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We consider a generalization of the classical Erlang loss model with both retrials of
blocked calls and a time-dependent arrival rate. We make exponential-distribution assump-
tions so that the number of calls in progress and the number of calls in retry mode form
a nonstationary, two-dimensional, continuous-time Markov chain. We then approximate
the behavior of this-Markov chain by two coupled nonstationary, one-dimensional Markov
chains, which we solve numerically. We also develop an efficient method for simulating
the two-dimensional Markov chain based on performing many replications within a single
run. Finally, we evaluate the approximation by comparing it to the simulation. Numerical
experience indicates that the approximation does very well in predicting the time-dependent
mean number of calls in progress and the times of peak blocking. The approximation of
the time-dependent blocking probability also is sufficiently accurate to predict the number
of lines needed to satisfy blocking probability requirements.

1. Introduction

In this paper we consider a generalization of the classical Erlang loss model
which incorporates two important features of real service systems: (i) retrials, and
(ii) time-dependent arrival rates. There is a substantial literature on generalizations of
the Erlang loss model which incorporate each of these features separately. First, early
work on stationary loss models with retrials was done by Kosten [6] and Cohen {1];
see section 9.2.4 of Syski [9]. Accounts of more recent work on stationary loss models
with retrials can be found in the surveys by Yang and Templeton [13] and Falin [2] and
in chapter 7 of the textbook by Wolff [12]. Second, early work on nonstationary loss
models without retrials was done by Palm [8)] and Khintchine [5]. Accounts of more
recent work on nonstationary loss models without retrials can be found in Jagerman
[3], Taaffe and Ong [10] and Massey and Whitt [7]. However, we are unaware of any
previous work on nonstationary loss models with retrials.

We make assumptions so that the nonstationary loss model with retrials
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Figure 1. The call retry model.
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can be represented as a two-dimensional continuous-time Markov chain (CTMC)
{(Qc(D), Q- (1)): t > 0}, as depicted in figure 1. There are L lines (servers), (Q.(t)
is the number of calls in progress (i.e., the number of busy servers) at time ¢, and
Q-(t) is the number of calls in retry mode (in orbit) at time . We assume that the
external arrival process is a nonstationary Poisson process with time-dependent inten-
sity function a(t). We assume that the holding (service) times of successive calls to
enter service are i.i.d. exponential random variables with mean p_!. Thus, the rate
of service completion at time ¢ is pu.Q.(t). Each arrival that finds all L lines busy is
blocked. We assume that this call leaves the system with probability 1 — p, and enters
the retry mode with probability p,, independent of previous history. Each call that
enters the retry mode tries again after a random delay. We assume that the successive
retry delays are i.i.d. exponential random variables with mean 4 !. Thus the retry rate
at time ¢ is p,Qr(t). Moreover, we assume that the arrival process, holding times and
retry delays are all mutually independent. It is easy to see that these assumptions make
(Q:(1), Qr(t)) a non-stationary CTMC on the state space {0,1,...,L} x Z,, where
Z4 is the set of nonnegative integers. We give the forward equations characterizing
this CTMC in section 2. Our model has y., p, and p, constant and all time-variation
in a(t), which seems to be the case of greatest interest, but we could also let y., p,
~ and p, depend on t. '

The time-dependent distributions P(Q.(t) = 7, @-(t) = k) can be obtained di-
rectly by numerically solving the forward equations if we modify the model to make
the state space finite: For example, we can let the retrial probability be 0 instead
of p, when Q,(t) > R for a suitably large R. Then the total number of states is
(L + DR+ 1). Assuming that R is O(L), this makes the number of states, and thus
the number of equations, O(L?). Since typical cases of interest include L = 100 or
L = 1000, the number of equations can be so large that computation is difficult.
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To address this problem, we propose an alternative approximation scheme that has
only L+ 2 equations. The idea is to assume, as an approximation, that Q.(¢) and Q,(t)
can be approximated by random variables Q.(t) and Q,(t) that are probabilistically
independent; i.e., we assume that

P(Q.t) =7,Q,1) =k) =P(Q.1) = j)P(Q,(t) = k) (1.1)

for all ¢+, 7 and k. This allows us to treat the evolution of the one-dimensional
probabilities P(@C(t) = j) and P(Q,.(t) = k) separately via separate systems of forward
equations. Moreover, since @T(t) corresponds to an infinite-server system, we can
describe its behavior through a single equation involving its mean E[Q..(¢)]. This
reduction makes the total number of equations L + 2.

Of course, it is important to approximately capture the important dependence
between these probabilities. We do this by making the time-dependent transition rates
in each system depend on the time-dependent distribution of the other component; i.e.,
when considering the evolution of P(@C(t) = 7), we let the arrival rate from retrials
be uTE@r(t); and when considering the evolution of P(@T(t) = k), we let the arrival
rate from retrials by new arrivals be a(t)p, P(@C(t) = L) and the departure rate from
the retry mode be Q, () (1 — prP(Qe(t) = L)). The term Q,(B)urpP(@Q () = L))
represents the rate of retrials completing a retry delay that immediately retry again
because all L lines are busy again.

The overall approximation scheme can be regarded as time-dependent analog
of the reduced-load (or Erlang) fixed-point approximation for blocking probabilities in
stationary loss models; see Whitt [11] and Kelly [4] and references therein. The analog
of the independence assumption (1.1) above is the facility-independence assumption
(5) on [11, p. 1814].

It is significant that our approximation scheme reduces the analysis to two coupled
time-dependent systems that have been analyzed previously. In particular, the process
Q.(t) evolves as an M;/M/L/O loss model, while Q,(t) evolves as an M;/M;/co
model, as depicted in figure 2. Hence approximations for these more elementary non-
stationary models can be used to obtain even simpler approximations. For example, the
pointwise stationary approximation (PSA) and modified-offered-load (MOL) approxi-
mation could be used for the M;/M /L /0 loss model; see [7]. The MOL approximation
reduces the number of equations for the M;/M/L/0 model from L+ 1 to 1, and thus
reduce the overall number of equations to 2. However, we found that the PSA and
MOL approximations performed significantly worse than the exact computation of the
M,;/M/L/0 probabilities in the approximation. Hence, we do not carefully examine
such further simplifying approximations here, but their availability should be noted.
The weakness of PSA is in overestimating the blocking probabilities at peak times and
in not computing the time of peak blocking accurately. The nature of MOL is to be
at its best when approximating small probabilities, but we are interested in analyzing
the retry model when the blocking probabilities are relatively large.
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We evaluate our approximations by making numerical comparisons with simu-
lations. Our approach to simulation itself is worth mention. We obtain simulation
efficiency by performing multiple replications within a single run.

Here is how the rest of this paper is organized. In section 2 we write down the
functional forward equations for the nonstationary CTMC and derive the approximate
equations from them. In section 3 we describe our simulation methodology. Finally, in
section 4 we compare the approximations to simulations for a few numerical examples.

2. The functional forward equations

We start by giving the functional version of the forward equations for the CTMC.
We then use it to derive the approximation. Let f be any bounded, real-valued function
on the state space of the call retrial model. Then

%E[f (Qc), Qr(®))]

= aE[f(Qc(®) + 1,Qr(®) — f(Qc(®), Qr(®)); Qc(t) < L]
+ a®prE[f(Qe(®), Qr(®) + 1) — f(Qc®), Qr(D)); Qclt) = L]
+ 1E[Qe® (f(Qe®) = 1,Qr @) — f(Qc(®), Qr(®)))]
+wE[Qr@® (f(Qc®) + 1, Qr(®) — 1) — f(Qc(®), Qr (D)) ); Qc(t) < L]
+ pr(1 — pr)
x E[Qr(®) (F(Qe(®), Qr(®) — 1) — f(Qc®), Qr(®))); Qct) = L. (2.1)
The set of equations obtained by letting f vary constitutes the forward equations. To

focus on the marginal distribution of Q.(%), let f(z,y) = g(z). Then the equations
reduce to

—d—E[g(Qca))] =a®)E[g(Qc®) + 1) — g(Qc®)); Q) < L

dt
+ 1E[Qc®)(9(Qe®) — 1) — 9(Qc®)))]
+E[Qr®)(9(Qe®) + 1) ~ 9(Qc®)); Q) <L]. (2.2)

Similarly, to focus on the marginal distribution of Q(t), let f(z,y) = h(y). Then the
equations reduce to

FEM(Q0)]
= a)pE[R(Qr@®) + 1) — h(Qr(®)); Qc®) = L]
+ 1 E[Qr ) (R(Qr®) — 1) — h(Qr())); Qct) < L]
+ ur(1 — pr)E [Qr(t) (h(Qr(t) - 1) - h(Qr(t)))a Qc(t) = L] . (2.3)
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Next, in (2.3) let A(y) = y. Then we have

d
—E[Qr(®)] = at)prP(Qc(t) = L) — prE[Qr(t); Qe(®) < L]

dt
- ,U"r(l - pr)E [Qr(t); Qc(t) = L} (24)

Now if we assume that Q.(¢) and Q,(t) are approximately independent, then (2.2)
becomes

%E [9(Qc®)] = (a(®) + wrE[Qr@®)])E[g9(Qc®) + 1) — 9(Qc®)); Qct) < L]

+ 1cE[Qe®)(9(Qe®) — 1) — 9(Qu®)))]. (2.5)
Since any function g above is uniquely defined by the values it takes on the integers
{0,1,..., L}, we see that equation (2.5) is equivalent to the set of forward equations

for the M;/M/L/0 queue with arrival rate function (c(t) + p-E[Qr(?)]) and service
rate u.. Moreover, with the independence approximation, (2.4) becomes

d
&E[Qr(t)} ~ a®)pP(Qut) = L) — pr (1 — pP(Qc(t) = L))E[Qr(®)],  (2.6)

which is equivalent to the differential equation for the mean queue length of an
My /My /oo system with arrival rate function a(t)prP(Q(¢) = L) and (instead of ;)
service-rate function u.(1 — p,P(Q.(t) = L)).

Based on (2.5) and (2.6), we propose the following approximation. Consider the
joint process (@C(t),ar(t)) where for all 1 <n < L — 1, we have

d _ _
aP(Qc(t) =n) = (a(t) + wE[Q, ()] )P( Q) =n—1)

+(n+ DpP(Q ) =n+1)

— (a®) + wE[ Q)] + nuc)P( Q) = n), @2.7)

C%P(@c(t) =0) = pP(Q.() = 1) — (a®) + E[ Q.(8)] )P( Q) = 0), (2.8)
%P(Q(t) = L) = (a(®) + uE[ Q,®)])P( Q) = L~ 1)

— LpP(Q ) = L), (2.9)

and
d _ — — _
FE(Q:0] = a®pP(Q(®) = L) = pr(1 = prP(Q) = L) JE[Q: ()] (210)

The L + 1 differential equations in (2.7)—(2.9) constitute the forward equations for the
M;/M/L/0 queue with arrival rate function a(t) + u,E[Q,(£)] and service rate .
The additional equation (2.10) is the differential equation for the mean queue length of
an M;/M,;/oco system with arrival rate function a(t)prP(ac(t) = L) and service rate
function (1 — pTP(@C(t) = L)). Hence, we have the two coupled Markov chains
shown in figure 2.
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Figure 2. The approximate nonstationary model.

If we use an MOL approximation for @Q,, then we can reduce the number of
equations to 2. We first replace (2.7)—(2.9) by

d —
3 Me(®) = a®) + wE[Qr ()] = me(Dpe: 2.11)

We then use (2.10) after replacing P(Q,(t) = L) by Br.(m.(t)), where Br.(m) is the
Erlang blocking formula with L servers and offered load m, i.e.,

CE[Q,0) = a@prBL(me®) — i (1 - pefr (m®)E[Q,0). @12

It may be possible to understand the physics of the time-dependent retrial model better
by investigating (2.11) and (2.12) analytically, but we do not pursue that here.

3.  Simulation methodology

In addition to developing the new approximation described above, we develop
a new efficient method for simulating the full nonstationary CTMC (Q.(t), Q.(t)) in
order to calculate the exact time-dependent characteristics of interest. The simula-
tion takes substantially longer than the approximation to obtain the characteristics of
interest, but it is certainly viable.

Time-dependent queueing models have special features that invite nonstandard
simulation methodology. There is no notion of steady-state, so that it is impossible to
average over time. Thus, in order to achieve high precision, it is necessary to perform
a very large number of independent replications. Also, the performance measures
we seek are functions of time instead of a single number; e.g., we want to calculate
the time-dependent blocking probability instead of a single long-run average blocking
probability. Hence, the requirements are more demanding.
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We have found that performing multiple replications within a single simulation
run is an effective way to increase the efficiency of the simulation algorithm. For ex-
ample, we might perform 1000 replications within one run. For this purpose, we divide
the time interval of interest [0, 7] into 7'/4 short intervals each of length §. We then
update the states of all processes and compute the desired summary average statistics
for each subinterval for all replications in one pass through the 7'/§ subintervals. A
major advantage of this approach is that it reduces storage. With /N separate replica-
tions, we would need to store N samples of the 7T'/4 descriptive statistics which we
would later average to produce a set of 7'/9 desired description statistics. In contrast,
within one run, we only need to store the final 7'/¢ averaged descriptive statistics. At
each new time point nd we update the state of all N processes. We also compute
the average performance at that time. Since most of the N processes have no events
in the small interval, we need only update the sum by the small number of non-null
events. The average at that time point is more efficiently computed in this way.

We also exploit the Markovian structure in our generation of successive events in
each process. For each replication of the nonstationary CTMC, we generate the sample
path as follows. Let @ be a number greater than or equal to the supremum of the arrival
rate a(t) over all time ¢ of interest. If after an event occurs at time ¢, the system state
is Q.(t) = j and Q,(t) = k, then we let the time until the next potential event in the
process have an exponential distribution with mean A~!, where A = @ + jue + k.
If the exponential variable takes the value s, then the next potential event occurs at
time t + s. We let that event be a call completion with probability ju./A, a retrial
completion with probability ku,/A, an external arrival with probability a(t + s)/A,
and a fictitious event corresponding to no state change with the remaining probability
(& — aft+ s))/A. Tt is well known that this procedure produces sample paths with the
correct distribution.

In summary, we created a simple C program to calculate E[Q.(t)], F[Q-(t)] and
P(Q.(t) = L). For example, at any time ¢, we estimate E[Q.(t)] by

1 N
2 = (k)
Q=5 a0,

where N is the number of replications and Q(Ck)(t) 1s the number of calls in progress
at time t in replication k.

4. Comparing the approximation to the simulation

We now evaluate our approximation by making comparisons with simulations of
the nonstationary CTMC. We first consider an example with
at) = 300 + 1005sin(0.17t), (4.1)

which has peaks at times 5, 25, 45 and so on. We let p. = 1.0, so that time is
in units of mean call holding times. We let u, = 30.0, making mean retrial delays



[ -~

260 N. Grier et al. / Erlang model with retrials
tvs. E[Qq(t)] tvs. E[Qp(t)]
4001 0:4 1
3001 0.3
200+ 0.21
100+ 0.1
0 0.0
OiO 2j5 STO 7i5 | OtO 2i5 5j0 7].5 |

tvs. P(Qq(t)=L)

0.0500

L =397

o(t) =300 + 100 sin(.1 = t)
0.0375 - Me = 1.00

wr = 30.00
0.02501 pr=0.00

Simulation

0.01251

--------- Approximation

0.0

T T T T

00 25 50 75

Figure 3. Numerical example of the simulations and approximations for the retry model.

substantially shorter than mean call holding times, as usually is the case. We let the
number of lines be L = 397, which is slightly less than the peak offered load of 400.
The value 397 was chosen to be the minimum number of lines such that the peak
time-dependent blocking probability P(Q.(t) = L) is less than or equal to 0.10 when
the retrial probability p, is 0.40. ]

In figures 3-5, we plot the time-dependent blocking probability P(Q.(t) = L),
the average number of calls in progress E[Q).(t)], and the average number of blocked
calls in retry mode E[Q,(f)] as a function of time ¢ for three values of the retrial
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tvs. E[Qq(1)] t vs. E[Q(t)]
400
300+
200
100
O -
00 25 50 75 00 25 50 75
tvs. P(Qq(t)=L)
0.0700
L =397
a(t) = 300 + 100 sin(.1 nt)
0.0525 1 e =1.00
1r = 30.00
0.0350 - Pr=0.40
Simulation
0.0175 -
--------- Approximation
0o

T T T T T

00 25 50 75

Figure 4. Numerical example of the simulations and approximations for the retry model.

probability p,: pr = 0, p, = 0.4 and p, = 0.8. In these cases the simulation had
10,000 replications. These plots illustrate both how the approximation compares to
a simulation of the exact retrial model, as well as the effect that increasing the retry
probability p, has on the performance of the retry system. In figure 3, we have p, = 0,
so that there are no retries. In this case the call retry model and the approximate model
are identical. The simulation and approximation are validated by the fact that the three
graphs in figure 3 are each plots of two curves that are sitting on top of each other,
with exceptions due only to numerical error. This example helps to gauge how well
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tvs. E[Qq(t)] t vs. E[Qr(t)]
400 - 2.0
300- 1.5-
200 1.0
100+ 0.5
0 - 0.0
00 25 50 75 00 25 50 75
tvs. P(Qq(t)=L)
0.140
| L =397
o(t) = 300 + 100 sin(.1 & t)
0.105 1 Be =1.00
e = 30.00
0.070 pr=0.80
Simulation
0.035 - )
--------- Approximation
0.0 1

00 25 60 75

Figure 5. Numerical example of the simulations and approximations for the retry model.

the simulation is computing E[Q.(¢)], E[Q-(t)], and P(Q.(t) = L).

Figures 4 and 5 genuinely evaluate the approximation. From figures 4 and 5, we
see that the mean number of calls in progress, E[Q).(?)] is approximated spectacularly
well, much better than the other two quantities E[Q,(t)] and P(Q.(t) = L). Upon
reflection, this is to be anticipated since E[Q.(t)] is a much larger quantity. Moreover,
both E[Q,(t)] and P(Q.(t) = L) depend on the tail of the distribution of @, (t).

Also, the approximation does an excellent job of locating the time of peak conges-
tion, which lags after the peak in «a(t) at ¢ = 5. In all curves in figures 3-5, the times
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tvs. E[Qc()] tvs. E[Qr(h)]

20 1

15 -

10 |

L T T T

00 25 50 75 00 25 50 75

tvs. P(Qg(t)=L)

L=20

ot) =20 +sin(4 t)
ue = 1.00
ur=1.00
pr=0.80

Simulation

......... Approximation

T T T T

00 25 50 75

Figure 6. Numerical example of the simulations and approximations for the retry model.

for attaining maximum values are greater than 5.0 and the lag is more pronounced as
the retry probability p, increases.

The time-dependent blocking probability P(Q.(t) = L) itself is not especially
well estimated by the approximation. Indeed, the true blocking probability is consis-
tently underestimated by the approximation. This consistent ordering may make the
approximation easier to interpret in applications. The direction of the error could be
anticipated because the approximation fails to capture certain stochastic fluctuations.
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This can easily be seen in the case of a stationary model. Then, in steady-state, the ap-
proximation has the net arrival processes to the two component subsystems be Poisson
processes, when in fact they should be somewhat more variable, because of the over-
flow phenomenon. It is natural to consider refined approximations that try to capture
the extra variability, perhaps exploiting peakedness, as in section 1.9 of Whitt [11].
However, we leave such investigations to future research.

Although the time-dependent blocking probability P(Q.(t) = L) is not predicted
exceptionally well in figures 4 and 5, the accuracy tends to be sufficient for many
engineering purposes. In particular, the approximation tends to do an excellent job in
determining the minimum number of lines needed so that the peak blocking probability
remains below a specified threshold. For example, in the setting of figure 4, the
approximation yields the correct minimum number L = 397 so that the time-dependent
blocking probability stays below 0.10. Thus, the approximation can be used effectively
together with simulation. A few simulation runs can be used to verify or refine settings
determined by several runs of the approximation.

Figure 6 shows a different situation, with much lower arrival rate and faster
fluctuations. In particular, the arrival rate here is

a(t) = 20 + sin(4t). 4.2)

The retrial rate is slower as well, here being 1.0 instead of 30.0. Here the number
of lines is equal to the average offered load 20, so that the peak rate 30 substantially
exceeds the number of available lines. Figure 6 shows that the approximation performs
reasonably well.
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