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Abstract
In this paper, we develop a diffusion approximation for the transient distribution of
the workload process in a standard single-server queue with a non-stationary Polya
arrival process, which is a path-dependent Markov point process. The path-dependent
arrival process model is useful because it has the arrival rate depending on the history
of the arrival process, thus capturing a self-reinforcing property that one might expect
in some applications. The workload approximation is based on heavy-traffic limits for
(i) a sequence of Polya processes, in which the limit is a Gaussian–Markov process,
and (ii) a sequence of P/GI/1 queues in which the arrival rate function approaches a
constant service rate uniformly over compact intervals.

Keywords Path-dependent stochastic processes · Generalized Polya process ·
Gaussian Markov process · Diffusion approximations · Queues · Heavy-traffic limit

Mathematics Subject Classification Primary 60K25 · Secondary 60F17 · 90B22

1 Introduction

In this paper, we establish a heavy traffic limit theorem (HTLT) for the standard single-
server queue with an exogenous arrival process that is a generalized Polya process
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(GPP), which we refer to as a P/GI/1 queue. We then apply that limit to develop a
diffusion approximation for the transient distribution of the workload process.

As in Konno [13] and Cha [6], a GPP N ≡ {N (t) : t ≥ 0} is aMarkov point process
with stochastic intensity (defined in terms of the internal histories Ht ) by

λ∗(t |Ht ) ≡ (γ N (t−) + β)κ(t), (1.1)

where N (0) = 0, γ and β are positive constants, κ(t) is a positive integrable real-
valued function, and ≡ denotes equality by definition. The GPP is interesting and
important because it is path-dependent, i.e., it fails to have the asymptotic loss of
memory (ALOM) property, i.e., the influence of early conditions fails to dissipate over
time.

This paper extends our paper [9], which established results for the special case of a
stationary GPP. Theorem 1 of [9] shows that a GPP is a stationary point process (has
stationary increments) if

κ(t) = 1

γ t + 1
, t ≥ 0. (1.2)

As discussed in [9], a stationary GPP satisfies a non-ergodic law of large num-
bers, which causes the queue length process (not normalized by time) to approach
infinity with positive probability as time evolves. (For the stationary GPP, we defined
path dependence by lack of ergodicity; for the more general GPP, we define path-
dependence by the lack of ALOM.)

The GPP is a self-exciting point process like the Hawkes process. Infinite-server
queues with Hawkes arrival processes have been studied by Koops et al. [14] and
references there. As discussed in [14], self-exciting point processes are interesting to
capture overdispersion found in arrival process data, for example [12]. However, as
discussed in Remark 3 of [9], the GPP is quite different from the Hawkes process; for
example, unlike the GPP, the Hawkes process is always stationary and ergodic and has
the ALOM property. The GPP can capture the long-term impact of initial conditions.
Very broadly, we are motivated by a non-stationary worldview brought on by climate
change and the pandemic in which early conditions may strongly influence long-term
outcomes.

In our opinion, the greatest appeal of the heavy-traffic limit for the P/GI/1 queue
with a stationary GPP arrival process in [9] is its remarkable tractability, as illustrated
by the explicit three-dimensional distribution of the limit process in Corollary 6 of
[9]. That tractability suggests that the GPP can be useful for modelling in practical
applications. Our goal in this paper was to see how much of this appealing tractability
we could achieve without requiring the stationarity. We succeed in generalizing both
theHTLTand a result obtained inCorollary 6 of [9] describing the transient distribution
of the queue’s limit process. We also show that a general GPP can be approximated
arbitrarily well by a piecewise-stationary GPP, and we use that structure to obtain an
explicit transient approximation formula particularly convenient for modeling.

In this paper, we continue to study the much larger class of non-stationary GPPs.
Theorem 2 of [9] establishes that a GPP ̂N with parameter triple (̂κ(t), γ , β) can
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be represented as a deterministic time-transformation of a stationary GPP N with
parameter triple (κ(t), γ , β), where κ is of the form in (1.2). That property facilitates
applying the composition map and the continuous-mapping theorem to establish the
more general heavy-traffic limit, but more is required to obtain useful results.

First, we need to specify a heavy-traffic regime. Our approach is to make the system
critically loaded over an initial time interval of interest. To achieve that, we let the
instantaneous traffic intensity approach 1 uniformly over such intervals. But that in
turn depends on a definition of the arrival rate. For that, Theorem 1 here determines
the arrival rate λ(t) (which is defined like λ∗(t |Ht ) above, but is not conditioned
on the history) and shows that a GPP exists with any integrable rate function. As
a consequence, Corollary 2 here shows that the parameter triples (λ(t), γ , β) and
(κ(t), γ , β) are homeomorphic representations of a GPP. Going forward, we use the
representation (λ(t), γ , β), which directly specifies the rate.

Because of the non-stationarity, the diffusion approximation for the transient dis-
tribution depends on the entire rate function λ(t). In the first paper, we exploit full
stationarity, which corresponds to the case where λ(t) is constant. In this paper, we
allow the rate function to be a general (positive) function. In order to obtain a tran-
sient distribution that depends on a finite number of parameters, we apply Theorem 1
in Corollary 3 to characterize a piecewise-stationary GPP, which we refer to as a
ψk − GPP (when there are k pieces). The rate function for a ψk − GPP is constant
on each piece, and it follows that a ψk − GPP has k + 2 parameters. Corollary 4
then shows any GPP can be represented as a limit of ψk − GPPs. We envision useful
applications having relatively small k.

To achieve the desired critical loading here,we consider a sequence ofGPPs indexed
by n with parameter triples (λn(t), γ n , βn) = (nζ n(t), γ , nb). We then specify the
scaling by

n1/2
(

ζ n − bu
) → η in D and n1/2

(

μn − b
) → μ inR, (1.3)

where the M1 topology is used on the function space D, u(t) ≡ 1 is the unit func-
tion, and the μn are scalar service rates. (The M1 topology is used throughout rather
than a more conventional topology because we either require discontinuous limits
approached by continuous functions, for example in Corollaries 2 and 3, or we wish
to allow them, as we do in (1.3).) The limit function η and scalar μ define the mean
of the limit process for the queue’s net input process. In particular, η reflects its non-
stationary nature. As a consequence of (1.3), the queue’s instantaneous traffic intensity
function ρn(t), defined as

ρn(t) ≡ λ
n
(t)/

(

nμn) = ζ n(t)/μn , (1.4)

will approach one uniformly over compact intervals (u.o.c.) as n → ∞. With that
scaling, we establish a functional central limit theorem (FCLT) for the arrival process
and the desiredHTLT for theworkload process in theP/GI/1 queue. However, the limit
processes both depend on the limit function η in (1.3). In order to obtain more useful
approximations, in Sect. 3.3 we apply the limit theorems to develop an asymptotic
approximation that depends instead on the rate function and the other parameters of
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the original P/GI/1 model. To the best of our knowledge, this approach has never
been proposed before. In fact, we think that this approximation approach is new even
for an Mt arrival process, i.e., for a non-homogeneous Poisson process (NHPP). In
that regard, we mention that results for the NHPP arrival process are covered as a
special case here by just setting γ = 0 (which requires minor modifications in some
definitions to avoid dividing by 0).

Since the GPP is an arrival process with a time-varying rate, the limits here are
related to previous ones for time-varying single-server queues; see [21], especially
Sect. 7.2 for a review. The papers [15] and [22] are relevant. Particularly relevant are
the HTLTs for the Mt /Mt /1 model in [15] obtained from the strong approximation.
The scaling in (1.3) here and the approximation scheme in Sect. 3.3 here are different
than used previously.

This paper is organized as follows: In Sect. 2, after reviewing GPPs, we establish
Theorem 1, providing the new representation of a GPP in terms of the rate function,
and show how to construct piecewise-stationary GPPs. In Sect. 3, we establish limit
theorems for the arrival and workload processes and asymptotically correct approx-
imations for those processes. Theorem 2 is the FCLT for the arrival process, while
Theorem 3 is the HTLT for the workload process. The new asymptotic approximation
is then developed in Sect. 3.3. Finally, Theorem 4 in Sect. 3.4 establishes the approx-
imating transient workload distribution. In Sect. 4, we prove two lemmas used in the
proof of Theorem 4. Finally, we provide some concluding discussion in Sect. 5.

2 A piecewise-stationary Generalized Polya Process (Ãk − GPP)

In this section, we briefly review GPPs, as developed in [6, 9, 13]. Then, we show
how to construct a piecewise-stationary GPP with k pieces, which we refer to as a
ψk − GPP. We then show that, under regularity conditions, a general GPP can be
approximated by a ψk − GPP for suitably large k.

A GPP with parameter triple (κ(t), γ , β) is defined in [6] as the orderly point
process {N (t) : t ≥ 0} with N (0) = 0 and stochastic intensity function

λ∗(t |Ht ) ≡ lim
h→0

P(N (t + h) − N (t) = 1|Ht )

h
= lim

h→0

E[N (t + h) − N (t)|Ht ]

h
= (γ N (t−) + β)κ(t), (2.1)

where Ht denotes the internal history of N up to time t , κ(t) is a positive-integrable
real-valued function, while β and γ are positive real numbers. For background on
point processes and their intensity functions, see Sect. 3.3 and 7.2 of [7].

A GPP can be a stationary point process (meaning that it possesses stationary
increments) although GPPs are not in general stationary processes.

Proposition 1 (Theorem 1 of [9]) The GPP Ñ with parameter triple (κ(t), γ , β),
where

κ(t) = 1/(γ t + 1)

123



Queueing Systems (2022) 101:113–135 117

as in (1.2) is a stationary point process with mean and covariance functions

E
[

Ñ (t)
]

= βt andCov
[

Ñ (s), Ñ (t)
]

= βs(1 + γ t) for 0 ≤ s ≤ t . (2.2)

Sketch of proof . By Theorem 1 of [6], if N is a GPP with parameter triple
(κ(t), γ , β) and

K(t) =
∫ t

0
κ(s)ds, (2.3)

then N (t) has a negative binomial distribution with mean E[N (t)] =
τ p(t)/(1 − p(t)) and Var [N (t)] = τ p(t)/(1 − p(t))2, where τ ≡ γ /β and
p(t) = 1 − exp(−γK(t)). If (1.2) holds, then K(t) = γ −1log(γ t + 1), and
1 − p(t) = exp(−γK(t)) = κ(t). The mean and variance of Ñ (t) easily follow.
The proof of the stationarity of Ñ from Theorem 1 of [9] uses the property from The-
orem 3 and Remark 3 of [6] that the times of increase of a GPP on the interval [s, t],
conditioned on N (t)− N (s) = n, have the distribution of the order statistics of n i.i.d
random variables.When (1.2) holds, those random variables are uniformly distributed.
The covariance function in (2.2) follows easily from the mean and variance functions
and the stationarity of Ñ . �

The GPP Ñ from Proposition 1 is called a stationary-increment GPP, or a ψ −GPP
for short, and is specified by the parameter pair (γ , β). The classical Polya process
defined on page 435 of [8] is the ψ − GPP with parameter pair (γ , 1).

In this paper, we will make strong use of Theorem 2 of [9], which shows that a
general GPP can be represented as a deterministic time transformation of a ψ −GPP.

We thus restate it here as Proposition 2. For that purpose, let
d= denote equality in

distribution for stochastic processes.

Proposition 2 (Theorem 2 of [9]) Let N be a GPP with parameter triple (κ(t), γ , β)

and Ñ be the ψ − GPP with parameter pair (γ , β). Then,

{N (t) : t ≥ 0} d=
{

Ñ (M(t)) : t ≥ 0
}

(2.4)

if and only if

M(t) = γ −1
(

eγ K (t) − 1
)

for t ≥ 0, (2.5)

where K (t) is defined in (2.3).

We can apply Proposition 2 to derive properties of non-stationary GPPs from those
of a corresponding ψ − GPP, as illustrated by the following corollary.

Corollary 1 If N is a GPP with parameter triple (κ(t), γ , β),
then E[N (t)] = βγ −1(exp(γK(t)) − 1) and Cov[N (s), N (t)] =
βγ −1exp(γK(t))(exp(γK(s)) − 1) for 0 ≤ s ≤ t .
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Proof If Ñ is the ψ − GPP with parameter pair (γ , β), then E[Ñ (t)] = βt and
Cov[Ñ (s)Ñ (t)] = βs(1 + γ t) by Proposition 1.We then obtain the result by applying
Proposition 2. �

It will be helpful to express results for a GPP in terms of its instantaneous mean
function λ(t) and its mean function �(t) which we define and characterize next. The
instantaneousmean functionλ(t) is defined asλ(t) ≡ limh→0E[N (t + h) − N (t)]/h.
The instantaneous mean function λ(t) differs from the stochastic intensity function
λ∗(t |Ht ) in (2.1) by not conditioning on the history. The instantaneous mean function
is also known as the arrival rate function. We will sometimes refer to it as the rate or
the mean rate; for instance, see Remark 2.

We show that, for given parameter pair (γ , β), the instantaneous mean function
λ(t) is a one-to-one function of the parameter function κ(t).

Theorem 1 (instantaneous mean and mean functions) If N is a GPP with parameter
triple (κ(t), γ , β), then the instantaneous mean function can be expressed as:

λ(t) ≡ limh→0E[N (t + h) − N (t)]/h = βκ(t)exp(γK(t)), (2.6)

for K(t) in (2.3), so that λ(t) is integrable. As a consequence, the associated mean
function is

�(t) ≡ E[N (t)] = βM(t) =
∫ t

0
λ(v)dv = βexp(γK(t)) − β

γ
, (2.7)

where M(t) is defined in (2.5), and

E[N (s + t) − N (s)] = �(t + s) − �(s) =
∫ s+t

s
λ(v)dv, (2.8)

Cov[N (s + t) − N (s), N (s + u) − N (s)] =
(∫ s+t

s
λ(v)dv

)(

1 + τ

∫ s+u

s
λ(v)dv

)

,

(2.9)

κ(t) = λ(t)/(β + γ�(t)), (2.10)

and

λ∗(t |Ht ) ≡ τN (t−) + 1

τ�(s) + 1
λ(t) (2.11)

for s ≥ 0 and 0 ≤ t ≤ u, where τ ≡ γ /β.

Proof The result in (2.7) follows from Corollary 1. The results in (2.6) and (2.8)
follow from (2.7). By Corollary 1 and (2.7), �(t , u) ≡ Cov[N (t), N (u)] =
(

∫ t
0λ(v)dv

)

(

1 + τ
∫ u
0λ(v)dv

)

for 0 ≤ t ≤ u. The result in (2.9) is obtained for s ≥ 0

through the identity Cov[N (s + t) − N (s), N (s + u) − N (s)] = �(s + t , s + u) −
�(s, s + u)−�(s, s + t)+�(s, s). By (2.6) and (2.7), the result in (2.10) holds, and
(2.11) follows using (2.1). �
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Wewill consider limits of GPPs. For this purpose, wewill exploit the function space
D of all right-continuous real-valued functions on the semi-infinite interval [0 , ∞)

with limits from the left, endowed with one of the Skorohod topologies, as in Sects.
3.3 and 11.5 and Chapter 12 of [20]. These topologies reduce to uniform convergence
over compact sets (u.o.c.) when the limit function is continuous. In order to allow
for continuous functions converging to discontinuous limits, we use the Skorohod M1
topology. Convergence in D under theM1 metric is implied by u.o.c. convergence. The
use ofM1 to denote ametric should not be confusedwith the use ofM in (2.5) to denote
the time-transformation function. Throughout, ⇒ will denote weak convergence of
a sequence of random elements of a given topological space. Let

(

Dk , M1
)

be the
product space with the product topology. (It is used in the proofs of Theorem 2 and
Corollary 5.)

Corollary 2 The function κ(t) is an element of (D, M1) if and only if λ(t) is an
element of (D, M1), and (κ(t), γ , β) and (λ(t), γ , β) constitute homeomorphic
representations of a GPP.

Proof The one-to-one relationship is established by Theorem 1. The continuity map
from κ(t) to λ(t) and its inverse follow from their explicit representations in (2.6)
and (2.10), because converge of functions in (D, M1) implies convergence of their
integrals; see [17] for background. �

Theorem 1 implies one-to-one relationships between (κ(t), γ , β), (λ(t), γ , β),
(K(t), γ , β), ((t), γ , β), and (M(t), γ , β). Convergence of (κ(t), γ , β) or
(λ(t), γ , β) implies convergence of any of the others, but the converse is not true
because convergence of functions does not imply convergence of their derivatives.
Therefore, Corollary 2 describes the only homeomorphic representation of a GPP
from those among those one-to-one relationships.

Remark 1 (instantaneous mean representation of a GPP). We will use the
(λ(t), γ , β) representation of a GPP for results that follow. In that representation,
the first element is the GPP’s instantaneous mean, and the second and third elements
are always positive, just as for the (κ(t), γ , β) representation. As an example, GPPs
with parameter triples (λ(t), γ , β) and (λ(t), γ , nβ) have the same instantaneous
mean.

We now apply Theorem 1 to characterize a ψk −GPP, a piecewise-stationary GPP
with k pieces.

Corollary 3 (characterization of a ψk − GPP). If N is a GPP with parameter triple
(λ(t), γ , β), where

λ(t) = λi u(t) for ti−1 ≤ t < ti and 1 ≤ i ≤ k ≤ ∞ (2.12)

for real λi > 0, u(t) ≡ 1, and t0 ≡ 0, then

�(t) ≡ E[N (t)] = βM(t) =
i−1
∑

j=1

λ j
(

t j − t j−1
)+ λi (t − ti−1) (2.13)

123



120 Queueing Systems (2022) 101:113–135

for ti−1 ≤ t < ti and 1 ≤ i ≤ k ≤ ∞, so that the instantaneous mean λ(t) is
piecewise constant and the mean �(t) is continuous and piecewise linear,

E[N (s + t) − N (s)] = λi t (2.14)

and

Cov[N (s + t) − N (s), N (s + u) − N (s)] = λi t(1 + τλiu) (2.15)

for ti−1 ≤ s < ti and 0 ≤ t ≤ u < ti − s, where τ = γ /β. Furthermore, N is
stationary on ti−1 ≤ t < ti for each i ≥ 1.

Proof The expressions in (2.13)-(2.15) are special cases of the results in Theorem 1.
By Theorem 1 and (2.13), a ψk − GPP can be represented as a piecewise linear time
transformation of aψ −GPP, in which time is scaled by a constant on each piece. The
stationarity of theψ −GPP on each piece is then preserved by the time transformation,
so that a ψk − GPP is piecewise stationary. �

Remark 2 (GPPs with constant or piecewise-constant rates). As a consequence of
Corollary 3, a GPP has a piecewise-constant instantaneous mean function λ(t) if and
only if it is a ψk −GPP. In particular, a GPP has a constant rate c if and only if it is a
ψ −GPP with parameter triple (λ(t) = cu(t), γ , β). Theψ −GPP Ñ with parameter
pair (γ , β) defined in terms of κ(t) in (1.2) arises as the special case when c = β.

We will consider a sequence of GPPs indexed by n with parameter triples
(λn(t), γ n , βn), where λn(t) will denote the instantaneous mean function of the
nth GPP in the sequence. We will then define the mean function �n(t) and time-
transformation function Mn(t) to be

�n(t) ≡
∫ t

0
λn(s)ds = βnMn

(t), (2.16)

consistently with the definitions in Theorem 1.

Proposition 3 (continuity for GPPs) If ̂Nn is a GPP with parameter triple
(λn(t), γ , β) for n ≥ 1, where λn is in D, and λn → λ > 0 in (D, M1) as n → ∞,
then ̂Nn ⇒ N in (D, M1), where N is a GPP with parameter triple (λ(t), γ , β).

Proof Under the assumptions, Mn = β−1�
n → β−1� = M in (D, M1), where

�n(t) andMn(t) are defined in (2.16) and�(t) andM(t) are defined in (2.7). Applying
Proposition 2 twice,

̂Nn d= Ñ ◦ Mn ⇒ Ñ ◦ M
d= N in (D, M1),

where the weak convergence step follows from continuity of the composition map by
applying Theorem 13.2.3 of [20], which uses the fact that M is continuous and strictly
increasing. �
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Corollary 4 If N is a GPP with parameter triple (λ(t), γ , β) where λ is in D, then
there exists a sequence ̂Nn of ψk −GPPs such that ̂Nn ⇒ Nin (D, M1) as n → ∞.

Proof The limit follows from Proposition 3 and Theorem 12.2.2 of [20], which states
that any function in D can be represented as the u.o.c. convergence of a sequence of
piecewise-constant functions. At this point, theM1 topology is used only to ensure that
the space D is endowed with the usual Kolmogorov σ− field; see Sect. 11.5.3 of [20]
for further discussion. We can obtain u.o.c. convergence because we can choose the
discontinuity points of the converging function tomatch those of the limit function. �

3 The P/GI/1 workload in heavy traffic

Our purpose now is to obtain a HTLT for a sequence ofP/GI/1 queues as the associated
sequence of instantaneous time-dependent traffic intensities approaches one u.o.c.
and to apply that limit to develop tractable approximations. In Sect. 3.1, we derive
a FCLT for the arrival processes. In Sect. 3.2, we define the net input and workload
processes for a P/GI/1 queue and derive an HTLT describing them. In Sect. 3.3, we
apply the HTLT to develop asymptotic approximations for the net input and workload
processes as functions of their parameters. Finally, in Sect. 3.4 we provide a tractable
approximation for the transient distribution of the workload process.

3.1 The functional central limit theorem for the arrival process

We first state a FCLT for a sequence of ψ −GPPs approaching a zero-mean Gaussian
Markov process N with stationary increments, referred to as an ψ − GMP in [9, 10].

Because the limit process N is a ψ −GMP, it is a zero-mean Gaussian process, so
that its distribution (as a process, i.e., its finite-dimensional distributions) is determined
by its covariance function. As shown in [14], if A is a ψ − GMP with parameter pair
(α∗ > 0, β∗ ≤ 0), then

Cov[A(s), A(t)] = s
(

α∗ − β∗t
)

for 0 ≤ s ≤ t . (3.1)

A ψ −GMP is continuous with probability one. We will apply the following FCLT
forψ −GPPs from [9] together with Proposition 2 to obtain a FCLT for non-stationary
GPPs.

Proposition 4 (FCLT for ψ − GPPs from [3]) If Ñn(t)≡ n−1/2(Ñ n(t) − nbt) for
n ≥ 1, where Ñ n is aψ−GPPwith parameter pair (γ , nb), then Ñn ⇒ N in (D, M1)

as n → ∞, where Nis the ψ − GMP with parameter pair (α∗, β∗) = (b, −bγ ).

Proof By Proposition 3 of [9], Ñ n has the same distribution as the superposition
of n i.i.d ψ − GPPs each with parameter pair (γ , b). The result is then implied by
Theorem 4 of [9], since u.o.c. convergence there to a continuous limit is equivalent to
M1 convergence. �

We now establish convergence of a sequence of non-stationary GPPs.
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Theorem 2 (convergence to a ψ − GMP with time-dependent drift) If

Nn(t)≡ n−1/2(Nn(t) − nbt
)

for n ≥ 1, (3.2)

where Nn is a GPP with parameter triple (λn(t), γ n , βn) = (nζ n(t), γ , nb) for
ζ n > 0 a deterministic element of D and b > 0, and

n1/2
(

ζ n − bu
) → η in (D, M1) as n → ∞ (3.3)

(where η need not be continuous), then

Nn ⇒ N + ν in (D, M1), (3.4)

where N is the ψ − GMP with parameter pair (α∗, β∗) = (b, −bγ ) and ν(t) =
∫ t
0η(s)ds.

Proof Using (2.16),

Mn(t) = 1

β

∫ t

0
λn(v)dv = 1

b

∫ t

0
ζ n(v)dv ≡ 1

b
Zn(t). (3.5)

Then, (3.3) implies that

n1/2
(

Zn − be
) → ν in (D, M1) as n → ∞, (3.6)

so that

Mn≡ n1/2
(

Mn − e
) → b−1ν in (D, M1) as n → ∞. (3.7)

By Proposition 2 and the definitions from Proposition 4,

Nn(t) ≡ n−1/2(Nn(t) − nbt
) d= n−1/2

(

Ñ n(Mn(t)
)− nbt

)

= Ñn
(

Mn(t)
)+ bMn(t)

Then, (Mn , Mn) → (

e, b−1ν
)

in
(

D2, M1
)

by (3.7). Applying Theorem 11.4.5 of

[20],
(

Ñn , Mn , Mn

)

→ (

N , e, b−1ν
)

in
(

D3, M1
)

. The limit preservation in Theo-

rem 13.3.1 of [20] then yields

Nn
d=
(

Ñn ◦ Mn + bMn

)

⇒ N + ν in (D, M1) as n → ∞. �

Remark 3 For an example of a sequence satisfying (3.3), let ζ n = bu + n−1/2η for
any η in D.
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3.2 Heavy traffic limit theorem for the queue

We apply Theorem 2 to develop the HTLT for a sequence of P/GI/1 models, where
the arrival process for each model n is the GPP Nn defined in Proposition 5. Let
{Vk : k ≥ 1} be the sequence of service requirements of successive arrivals, which we
assume for each of the models. There are two key assumptions. The first is that the
service requirements are independent of the arrival processes. (That conditions could
be replaced by joint convergence.) The second key assumption is that the associated
sequence of partial sums satisfies a FCLT. In particular, let

Sn(t) = n−1/2

⎛

⎝


nt�
∑

k=1

Vk − nt

⎞

⎠, t ≥ 0 (3.8)

Our key assumption is that

Sn ⇒ cs B in (D, M1) as n → ∞, (3.9)

where B is standard (0 drift, unit variance) Brownian motion. This is the classical
Donsker’s theorem in Sect. 4.3 of [20].

A sufficient condition for (3.9) is for the sequence {Vk : k ≥ 1} to be i.i.d. with
E[Vk] = 1 and Var [Vk] = c2s . That puts us in the setting of the P/GI/1 queue, but the
i.i.d. assumption can be relaxed, as illustrated by Sect. 4.4 of [20].

Then, let

T n(t) ≡
Nn(t)
∑

k=1

Vk (3.10)

be the total input process over the interval [0, t] for model n. It represents the total
service requirements of all arrivals in Nn over the interval [0, t]. In this context, the
net input process is

Xn(t) ≡ T n(t) − nμnt , t ≥ 0, (3.11)

where μn is the constant deterministic rate that service is performed when there is
work waiting to be served. The corresponding workload process is then defined as the
reflection of the net input process, i.e.,

Wn ≡ φ
(

Xn , Wn(0)
)

, (3.12)

where φ : D × R → D is the reflection map, defined by

φ(x)(t , w(0)) = w(0) + x(t) − inf
0≤s≤t

{min{w(0) + x(s), 0}} for t ≥ 0. (3.13)
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The reflection map describes the workload (or service backlog) for a single-server
queuewith an infinite buffer. For additional properties of the reflectionmap, see Sect. 2
of Chapter 2 on pages 19–21 of [11].

We can obtain an FCLT for T n(t) because it is a random sum, as discussed in
Sect. 7.4 of [20], or more generally in Sect. 13.3 of [20] (as needed here, because
we will apply Proposition 4, which has the ψ − GMP limit N instead of a Brownian
motion limit). We can then use the FCLT for T n(t) to obtain limits Xn(t) and Wn(t).
In particular, let

Nn(t)≡ n−1/2(Nn(t) − nbt
)

, Tn(t)≡ n−1/2(T n(t) − nbt
)

, (3.14)

Xn(t) ≡ n−1/2Xn(t), andWn(t) ≡ n−1/2Wn(t). (3.15)

Theorem 3 (HTLT for a P/GI/1 queue with non-stationary arrival process) If
(Nn , Tn , Xn , Wn) is defined by (3.14)–(3.15), where the definitions in (3.10)-(3.12)
apply, Nn is a GPP with parameter triple (λn(t), γ n , βn) = (nζ n(t), γ , nb) for
ζ n > 0 in D, and

n1/2
(

ζ n − bu
) → η in (D, M1), n

1/2(μn − b
) → μ inR,

andWn(0) → W (0) inR+ as n → ∞, (3.16)

then (Nn , Tn , Xn , Wn) ⇒ (

N + ν, T + ν, X , W
)

in
(

D4, M1
)

, where N is the ψ −
GMP with parameter pair (α∗, β∗) = (b, −bγ ), T is the ψ − GMP with parameter
pair (α∗, β∗) = (

b + bc2s , −bγ
)

, ν(t) = ∫ t
0η(s)ds, X ≡ ν − μe + T , and W ≡

φ
(

X , W (0)
)

.

Proof Let Sn(t) = ∑
nt�
k=1 Vk , so that Sn(t) = n−1/2(Sn(t) − nt) by (3.8). Corollary

13.3.2 of [20] plus Theorem 2 then imply that

Tn = n−1/2(Sn ◦ (n−1Nn)− nbe
) = Sn ◦ (n−1Nn)+ Nn = Sn ◦ (n−1/2Nn + be

)+ Nn

⇒ cs B ◦ (be) + N + ν = √
bcs B + N + ν ≡ T + ν in (D, M1). (3.17)

Using (3.16) and (3.17),

Xn ≡ n−1/2Xn = n−1/2(T n − nμne
) = n−1/2(T n − nbe

)− n−1/2(nμne − nbe
)

= Tn − n1/2
(

μn − b
)

e ⇒ T + ν − μe in (D, M1). (3.18)

The conclusion about joint convergence then follows by the continuous mapping
theorem. �

Remark 4 (Double sequences) It might be more natural to assume that there is a
double sequence of service requirements, i.e., that there is a sequence

{

V n
k : k ≥ 1

}

of
service requirements of successive arrivals in model n for each n ≥ 1. We would then
need a generalization of Donsker’s theorem in Sect. 4.3 of [20] to double sequences
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or triangular arrays, because we have a sequence k for each n. An early statement of
the direct extension of Donsker’s theorem to double sequences or triangular arrays
appears on p. 220 of [18]. The extension is also discussed in Sect. 2.4. of the Internet
Supplement to [20]. It requires an additional regularity condition. It would be natural
to require that V n

k have uniformly bounded third moments. Under appropriate assump-
tions, the same conclusions from Theorem 2 would be obtained when there is a double
sequence of service requirements.

3.3 Asymptotic approximation for the prelimit sequence

In order to develop approximations that depend on the parameter triples of the converg-
ingprocesses,wewant to replace the unspecified functionν in the limit fromTheorem3
by a function depending directly on the parameter triple.We provide asymptotic justifi-
cation for that step now. In Sect. 3.4, we apply the resulting asymptotic approximation
to obtain explicit distributional results under additional assumptions about the instan-
taneous mean function of the arrival process.

A new sequence will now be defined and its asymptotic equivalence to the prelimit
sequence from Theorem 2 proven. For that purpose, dM1(x , y) will denote the M1
metric for x and y in D or D2.

Corollary 5 (asymptotically equivalent sequence) Using the definitions and assump-
tions from Theorem 3, let

X́n ≡ nZn − nμne + n1/2T and Ẃ n ≡ φ
(

X́n , Ẃ n(0)
)

for n ≥ 1, (3.19)

where Zn(t) ≡ ∫ t
0ζ

n(v)dv, Ẃ n(0)
d= Wn(0), and T is the ψ −GMP with parameter

pair (α∗, β∗) = (

b + bc2s , −bγ
)

. Then

dM1

((

n−1/2Xn , n−1/2Wn
)

,
(

n−1/2 X́n , n−1/2Ẃ n
))

⇒ 0 inR as n → ∞. (3.20)

Proof By Theorem 3,

(Tn , Xn , Wn) ⇒ (

T + ν, X , W
)

in
(

D3, M1

)

, (3.21)

where X = ν − μe + T . Let X́n ≡ n
−1
2 X́n and Ẃn ≡ n

−1
2 Ẃ n . Applying (3.5), (3.7),

and (3.16),

X́n = n−1/2
(

nbMn − nμne + n1/2T
)

= bn1/2
(

Mn − e
)− n1/2

(

μn − b
)

e + T

⇒ ν − μe + T = X in (D, M1).

(3.22)
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Using the assumption that Ẃ n(0)
d= Wn(0), the continuous mapping theorem then

implies that

(

T , X́n , Ẃn

)

⇒ (

T , X , W
)

in
(

D3, M1

)

. (3.23)

By (3.21), Tn −ν ⇒ T in (D, M1). We apply the Skorohod representation theorem
from Theorem 3.2.2 of [20] to obtain dM1

(

Tn − ν, T
) ⇒ 0 in R. The convergence

together theorem from Theorem 11.4.7 of [20] then implies that.

(

Tn − ν, T
) ⇒ (

T , T
)

in
(

D2, M1

)

. (3.24)

Since Xn andWn are functions of Tn, and X́n and Ẃn are functions of T ,we obtain

(

n−1/2Xn , n−1/2 X́n , n−1/2Wn , n−1/2Ẃ n
)

⇒ (

X , X , W , W
)

in
(

D4, M1

)

(3.25)

using (3.21), (3.23), (3.24), and the continuous mapping theorem. The conclusion in
(3.20) is then a consequence of (3.25) and the converse of the convergence together
theorem in Theorem 11.4.8 of [20]. �

For the prelimit sequence satisfying the conditions of Corollary 5, (3.22) implies
that

(

Xn ≡ Nn − nμne, Wn) d≈
(

X́n ≡ nZn − nμne + n1/2T , Ẃ n
)

(3.26)

with error that is o
(

n1/2
)

as n→∞ on bounded intervals, i.e., the error is asymptotically
negligible for large n after dividing by n1/2. On the right-hand side, n1/2T is the zero-
mean Gaussian process with distribution determined by Cov

[

n1/2T (s), n1/2T (t)
] =

nbs
(

1 + c2s + γ t
)

for 0 ≤ s ≤ t . By (3.3), it is therefore the ψ − GMP with
parameter pair (α∗, β∗) = (

nb
(

1 + c2s
)

, −nbγ
)

. On the left-hand side, Nn is a GPP
with parameter triple (λn(t), γ n , βn) = (nζ n(t), γ , nb). We can therefore eliminate
explicit reference to n from (3.26) for any particular n by substituting λ(t) ≡ nζ n(t),

�(t) ≡ nZn(t), β ≡ nb, μ ≡ nμn , and T (t) ≡ n1/2T (t). With those substitutions,
(3.26) becomes

(X ≡ N − μe, W ≡ φ(X , W (0)))
d≈
(

X́ ≡ � − μe + T , Ẃ ≡ φ
(

X́ , Ẃ (0)
))

,

(3.27)

where N is then the GPP with parameter triple (λ(t), γ , β), T is the ψ − GMP with
parameter pair (α∗, β∗) = (

β + βc2s , −βγ
)

, andμ is the service rate. The parameters
β, μ, λ(t) are large when the index n is large before the substitutions.

Recall that �(t) = ∫ t
0λ(s)ds is the mean function of N and observe that the right-

hand side of (3.22) is then determined by the parameter triple (λ(t), γ , β), the squared
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coefficient of variation c2s , and the service rate μ. As with approximations obtained
from classical HTLTs, the approximation in (3.27) is not necessarily accurate for
particular choices of those parameters, but Theorem 1 provides the qualitative criteria
that μ and λ(t) both should be close to β for the approximations to be accurate.

3.4 The transient distribution

According to the results in Sect. 3.3, we can approximate the workload process for a
P/GI/1 queue by the reflection of a ψ −GMP with time-dependent drift. A ψ −GMP
is a generalization of Brownian motion, and the transient distribution of reflected
Brownian motion (RBM) with constant drift is well known; see Chapter 1 of [11],
Chapter 8 of [16, 1], and [2]. The transient distribution of a reflected ψ − GMP with
constant drift was derived in [10] and applied in [9] for ψ −GPPs. We generalize that
result for the casewhen the drift is time-dependent to describe the transient distribution
of the reflection on an interval conditional on history up to the start of the interval.
That holds when the drift is any time-dependent function in D prior to the interval but
is constant on the interval. The time-dependent drift prior to the interval enters into
the transient distribution on the interval because the increments of a ψ − GMP are
dependent.

The proof uses two lemmas from Sect. 4. Lemma 1 restates a result from (30) in [9]
on the transient distribution of a reflected ψ −GMP with constant drift. A new proof
based on the proof for RBM in [11] is provided. Lemma 2 is a new result describing the
transient distribution of aψ−GMPwith time-dependent drift conditional on its history.
That result is analogous to the restart property for GPPs described in Proposition 1
of [9] and originally derived in [6]. The lemmas are applied using the memoryless
property of the reflection map from Proposition 10 on page 21 of [11].

The approximation in (3.27) reduces as a special case to

(X(s), W (s), W (s + t))
d≈
(

X́(s), Ẃ (s), Ẃ (s + t)
)

for s, t ≥ 0, (3.28)

where X is the net input process andW is the workload process for a P/D/1 queue with
service rate μ, squared coefficient of variation c2s , and arrival process with parameter
triple (λ(t), γ , β), and where

X́(t) ≡
∫ t

0
λ(s)ds − μt + T (t) and Ẃ (t) ≡ φ

(

X́
)(

t , Ẃ (0)
)

for t ≥ 0, (3.29)

while T is the ψ − GMP with parameter pair (α∗, β∗) = (

β + βc2s , −βγ
)

.

Then,

P(W (s + h) ≤ ws+h |X(s), W (s) ) ≈ P
(

Ẃ (s + h) ≤ ws+h

∣

∣

∣X́(s), Ẃ (s)
)

for s, t ≥ 0.

(3.30)
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We provide an explicit expression for the cumulative distribution function (cdf) on
the right-hand side.

Theorem 4 If X́ and Ẃ are defined as in (3.29), where λ(v) = λ(s) for s ≤ v ≤ s+ t

and P
(

Ẃ (0) = w0

)

= 1, then

P
(

Ẃ (s + t) ≤ ws+t

∣

∣

∣X́(s) = xs , Ẃ (s) = ws

)

= F(t , ws+t ), (3.31)

where

F(t , w) = �

⎛

⎝

w − ws − ωs t
√

t
(

α∗ − β∗
s t
)

⎞

⎠− e
−2w(β∗

s w−α∗ωs )

α∗2 �

⎛

⎝

(

2β∗
s w − α∗ωs

)

t − α∗(w + ws)

α∗
√

t
(

α∗ − β∗
s t
)

⎞

⎠,

(3.32)

while �(t) is the standard normal cdf, and

α∗ = β
(

1 + c2s
)

, β∗
s ≡ −βγ

(

1 + c2s
)

1 + c2s + γ s
, andωs ≡ λ(s) − μ + γ

(

xs − (∫ s
0λ(v)dv − μs

))

1 + c2s + γ s
.

(3.33)

Proof Let Ẃs(h) ≡ Ẃ (s + h), ds X́(h) ≡ X́(s + h) − X́(s), and X́s(h) ≡
(

ds X́(h)

∣

∣

∣X́(s) = xs
)

for 0 ≤ h ≤ t . By the memoryless property of the reflection

map from Proposition 10 on page 21 of [11], Ẃs ≡ φ
(

ds X́ , Ẃ (s)
)

with probability

1. Then, with probability 1,

(

Ẃs

∣

∣

∣X́(s) = xs , Ẃ (s) = ws

)

=
(

φ
(

ds X́ , Ẃ (s)
)∣

∣

∣X́(s) = xs , Ẃ (s) = ws

)

=
(

φ
(

ds X́ , ws

)∣

∣

∣X́(s) = xs
)

= φ
(

ws , X́s

)

(3.34)

where the next-to-last equality holds by theMarkov property of X́ , the definition of Ẃ ,

and the assumption that P
(

Ẃ (0) = w0

)

= 1 (which implies that X́ is independent

of Ẃ (0)). By Lemma 2 in Sect. 4, X́s in the final expression of (3.34) is a ψ − GMP
on [0, t] with parameter pair

(

α∗, β∗
s

)

and drift ωs . The result in (3.31)–(3.33) then
follows from Lemma 1 in Sect. 4 with the substitutions there of α∗ = β, β∗ = β∗

s and
ω = ωs in (3.33). �

Theorem 4 may be applied when the instantaneous mean function has been esti-
mated for the past, a forecast is needed, and the best available estimate of the mean
function over the forecast horizon is the estimate that has been obtained for its value
at the current time. To estimate the instantaneous mean function, a parametric form
would generally need to be assumed. Corollary 4 suggests that notmuch generalitywill
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be lost by assuming that the arrival process is aψk −GPP, for which the instantaneous
mean function is piecewise constant.

We describe how Theorem 4 applies when the arrival process is a ψk − GPP.

Corollary 6 If X́ and Ẃ are defined as in (3.29), where P
(

Ẃ (0) = w0

)

= 1 and

λ(t) = λi u(t) for ti−1 ≤ t < ti and 1 ≤ i ≤ k ≤ ∞, and if ti−1 ≤ s < s + t < ti for
some i , then (3.31)-(3.33) hold, where

ωs = λi − μ +
γ
(

xs −
(

λi (s − ti−1) +
(

∑i−1
j=1 λ j

(

t j − t j−1
)

)

− μs
))

1 + c2s + γ s
. (3.37)

4 Lemmas for Theorem 4

We state and prove two lemmas used in the proof of Theorem 4. The lemmas are
discussed in Sect. 3.4.

A zero-mean real-valued Gaussian process {A(t) : 0 ≤ t < T} is defined in [10] to
be a ψ − GMP with parameter pair (α∗, β∗) if A(0) = 0 and Cov[A(s), A(t)] =
s(α∗ − β∗t) f or 0 ≤ s ≤ t < T, where α∗ > 0 and ∞ < β∗ < ∞. If β∗ > 0, then
it is necessary that T ≤ α∗/β∗; otherwise, T ≤ ∞. When A is defined in that way, the
process

X∗(t) ≡ ωt + A(t) for 0 ≤ t < T (4.1)

is called a ψ − GMP on [0, T) with parameter pair (α∗, β∗) and drift ω. If β∗ = 0,
then X∗ is Brownian motion with Var

[

X∗(t)
] = α∗t and drift ω.

The first lemma is a special case of Theorem 5 from [10]. We provide a different
proof below derived from first principles and closely following the proof in [11] for
the RBM case. The proof of Theorem 3 will apply the lemma when β∗ < 0. The
result below, which holds regardless of the sign of the parameter β∗, is therefore more
general than we will require for Theorem 3. Recall that φ is the reflection map defined
in (3.13).

Lemma 1 If X∗ is defined as in (4.1) and W ∗ ≡ φ(w0, X∗), then

F∗(h, w) ≡ P
(

W ∗(h) ≤ w
)

= �

(

w − w0 − ωh√
h(α∗ − β∗h)

)

− e
−2w(β∗w−α∗ω)

α∗2 �

(

(2β∗w − α∗ω)h − α∗(w + w0)

α∗√h(α∗ − β∗h)

)

, (4.2)

where w ≥ 0, 0 ≤ h < T , and �(z) ≡ (2π)−1/2∫ z
−∞exp

(−y2/2
)

dy is the standard
normal cdf.

Proof Case 1: β∗ > 0.
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Let

B(t) = 1 + tβ∗

α∗ A

(

tα∗

1 + tβ∗

)

for t ≥ 0. (4.3)

Then, B is standard Brownian motion because it is a zero-mean Gaussian process
with Cov[B(s), B(t)] = s for s ≤ t ; see page 184 of Adler [3] for a discussion of
that definition. Furthermore

Y (t) ≡ w0 + X∗
(

tα∗

1 + tβ∗

)

= w0 + ω
tα∗

1 + tβ∗ + α∗

1 + tβ∗ B(t) (4.4)

using (4.1) and (4.3).
Because 1 + sβ∗ > 0 when s ≥ 0, it follows from (4.4) that

inf
0≤s≤t

Y (s) ≤ y ⇔ inf
0≤s≤t

(

ωα∗s + α∗B(s) + (w0 − y)(1 + sβ∗)
1 + sβ∗

)

≤ 0

⇔ inf
0≤s≤t

(

ωα∗s + α∗B(s) + (w0 − y)
(

1 + sβ∗)) ≤ 0

⇔ inf
0≤s≤t

(

ηs + α∗B(s)
) ≤ y − w0,

(4.5)

where η ≡ ωα∗ + (w0 − y)β∗.
By (4.4)–(4.5),

G(x , y) ≡ P

(

Y (t) ≤ x , inf
0≤s≤t

Y (s) ≤ y

)

=
y−w0
∫

−∞

(x−y) (1+tβ∗)+y−w0
∫

b

P

(

ηt + α∗B(t) ∈ da, inf
0≤s≤t

(

ηs + α∗B(s)
) ∈ db

)

.

(4.6)

Applying the change of measure theorem on page 10 of [11] followed by the
Reflection Principle on pages 7–9 of [11], we obtain

P

(

ηt + α∗B(t) ∈ da, inf
0≤s≤t

(

ηs + α∗B(s)
) ∈ db

)

= exp

(

ηa

α∗2 − η2t

2α∗2

)

P

(

α∗B(t) ∈ da, inf
0≤s≤t

(

α∗B(s)
) ∈ db

)

= exp

(

ηa

α∗2 − η2t

2α∗2

)

√
2(a − 2b) exp

(

(a−2b)2

2α∗2t

)

dadb
√

πα∗3t3/2
. (4.7)
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Using (4.6) and (4.7),

g(x , y) ≡ d

dy

d

dx
G(x , y)

=
√
2(w0 + x − 2y)(1 + tβ∗)2e

−
(

tω2
2 + (1+tβ∗)(w0−x)ω

α∗ + (1+tβ∗)((1+β∗)(x2+w2
0)+4y(y−x−w0)+2w0 x(1−tβ∗))
2tα∗2

)

√
π t3/2α∗3 .

(4.8)

Using the definitions from (3.15), (4.2), (4.4), (4.6), and (4.8),

d

dw
F∗
(

tα∗

1 + tβ∗ , w

)

= d

dw

(

P

(

Y (t) − inf
0≤s≤t

Y (s) ≤ w, inf
0≤s≤t

Y (s) ≤ 0

)

+P

(

Y (t) ≤ w, inf
0≤s≤t

Y (s) > 0

))

= d

dw

⎛

⎝

0
∫

−∞

w+y
∫

y

g(x , y)dxdy +
w0
∫

0

w
∫

y

g(x , y)dxdy

⎞

⎠

=
0
∫

−∞
g(w + y, y)dy +

w0
∫

0

g(w, y)dy. (4.9)

Substituting (4.8) into (4.9), the integrals on the right-hand side of the final equality
in (4.9) can be solved by completing the squares in the exponent; see page 13 of
Harrison [11] for an example where completing the squares is applied in the RBM
case. We conclude that

f ∗(h, w) ≡ d

dw
F∗(h, w)

= 1√
h(α∗ − β∗h)

�
′
(

w − w0 − ωh√
h(α∗ − β∗h)

)

+ e
−2w(β∗w−α∗ω)

α∗2

⎡

⎢

⎢

⎣

4β∗w − 2α∗ω
α∗2

(

�

(

(2β∗w − α∗ω)h − α∗(w + w0)

α∗√h(α∗ − β∗h)

))

+ (α∗ − 2β∗h)

α∗√h(α∗ − β∗h)
�

′
(

(2β∗w − α∗ω)h − α∗(w + w0)

α∗√h(α∗ − β∗h)

)

⎤

⎥

⎥

⎦

(4.10)

where�
′
(z) ≡ (d/dz)�(z) is the standard normal pdf. Differentiating the cdf in (4.2),

we confirm that it agrees with the probability density function in (4.10).
Case 2: β∗ < 0.
Replace the condition in (4.3) that t ≥ 0 with the condition that 0 ≤ t <

T /(α∗ − Tβ∗). Then, the argument of A(·) in (4.3) is still constrained to the interval
[0, T ) , and the term 1 + tβ∗ in (4.3) is still always positive. With that modification,
the remainder of the proof for Case 1 holds with no additional changes. �
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The second lemma describes the distribution of a ψ − GMP with time-dependent
drift conditional on its history.

Lemma 2 Let X́(t) ≡ �(t) − μt + T (t) for t ≥ 0 where μ is real, �(t) = ∫ t
0λ(v)dv

for λ(v) real and integrable, and T is the ψ −GMP with parameter pair (α∗, β∗) =
(

β + βc2s , −βγ
)

. If λ(v) = λ(s) for 0 ≤ s ≤ v < s + T , then

X́s(t) ≡
(

X́(t + s) − X́(s)
∣

∣

∣X́(s) = xs
)

(4.11)

is a ψ − GMP on [0, T ) with parameter pair
(

α∗, β∗
s

)

and constant drift ωs , where

β∗
s ≡ −βγ

(

1 + c2s
)

1 + c2s + γ s
andωs ≡ λ(s) − μ + γ (xs − (�(s) − μs))

1 + c2s + γ s
. (4.12)

Proof Under the assumptions,

E
[

X́(s + t)
]

= �(s + t) − μ(s + t) = �(s) − μs + (λ(s) − μ)t (4.13)

for s ≥ 0 and 0 ≤ t < T, and

�(s, t) ≡ Cov
[

X́(s), X́(t)
]

= s
(

α∗ − β∗t
) = βs

(

1 + c2s + γ t
)

for 0 ≤ s ≤ t < s + T .

(4.14)

Since X́ is a Gaussian process, so is X́s . We substitute (4.13) and (4.14) into well-
known formulas for the conditional mean and covariance of the multivariate normal
distribution, for example from Sect. 6.2.2 of [19], to obtain

E
[

X́s(t)
]

= E
[

X́(t + s) − X́(s)
∣

∣

∣X́(s) = xs
]

= E
[

X́(t + s)
∣

∣

∣X́(s) = xs
]

− xs

= E
[

X́(t + s)
]

+ �(s, t + s)�(s, s)−1
(

xs − E
[

X́(s)
])

− xs

= �(s) − μs + (λ(s) − μ)t + s(α∗ − β∗(s + t))(xs − (�(s) − μs))

s(α∗ − β∗s)
− xs

= ωs t

and

Cov
[

X́s(t), X́s(u)
]

= Cov
[

X́(t + s) − X́(s), X́(u + s) − X́(s)
∣

∣

∣X́(s) = xs
]

= Cov
[

X́(t + s), X́(u + s)
∣

∣

∣X́(s) = xs
]

= �(t + s, u + s) − �(s, u + s)�(s, s)−1�(s, t + s) = t
(

α∗ − β∗
s u
)
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for 0 ≤ t ≤ u < T. The result that X́s is a ψ − GMP on [0, T) with parameter pair
(

α∗, β∗
s

)

and drift ωs then follows from the definition of a ψ − GMP with constant
drift. �

5 Concluding discussion

5.1 Extensions of GPPs

GPPs were described in [6] as a tractable generalization of NHPPs allowing for depen-
dence between increments.According to (2.11), aGPP is definedbyonly a single scaler
parameter beyond the instantaneous rate function that defines a NHPP. As discussed
in Sect. 3.4, a GPP possesses a restart property that is useful for modeling: its future
increments given its history are another GPP with modified parameters. The asymp-
totic approximation obtained in this paper for a GPP is even more tractable than a GPP
itself, as Theorem 4 illustrates, and possesses its own restart property, as Lemma 2
shows.

Generalizations of GPPs have been considered. Section 4.1 of [13] considered a
generalization where the parameters β and γ in (2.1) are themselves functions of time,
but showed that the method used in that paper to obtain an exact analytic solution for
themarginal distributions of a GPP’s state fails for the generalization. A generalization
of a GPP considered in [4] is where the linear function of N (t−) that multiplies κ(t) in
(1.1) is replaced by a general positive function. That paper derives several properties
of the resulting process including the marginal distribution of its state and a version
of the restart property.

In order to apply results on stationaryGPPs from [9], the proofs of the limit theorems
here rely on Proposition 2, which shows that a process is a GPP if and only if it is a
time-transformation of a stationary GPP. (The time transformationmust be the integral
of a density function.) The proofs here therefore do not extend directly for either of
the generalizations discussed above. It remains to study how limit theorems might be
derived for such generalizations.

5.2 Motivation in application

As indicated in [9], there has long been interest in systems with path-dependent
behavior. It is important to consider the possibility that ALOM may not be satisfied.
For example, with a queue representing the backlog of tests at a COVID-19 testing
site, a small cluster of infections randomly occurring in the area of the site early in
the epidemic may spread and influence subsequent infection rates. The intensity of
demand for testing would then depend on prior demand, increases in demand would
be self-reinforcing, and the influence of early conditions would persist. The spread
of COVID-19 was assumed to have such characteristics in [5] and modeled there as
a GPP; see (8) of [5] for the particular GPP intensity function used. It remains to
seriously study models of queues arising in such applications.
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The asymptotic approximation obtained here for the transient distribution of a
P/GI/1 queue is applicable in a critically loaded regimewhere the GPP’s instantaneous
rate λ(t) does not vary too much from the service rate μ. (The function κ(t) in (2.1)
therefore cannot differ toomuch from the form in (1.2) for a stationaryGPP.) Although
such conditions may not hold at all times in practice, the approximation developed
here may be applied over any interval where such conditions do hold, as justified
by the GPP’s restart property. Critically loaded intervals are particularly interesting
because that is where significant queue lengths are likely and their evolution differs
significantly from that of the queue’s unreflected net input process.
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