process
X(z) by imposing an impenetrable barrier at 0, as on p. 11 of [16]. Then partition
the event whose probability we are computing into two subsets, one in which 0 is
hit and there is a potential departure before the next arrival, and the other the
complement. The time such a potential departure first occurs has the same
distribution as the first passage time from »n + k + 1 to 0. The transition from
n+k to n with this potential departure not occurring has the probability
DP,, +k.|;1,,,(t). Hence

Priin(t) =Piri1nei{8) + Farraro(t) * Pou(2)- (13)
The rest follows as for part (a). O

Remarks

(1) Part (a) of theorem 1 seems to be new, but a relation equivalent to part
(b) appears in (2.1.10) on p. 17 of Conolly [10] with a different proof. A relation
equivalent to part (a) has been derived independently by T. Kissinger (private
communication). These equivalent relations are in terms of the unrestricted
process instead of the zero-avoiding probabilities, but are connected by (6).

(2) Theorem 1 might lead us to conjecture that

Pn+k,n(t) =0Pn+k+j,n+j(t) +pn 2n+j,0(t)

for j= —1 or j = +2, but these are not valid. _

(3) Theorem 1 seems to be useful primarily for providing structural insight.
From theorem 1 and (3), (6), (8) and (10), we obtain expressions in terms of the
modified Bessel functions such as on pp. 82-83 of Cohen [9], but there are
differences. It does not seem easy to relate the results. For numerical calcula-
tions, we would use the trigonometric integral representations, as indicated in
f4]. It is possible to deduce theorem 1 from the trigonometric integral represen-
tations, but we do not have an easy proof. [T

4. Consequences: representations and inequalities

Theorem 1 is applied in Abate and Whitt [5] to help explain the shape of
P, (t). In particular, contrary to the conjecture on p. 171 of [2}, it is shown
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that the derivative P, ,, (¢} can have up to three zeros. Now we deduce several
other sequences of theorem 1.

COROLLARY 1
For all ¢ > 0 and all integers k>0 and n >0,

(a)  Pro(t) = Prr1,o(t) ="Prsya(t) =Frsro(t)
=U_,(t) —pU_g1n(t)
(k+1)
Tt
(b) °Prsksrnsrlt) —"Pok, n(t) =" Paniro(t) = Pansrr10(t)]
[0P2n+k+1 ()] =» "fonsk+1,0(2) >0,
©)  Prvin(t) = Posisrnei(t) =p"Ponsrr1,0(t) = 0" Popiganolt),
(d) | Pyn(t) = Prikarnaa(t) >0if p <1

U_gean(t) > 0.

Proof

For the first relation in part (a), let » =0 in theorem 1(b). For the second
relation in (a), use first principles: To go from % + 1 to 0 for the first time, you
must go to 1 without hitting 0 and then make a transition to 0, as noted on p.
344 of [3]. For the third relation in (a), apply (6). For the final relation in (a), use
(3) and the Bessel function relation 5, (z) — I, ,(z) =k + 1)/2)I,, (2); see
9.6.26 of Abramowitz and Stegun [6]. For a general probabilistic treatment, see
p. 81- of Prabhu [17]. For the first relation in part (b), subtract (a8) from (b) in
theorem- 1. For the rest of (b), apply part (a) here. For (c), subtract (a) from (b)
in theorem 1 using n + 1 for » in (a). For (d), apply (¢). O

Remarks

(4) The relationship between Py o(t) — Py, 10(t) and U_, (1) —pU_, .(t) is
(2.1.8) of Conolly [10]. It also follows from (1.62) and (1.65) of Prabhu [16 Part
(d) can be established by a simple coupling argument after applying (9), as in
lemma 10.1 of [2]. Only P, , . (¢) < Py, (2) was stated there.

We obtain further relations by summing the equations in corollary 1.

COROLLARY 2
For all ¢t > 0 and all integers k> 0 and >0,

o

(a) Po(t)= ). Py(f)= Z fio(t) = Z [U—J(t) PU—(;+2)(t)]

f=k+1 j=k+1 J =k+1

(b) °P,.. ()= Z p [ Pyivrst 1(3)] = E P f2;+k+1 o(2)-
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Remark
(5) The first two relations in (a) also appear in (1.62) of [16].

We now show that the transition probability P, ., (¢} can be represented as a
positive linear combination of convolutions of the busy-period density.

COROLLARY 3
For all £ > 0 and all integers k>0 and n >0,

n-—1 o
P alt) = _Zopjféj+k-1,o(t) +p" X Fio(t)} |-
jm

Jj=2n+k+1

Proof
Combine theorem 1 (a) and corollary 2. O

Remark
(6) We can express F,,, ,(t) solely in terms of the unrestricted transition
probabilities by combining corollary 3 with (9).

Next we obtain a relation between the first-passage-time densities and their
cdf’s. We give two prooefs, one invoking corollary 2 and the other direct.

COROLLARY 4
For all ¢ > 0 and integers & >0,

i fio(£) = Fro(2) = pFri10(2)-

i=k+1

First proof of corollary 4
Apply (8), (10) and corollary 2(a).

Second proof of corollary 4
Sum the equations in the recursion for the integrals of the functions in the
recursion for f,(¢) in theorem 5.1 of [3]. O

Remark
(7) Formula (8) can be deduced from (9), corollary 2(a) and corollary 4, using
the direct proof of corollary 4. This helps explain the results in section 4.2 of [2].

It is intuitively obvious that P,,, (¢) and °P,,, () converge to-U_,(¢) as

n — oo, Bounds on the rate of convergence follow from (6) and theorem 1.
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COROLLARY 5
For all ¢ > 0 and all integers £ >0 and n > 0,

1] n —(n
(a) | Pn+k,n(t)'“U—k(t)|=P U_ansi(t) =p~ 00U, (1)
< min{p", p~*+R), '

(b) ]Pn+k,n(t) ‘—oPn+k,n(t)| =p"Py10() =P_("+k)Po,2n+k(t)
<min{p", p~"*9),

(€ 1Ppn(t) —U_i ()l =p"| Py o(t) = U_zary(0)

=p_(n+k)| P0,2n+k(t) - U2n+k(t)|
< min{pn, p—(n+k)}’

(d) U_{t)= in[OP2j+k+1,1(t)] = épjfzﬁkﬂ,o(t)-

j=0

Proof
For (a)-{c), apply (6) and theorem 1. For (d), apply corollary 2(b) and part {(a)
here, letting n > . 0O

Remark
- {8) Part (d) can be established by noting that the Laplace transform of Uy(¢)
is 20%z, /(1 — pz?); see (7.5), (7.7), (2.4) and (2.5) of [2].

5. More inequalities

Recall that a function f(x, y) of two real variables is 7P, (totally positive of
order 2) if f(xy, y,)f{x,, y1) <f(xy, y)f(x,, ¥,) whenever x, <x, and y, <y,,
and STP, (strictly TP,) if the inequality is strict; see Karlin [12]. The following
can be deduced from chapter 3 of [12].

THEOREM 2 | _ _
The functions P,(t), fio(t) = b(2), U(t), U_L1) and I(t) are STP, in i and ¢
for i>0and t>0. '

Proof

Let A be the infinitesimal generator matrix associated with the M/M /1
model, with 4;;,;=p, i>0, and 4;; =1, i>1 Let P,=I+v"'A be the
- probability transition matrix associated with the discrete-time Markov chain
(DTMC) constructed by uniformization (with v chosen suitably large). It is easy
to see that P, = P,(i, j) is TP, as a function of i and j for all suitably large »; cf.
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p. 113 of [12). Let x,(n) =P"(i, 0), i.e., the n-step probability of being in 0
starting in i for the DTMC. Since x,(0) =1 and x{0)=0for i> 1, x{n+ 1) =
L3 oP(, Dx{n) and P, is TP,, we deduce that x(n) is TP, in i and n. Since

Po(t) = T K(n, £)xio(n),

n=0

where K{n, t) is the Poisson kernel (#1)" e /n!, which is STP,, P,(t) is STP,
as well. We treat f,,(¢) essentially the same way, using the associated or lossy
infinitesimal generator matrix obtained by deleting the first row and column
from A; cf. section 10 of [3]. By (3) and (9), the STP, property for f,(¢) carries’
over to U(t), U_(t) and I{¢) too. O

We apply theorem 2 to deduce a well known ordering for the Bessel
functions, which we will apply below. (See p. 151 of Magnus, Oberhettinger and
Soni [14] and p. 103 of Karlin [12] for more general results.)

COROLLARY 6
I(t) > I, () for all > 0 and integers i.

Proof
By theorem 2, I, (#)/I(t) is strictly increasing in ¢. By 9.7.1, p. 377, of [6],
l+1(t)/I(r) —last—ow O

From corollary 1(d), we know that P,,, (t) <P, . ,, t) for all ¢ when
p < 1. In some cases we are able to establish a bound the other way.

THEOREM 3

Suppose that p <1. P, (£)>pP, ;. ;, ) for all £>0 if and only if
(1—p)/yp >@2n+k) /n(n+k) or, equivalently, p < [1/(1 +B%) — BT where
B =Q2n +k)/2n(n + k). For all sufficiently large ¢, P,,, (t) <pP, ., (1)
whenever (1 —p)/yp <(2n+k)/n(n +k).

Proof
Apply theorem 1, using (a) for P, (¢) and (b) for P, , ., (z). Hence
n+k n(t) P n+k—1,n— l(t) (1 P) n+k n(t)
—p [P2n+k—1,0(t) _P2n+k,0(t)]
and, from corollaries 1(a) and 2(b)

k/2[ n+k, n(t) P n+k—-1 n—i(t)]

(1 P)
2 P EIDf i lo(f) pErII2f ano(t)- - (14)

i=1
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By-corollary 6, the Bessel functions are ordered, i.e., I,(¢) > I, (¢) for all j and
t, so that

JT 2 f0(t) > k7% 2 fo(t)  for j <k,
so that [P, (8) ~pP,,; 1, (t)]> 0 provided that

1_ n
(—l/fl Y (k+2i—1)>k+2n,
P i=1

which reduces to the stated condition. On the other hand, when this condition
does not hold, we can establish the reverse inequality asymptotically as ¢t — o,
From theorem 3.1(b) of [2],

o™ () ~2mfp L(t, p) ast— oo (15)
for
L(t, p) = (11',03'/2#3)_1/2 exp(—1/7), (16)

where 7=1/(1 — /p )? as in (3.1) of [2] without the time scaling. Combining (14)
and (15) we get

Pn+k,n(t) '—an-i-k—l,n—l(t) N(l/z)p_(k_l)/zL(t! p)
(1—-p)

1/2
oY

[nk +n?] ~(k+2n)| ast—ow. O

We now obtain further consequences of theorem 2.

THEOREM 4
For all ¢ > 0 and integers i > 1,

@) Po(t) - Pi_10() Prar0(t) > P(Pi+ 1,0(1‘)2 ‘“Pio(t)PHz,o(f)) =0,
() fio(f)z —fi—10(E) frr10(t) >P(fi+1,o(t)2 —fio(t)fin,o(t)) >0,
(©) U_i(t)’ = U_4p()U_gans(®) ?P(U-(iu)(t)z - U—i(t)U—-(Hz)(t))
>0.
Proof
Note that Py(#)/P,(2) is nondecreasing in i for each ¢ by the TP, property

for P,(t) established in theorem 2. Together with the Chapman—Kolmogorov
equations

Piy(t) =Pr_yot) = (L+p)Po(t) +0Prro(t), 31, (17)
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this establishes the first inequatlity in (a). To obtain the nonnegativity in (a), note
that

4 i
Pi+2,0(t) _ j;fm(s)Piﬂ,o(t‘“S) ds . j;flo(S)Pi,o(t_S) ds _ Pi+1.0(t)
Pyao(t) P, 10(2) - P, o(t) Piy(t) ’
(18)
using P, o(t — )P, o(¢) < P;o(t — )P, o(2) since Pyy(t) is TP, in i and ¢ by

theorem 2. The arguments for (b) and (c) are the same, using the associated or
lossy process for (b) as in theorem 2 and the unrestricted process for (¢). O

As a consequence of (3) and theorem 4(c), we obtain more inequalities for the
modified Bessel functions.

COROLLARY 7
For each >0, p > 0 and integer j > 1,

L2l t) =520 1) 20 t) o (L2 1)~ L{2ip 1) (2o )

=0.

6. Asymptotics

Another application of theorem 1 is to obtain a more elementary proof of the
asymptotic behavior of P, () as ¢ — w, as given on p.94 of Cohen [9]. To state
the results, let o =(1 — J;)/ Jp . Recall that f(z) ~g(2) as t — o if f(¢)/g(t) ~
1 as t — . We only state the result for p < 1. The results for p > 1 follow in the
same way.

THEOREM 5
If p <1, then for all integers k> 0and n>0

L(t, p) L(t, p)o’n(n+k)
(a) 0Pn+k,n(t) ~ ——”n(n +k) = 20.2pk/2 ?

zpk/z

n .. Ll p)
() p"Pro(t) ~(L—p)p" + W(l —ko),

(€) Puriealt) ~(1—p)p"+ ;%%)z(l —no)(1-[n+k]o).
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Proof

By 9.7.1 of [6], e *I(z) ~(2mz) 1% as z— for all k. For (a), apply
corollary 2(b), (9) and (3). For (b), apply (3), (8), (9) and (10), as was already
done in corollary 4.2.7 of {2]. For part (¢), apply theorem 1 plus parts (a) and (b).
a

The decompositions also help establish the asymptotic behavior with other
initial distributions. As pointed out by Massey [15], the asymptotic behavior with
other initial distributions is especially interesting because the relaxation fime
parameter (7 in (16) and theorem 5) actually depends on the initial distribution.
We derive the asymptotic behavior in the case of a geometric initial distribution
with parameter v, i.e., P(Q(0) =j) =(1 —y)y’, j > 0. Thus, the transition func-
tion of interest is

Pa(0)= X (1= B(1), 150, (19

THEQOREM 6
Suppose that p <1 and #n is an arbitrary nonnegative integer.

(2) If y <yp, then
L(t, p) (1 =)o —7)

20° (o —7)2

p"’*(1 —no).

P, (f) ~ (1—p)p" +

(b) If y=p, then

(n+1)/2
p (1—p)n vo

)~ (1—p)p™ +1L(t, — D
P(t)~ (1 —p)p (‘0)1+f_p( 3 P T+

(0) I yp <y <1, then
P,,,(r)~(1—p)p~+[(1—7)7"—(1—ﬁ)(f’—) —(” ””)(1—p)p"]

YI\Y Y—P

Xexp(—t/Bt),

where
p=(1- ) /L=~ [p/7]). (20)
Proof
From (11), which is valid for k& negative, we obtain ‘
P, (t)="P,(t) +f,o(t) * Py,(2), (a1)

where f,,(#) is the density of the first passage time to 0 starting with initial
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distribution y (including an atom of size (1 —v) at 0). Let F,{¢) be the
associated cdf and let F7(¢#) =1—F ((¢), and similarly for F,(z). Then, from
(8), we obtain

Foolt) * Py, (1} =(1—p)p" — (1 —p)p"Fjy(2) +p™*! yo(t) * Fryqo(2)
—p"fyo(t) * Fio(t)-
For the zero-avoiding component of (21), write

Bu) =" 1= % (2] oRu0) + 1 =1) T (R0

from which we obtain (by applying corollary 2(b) and transform manipulation)

np-1
°Py,,(r)—5~—§)—"— z ( f,) Folt) * ho0), (23)

where £.(t) is the density of the conditional time to emptiness starting with the
geometric distribution with parameter vy, conditional on being strictly positive;
see corollary 3.1.3 of [1] and theorems 3.3 and 5.1 of [2] Note that the Laplace
transforms of f,,(t), f,(t) and h.(¢) are Fulsy =24, f,,,o(s) A-y)/A—vyz)
and h L) ={0~-v)z /L —yzy) for z, =2z,(s) being the relevant root of the
quadratxc equation as in (2.4) of [2] without time scaling. To determine
the asymptotic behavior of f 4(¢) and P,a(z) as ¢ — o, we must identify the
rightmost singularities of the transform f 0(s) and P (s) This involves solving
the equation 1 — yz,(s) =0. There is a negatlve root to this equation if and only
1f ¥ > p, in which case it is given by s = —1/87 for 8 in (20). Hence, f o{s) and

(s) have simple pole singularities at s = —1/87. However, these functlons
(smce they involve z,(s)) also have branch point singularities at s= —1/r.
Hence, the pole is the right-most singularity when 8 > 1 or, equivalently, when
y>|p. For y>|p and y </p, we obtain the asymptotic expansions by

applying Heaviside’s theorem on p. 254 of Doetsch [11]. For y =yp , we see that

1+J5) Tls+1)1/2+1—¢5_

f*"(s):( 2 J\rs+1 2

from which we directly see that

2pt
Fyo(t) ~ T+_{5—L(t’ P)

and

2ptL(t,
f»,o(f) * fao(t) ~ ;,,/%(1(:__%)7

" as needed for (b). O
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Remarks
(9) It is instructive to see what happens if we try to apply theorem 5(c), acting
as if the limits in the summation in (19) and ¢ — « can be exchanged. We obtain

nj/2
Pal0)~ (A =p)p + 2 1)1 )

3 ) v i @ v H
Xl Y il =1 — — 1,
from which the obtain the result in theorem 6(a) when vy <p , but this method
does not work for v =1p .

(10) Note that the result in theorem 6(b) is not obtained by taking the limit as
v — JE in parts (a) and (c).

(11) Massey [15] obtained the results in theorem 6(a) and (c), but there seems
to be an error in his expression for the constant multiplying the exponential in
his version of (c); see his (20).

(12) Analogs of theorem 6 for other initial distributions do not seem nearly so
easy to determine by our approach. See [15] for an alternate approach.

(13) Consistent with our previous experience, numerical comparisons indicate
that the pure-exponential limit in theorem 6(c) is a much more accurate
approximation for typical times ¢ than the limits in the other cases.

(14) (added in proof) Previous work related to theorem 6, including (20),
appears in J.P.C. Blanc and E.A. van Doorn, Relaxation times for queueing
systems, in: Proc. CWI Symp. on Mathematics and Computer Science, eds. JW.
de Bakker, M. Hazewinkel and J.K. Lenstra (North-Holland, Amsterdam, 1984)
pp. 139-162.
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