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We show that there is no batch-means estimation procedure for consistently estimating the asymptotic variance when the number of 
batches is held fixed as the run length increases. This result suggests that the number of batches should increase as the run length 

increases for sequential stopping rules based on batch means. 
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1. Introduction 

The question investigated in the present paper  arose in the study of sequential stopping rules for 
simulation estimators to achieve specified confidence intervals. The general goal is to have a procedure 
incorporated in the simulation program which enables the program to automatically terminate when the 
desired statistical precision has been attained. A desirable property of any candidate stopping rule is 
asymptotic validity as the prescribed width of the confidence interval approaches zero (and the resulting 
run length approaches infinity). By asymptotic validity, we mean that the probability of coverage (i.e., that 
the value to be estimated is contained in the confidence interval) converges to the designated valu6 (e.g., 
0.95) as the prescribed width of the confidence interval approaches zero. Of course, asymptotic validity is 
not sufficient for a procedure to be useful, but it seems to be a very desirable property. 

In [5] we defined some sequential stopping rules and established general conditions for their asymptotic 
validity. There are two requirements: a functional central limit theorem for the estimation process and 
strong consistency (with-probability-one convergence) for the variance estimator. We then became inter- 
ested in sequential stopping rules based on (non-overlapping) batch means. It seemed intuitively clear that 
asymptotic validity requires that the number  of batches must increase without limit as the run length 
increases. In this paper, we establish a closely related result: We show that the number of batches must 
increase without limit as the run length increases in order to obtain a consistent (weak or strong) variance 
estimator. This result suggests that sequential stopping rules based on batch means should have the 
number of batches increase without limit as the run length increases, but we have only proved that the 
sufficient conditions for asymptotic validity in [5] are not satisfied with a fixed number of batches. It 
remains to show that asymptotic validity can not hold for batch means with a fixed number of batches. 

Of course, it is well known that the standard variance estimator based on batch means is not consistent 
when the number of batches is held fixed (see Section 3). We want to establish a much stronger result, 
namely, that there is no variance estimator based on a f i xed  number of  batches that is consistent. This result is 
not very difficult, but a proper formulation seems to require some care. 
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In Section 2 we formula te  the p rob lem and state the main  theorem. In  Section 3 we review the si tuation 
for the s tandard  est imator .  In Section 4 we prove  the main  theorem. 

Our  result also has relevance to f ixed-run-length simulations.  However ,  in that  context,  asymptot ica l ly  
valid confidence intervals are ob ta ined  anyway  by  cancel lat ion methods ,  e.g., using the t distribution. For  
further  discussion, see Schmeiser  [9], G o l d s m a n  and Meke ton  [6], Sargent,  K a n g  and G o l d s m a n  [8], Glynn  
and Iglehart  [4] and Damerdj i  [2]. 

2. The main result 

To be precise, we must  first specify what  we mean  by  an es t imat ion  procedure.  To  be interesting, an 
es t imat ion procedure  should apply  to a large family of  stochastic processes. Hence,  let X - -  { X( t ) :  t > 0} 
be a measurable  mapp ing  f rom a measure  space (~2, o~-) into D - D[0, m) ,  the space of f ight-cont inuous 
real-valued functions on the interval [0, ~ )  with left limits, endowed with the usual Skorohod topology 
and associated Borel o-field; e.g., see Ethier and Kur t z  [3]. Of  course, we want  the underlying space 
([2, ~ )  to be  sufficiently rich; it suffices to let ~2 = D and X(t) be the project ion or coordinate  map.  We 
consider the set ~ of  all p robabi l i ty  measures  P on (~2, o~)  such that  X satisfies a F C L T  with a Brownian 
mot ion  limit, i.e., there exist finite constants  la - / a ( P )  and  o - o(P) such that  

n-l/2 f"t[ X(s) -IZ] ds = oB(t) a s n ~  (1) 
*'0 

where = denotes  weak convergence in D with respect  to P and B - {B( t ) :  t > 0} is s tandard  (zero drift, 
unit  diffusion coefficient) Brownian motion.  Our  goal is to es t imate  0 2, but  we want  our procedure  to 
apply  to all P ~ ~ .  In  other words, the procedure  should apply  to all s tochast ic  processes X in D 
satisfying the funct ional  central  limit theorem (FCLT)  (1). In fact, we only need convergence of all 
f ini te-dimensional  distr ibutions in (1), but  the ord inary  one-dimensional  central  limit theorem (CLT)  
obta ined  by setting t = 1 in (1) is not  sufficient to analyze even the s tandard  es t imator  (Section 3). Our  
formula t ion  (1) assumes that  X is a cont inuous- t ime stochastic process,  but  we could have X(t) = X([t]) 
for all t, where [t] is the integer par t  of  t, in which case X is effectively a discrete- t ime process and the 
normal ized integral in (1) is asymptot ica l ly  equivalent  to the usual normal ized  sum. 

To  apply  the me thod  of ba tch  means,  we specify the n u m b e r  m of batches  and  the total run length T. 
We then construct  our  est imates f rom the m non-over lapp ing  intervals of  length T/m; i.e., let the i-th 
ba tch  mean be 

mf,T/m X(s) ds i = 1 ,  . m.  (2) £ ( r ) = -  T . . . .  
"(i - 1)T/rn 

We now want  a procedure  for combin ing  the m observat ions  X I ( T )  . . . . .  -~m(T) in such a way that  o 2 is 
consistently es t imated as T--* oo. This ' combin ing  t rans format ion '  should not  depend on the ' f ine  
structure '  of  the process X. In part icular ,  it should not  depend  on /~  and  o 2. Thus,  in this context  we say 
that  an estimation procedure is a family of  measurab le  mapp ings  

g r : R m ~ R  f o r T > 0 ,  (3) 

such that the est imate of  0 2 is gr(Xl . . . . .  Xm) when the total  run length is T and x i = .~i(T), i = 1 . . . . .  m. 
Note  that  g r  can depend on T, but  is independent  of  P. 

We say that  an es t imat ion procedure  is J°-consistent if for each P ~ 

g T ( ~ ( I ( T )  . . . . .  Xrn(T)) = o 2 ( P )  as T ~  oo. (4) 

Here  ~ denotes  weak convergence with respect  to P in R,  which is equivalent  to convergence in 
probabi l i ty  since o 2 ( p )  is deterministic.  Since we have a negat ive result, we focus on this weak 
consistency. We would have strong consis tency if the convergence was w.p.1 with respect  to P. 

Here  is our main  result. It  applies to any m. 
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Theorem 1. There does not exist a batch-means estimation procedure based on a f i xed  number of  batches that 

is ~-consistent. 

In Section 3 we show what happens with the standard variance estimator. We see that we do not get 
consistency for 02 for any fixed m, but we can get as close as we wish by letting m be suitably large. In 
Section 4 we prove Theorem 1. 

3. The standard estimator 

The standard estimation procedure is specified by 

g¢(x~ . . . . .  x~) = m ( . ~ -  1) x , -  ~ x~ 
i=1  k = l  

for all T >  0, m >__ 2, and (x~ . . . . .  x , , )  ~ R m. Let & denote equality in distribution. 

Theorem 2. Under (1), 

g ~ ( X , ( T )  . . . . .  X m ( r ) )  

(5) 

o 2 m 2 g ~ ( [ B ( i / m )  - B ( ( i -  1 ) / m ) ] ,  1 _<i< m)  

0 2  2 
d X r n - I  . 
- - -  m R  

m - 1  

where 2 is a chi-square random variable with m - 1 degrees of  freedom. X m -  1 

Proof. Note that 

g ~ (  X , ( T )  . . . . .  X m ( T ) )  

I,o l 2 f i r / ~  X(s  ) as  ( s )  as  
m m ~ ' ( i - 1 ) T / m  __ ~ - ~  

-- m = l  E ( f  T mT 
i=1  

- mint ~. r -1 /2 f  'r/r" [ X ( s ) - • ]  d s - m - l r - 1 / : f r [ x ( s ) - ~ ]  as 
i=1  [ " ( i - l ) T / m  "0 

0" 2 m X m - I  
m S_ 1 B ( i / m )  - B ( ( i  - 1 ) / m )  - a 

i=1  ~ as T---, 

by (1) and the continuous mapping theorem (Corollary 1.9 on p. 103 of [3]) using the function h : D ~ R 
defined for any x ~ D by 

m ~ 
h ( x ) =  m - - 1  [ x ( i / m ) - x ( ( i - 1 ) / m ) - x ( 1 ) ] 2 "  [] 

i=1  

Note that 0 " 2 X 2 j ( m  - 1) has mean 0"2 and variance 20"4/(m - 1); e.g., see p. 168 of Johnson and 
Kotz [7]. Moreover, as m increases, 

o Xm ~ 0.2 and v ~  0"2X~ 0"2 N(0,  204) (6) 
m m 

where N ( a ,  b) denotes a normally distributed random variable with mean a and variance b. Hence, we 
can get as close as we want if we choose m suitably large. Moreover, we can obtain consistency under extra 
regularity conditions if m ~ o0 and T ~  oo so that T / m  ~ oo; see Goldsman and Meketon [6] and 
Damerdji  [2]. In fact, Damerdji  even proves strong consistency for a class of stochastic processes. 
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4. Proof of Theorem 1 

To establish the negative result, it suffices to restrict at tention to probabi l i ty  measures P such that 
X(t )  = X([t]) for all t > 0, i.e., X is actually a discrete-time stochastic process, with X ( 0 ) =  0 and 
{ X(k) :  k > 1} being a sequence of  i.i.d. N(0, 0 2) r a n d o m  variables. Then, for any m, when T is an 
integer multiple of  m, 

( . . . . .  Z . ( T ) )  (  oB(r/m) . . . . ,  7 [ B ( T )  - B ( r ( m  - 1) /rn)])  (7) 

i.e., these batch means are distributed exactly as m i.i.d. N(0, o Z m / T )  r a n d o m  variables. Without  loss of  
generality, we can remove the m / T  factor  by considering the t ransformed functions 

Note  that 

gT(x l  . . . . .  x , . )  = gT x, . . . . .  x, .  . (8) 

gT(X~(T)  . . . . .  X " ( T ) )  a=~r(oN ) (9) 

for all T an integer multiple of  m, where a N - ( o N  1 . . . . .  oN,.) and N is a fixed vector of  i.i.d. N(O, 1) 
r andom variables. 

To have consistency, we must  have 

g T ( o N )  o as r - ,  (10) 

for all o > O, but this cannot  happen for two or  more  different positive values of  o, say o I and 0 2. To see 
this, first note that the convergence in probabi l i ty  for o 1 in (10) implies that there is a deterministic 
subsequence (T.: n > 1) of {kin: k > 1} such that 

~,r,,(o,N) - -0 ,  w.p.1 as n - -  oc; (11) 

see Theorem 4.2.3 of Chung [1]. By (10), gT,,(02 N )  ~ O 2 as n---) oo. Hence, there is a deterministic 
subsequence {T,': n > 1} of {T,,: n > 1} such that 

gr,;(oiN) ---,o~ w.p.1 as n ---) oo (12) 

for both i = 1 and 2. Hence, for i = 1 and 2, ~r;(x)  ~ o i for almost  all x with respect to the law of o~N, 
which implies that ~,r;(x) ---) o~ for almost  all x with respect to Lebesgue measure on R,., since o iN has a 
positive density with respect to Lebesgue measure. (See the appendix.)  However,  it is not  possible to have 
~,T,;(X) simultaneously converge almost  everywhere with respect to Lebesgue measure to two different 
limits. (The set of  convergence to one limit must  be conta ined in the null set of  non-convergence for the 
other limit.) [] 
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Appendix 

Here we give extra details showing that (12) implies that ~T~(x) ~ o a as n -* ~ for almost  all x with 
respect to Lebesgue measure on R" .  Let A = {x: l i m , ~ T - ( X  ) = 01 }. Then  

f /(x)X(dx) 
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where ~ is Lebesgue measure and f is the density of  olN, which is strictly positive almost everywhere. Let 
B n =  {x: n -1 < f ( x ) < ( n - 1 )  -1) for n > 2 ,  and B 1 = (x:  1 <f(x) ) .  Then 

O=ff(x)X(dx) = x ) X ( d x )  >_ 5-'. n-'X(ACnB.)>_0, 
a A ~  n = l  CAB, n = l  

so that ~ (A  c N B,) = 0 for all n and 

X(A = X(A n B . )=0 .  
n = ]  
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