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Random quanti t ies of interest in operations research models can often be determined conveniently in the form of transforms. 
Hence, numerical t ransform inversion can be an effective way to obtain desired numerical values of  cumulative distribution 
functions, probability density functions and probability mass functions. However, numerical transform inversion has not been 
widely used. This lack of use seems to be due, at least in part, to good simple numerical inversion algorithms not being well known. 
To help remedy this situation, in this paper we present  a version of the Fourier-series method for numerically inverting probability 
generat ing functions. We obtain a simple algorithm with a convenient error bound from the discrete Poisson summation formula. 
The same general approach applies to other  transforms. 

numerical inversion of transforms; computational  probability; generating functions; Fourier-series method; Poisson summation 
fi)rmula; discrete Fourier transform 

1. Introduct ion and s u m m a r y  

The analysis of stochastic models in operations research increasingly involves algorithms for comput- 
ing probability distributions of interest. There are many useful tools for this purpose, but one that does 
not seem to be sufficiently well appreciated is numerical transform inversion. 

Numerical transform inversion is especially attractive for queueing models, because many probability 
distributions of interest can be (or have been) characterized in the form of transforms. However, 
queueing textbooks provide remarkably little guidance. Indeed, there currently seems to be a trend to 
avoid transforms altogether. While alternative techniques are often effective, we contend that it is often 
surprisingly easy to extract useful numerical results from transforms. 

To make a case for numerical transform inversion, in this paper we present and explain a simple 
algorithm for numerically inverting probability generating functions based on the Fourier-series method. 
Variants of the same method apply to other transforms, as can be seen from our longer review in [1]. We 
relate our algorithm to the literature in Remark 1 below; see [1] for further discussion. 

The Fourier-series method can be interpreted as numerically integrating a standard inversion integral 
by means of the trapezoidal rule (which turns out to be surprisingly effective). The same formula is 
obtained by using the Fourier series of an associated periodic function constructed by aliasing. (For the 
sequences considered here, the discrete Fourier transform plays the role of the Fourier series.) The key 
mathematical result is the Poisson summation formula, which identifies the discretization error associ- 
ated with the trapezoidal rule and thus helps bound it. For characteristic functions and Laplace 
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transforms of real-valued functions of a real variable, the inversion integral is over an unbounded 
interval, so that the approximating sum also needs to be truncated, which is the most difficult step. 
However, for generating functions, the inversion integral is over a finite interval, so that no truncation is 
needed. Thus, for most problems involving probability generating functions we obtain a simple computa- 
tion with a guaranteed error bound. 

Suppose that we wish to calculate terms from a sequence of real numbers {qk: q >/0} with I qk I <~ 1 
for all k using the generating function (or z-transform) 

o ~  

G ( z ) =  E qk zk ,  (1) 
k - 0 

where z is a complex number. In particular, we assume that G ( z )  can be evaluated for any given z, and 
our object is to obtain an approximation (with predetermined error bound) for q,  as a function of 
G(z  l) . . . . .  G ( z , )  foi; finitely many complex numbers z l . . . . .  z n. The bound I qkl ~< 1 automatically holds 
when qk is a probability. Hence, in the applications we have in mind, there is nothing extra to verify. This 
known bound plays an important role in the error analysis, but it is not absolutely essential. Since 
I qk I <~ 1, G ( z )  is finite and analytic for all [ z I < 1. The following theorem provides a simple algorithm 

with an error bound. (We prove the theorem in Section 2.) Let i = v rZ- 1 and let Re(z)  be the real part of 
Z. 

Theorem 1. For 0 < r < 1 and k > 1. 

r 2k 

Iqk - 4 ~ [  <<- 1 - r 2----------~" 

where 
1 2k 

qk = 2kr  k J=E' ( - 1 )  i Re (G( r  eWJi/k) ) 

{ ,/ _ 1 G ( r ) + ( _ l ) k G ( _ r ) + 2 ~  ( _ l ) ~ R e ( G ( r e ~ , j ~ / k )  . 
2krk  j=  1 

We call the algorithm based on Theorem 1 LAq-TICE-POISSON (because it is for lattice distributions 
and because of the central role played by the Poisson summation formula). To show how easy 
LA' ITICE-POISSON is to perform, we display below a UBASlC program to calculate the complementary 
cdf of the number of customers served in an M / M / 1  busy period. UBASlC is a public-domain 
high-precision version of BASle created by Kida [9] to do mathematics on a personal computer; see 
Neumann [11]. UBASlC permits complex numbers to be specified conveniently and it represents numbers 
and performs computations with up to 100-decimal-place accuracy. (Diskettes containing UBAStC and the 
algorithm L A T r l C E - P O I S S O N  are available from the authors. An electronic file containing a C + + 
program is also available from the authors.) However, ordinary BASIC, FORTRAN or C with double 
precision would suffice. We discuss the particular M / M / 1  example further in Section 3. 

T h e  UBASIC p r o g r a m  

1 'The Algor i thm LATFICE-POISSON 
2 ' 
3 'A variant of the Fourier-series method 
4 'for lattice distributions 
5 'applied to the complementary cdf of the number of customers 
6 'served in an M / M / 1  busy period 
7 ' 
20 input "LATTICE POINT =";N 
21 E =8 
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22 R = 1 / 1 0 ^ ( E / ( 2 * N ) )  
23 H = # p i / N  
24 U = I / ( 2 * N * R ^ N )  
25 ' 
30 Sum =0 
31 for K = l  to N -1 
32 Z =R*exp(# i *H*K)  
33 Sum + = ( ( -  1) ̂  K)*fnGen(Z):next 
34 Sum =2*Sum +fnGen(R) + ( -  1) ̂  N* fnGen(-  R) 
35 Fun =U 'Sum 
3 6 '  
40 print 
41 print "LATTICE POINT =";N,"FUNCTION =";using(2,7),Fun 
42 end 
43 ' 
80 fnGen(Z) 
81 Rho =0.75:Bt =4*Rho / (1  +Rho) ̂  2 
82 Gz = (1 - sqrt(1 - Bt * Z)) / sqrt(Bt* Rho) 
83 Gnz =(1 - G z ) / ( 1  -Z)  
84 return(re(Gnz)) 

Remarks  1. We do not regard Theorem 1 as new, but it does not seem to be very well known. Indeed, the 
methods supporting Theorem 1 are classical, but we know of no explicit statement.  The essential idea is 
expressed in Section 1 of Lyness [10], but the focus there is on further analysis using the M6bius function 
to treat  the case in which we need not have [qk [ ~< 1 for all k. Essentially the same algorithm was 
proposed without error analysis by Cavers [3]. Nearly equivalent algorithms were also proposed by 
Jagerman [7,8] and Hosono [6]. Daigle [4] draws on the same ideas, but his algorithm is more complicated 
since he considers the special case with r = 1. 

2. The algorithm L A T T I C E - P O I S S O N  is by no means the only way to calculate qk from (1). 
Procedures for numerically differentiating (1) are incorporating in mathematical  software packages such 
as MACSVMA, MATHEMATICA and MAPLE. For example, the M / M / 1  busy-period probabilities in Section 3 
are also easily calculated this way. 

3. For practical purposes, we think of the error bound in Theorem 1 as r 2k, because r2k/(1 -- r 2k) is 
approximately equal to r 2k when r 2k is small. Hence, to have accuracy to 10 -7, we let r = 10 -7/2k. In 
the displayed program, we set y = E = 8 on line 21 and set r in this manner  on line 22. 

4. We are primarily interested in probability applications for which [ qk [ ~< 1 for all k. If  {qk} does not 
initially have this property,  then we may be able to work with q'k =aqk bk with generating function 
G'(z)  =aG(bz). 

5. Of  course, the finite sum in Theorem 1 is not easy to compute if k is extremely large, but for most 
operations research applications the indices k of interest are not extremely large. Moreover, for very 
large k, we would suggest using asymptotic analysis. This is illustrated for the example in Section 3. 

6. Even for small k, computing the finite sum in Theorem 1 involves a potential roundoff  error 
problem. The potential roundoff  is evident from the multiplication by r -k, which by Remark  2 is 107/2 
when 10 -7 accuracy is desired. Assuming that qk >/0 for all k, the terms in the finite sum are all 
bounded by G ( 1 ) =  E~=0qk- Thus, if G(1) is of order 1, then approximately 3y/2-dig i t  precision is 
needed to obtain 10 -7 accuracy. For further discussion, see Remark  5.8 of [1]. 

2. Derivat ion and d i scuss ion  of  Theorem 1 

Given the generating function G(z) in (1), we can express the terms of the sequence {qk} via a Cauchy 
contour integral as 

1 ~ G ( z )  

qk = ~ j c r T T T  dz ,  (2) 
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where C r is a circle about the origin of radius r, 0 < r < 1. Upon making the change of variables z = re iu, 
we obtain the expression 

1 
fl2~rG(r e iu) e -iku du 

q k -  2,rrr k 

1 f02= ei")) - 2,rrrk [cos ku R e ( G ( r  + sin ku I m ( G ( r  ei"))] du,  (3) 

where lm(z)  is the imaginary part  of z. If we calculate (3) approximately using the trapezoidal rule with 
a step size of w / k ,  then we obtain 

1 2k 

- E ( - I )  j R e ( G ( r E  i j=/k)) ,  (4) 
qk 2~rrk j l 

just as in Theorem 1, so that it only remains to determine the error bound. 
The framework above can also be regarded as a special case of a sequence {ak: - - ~  < k < oo} with 

~ _~]a  k] < ~ . ( I n p a r t i c u l a r ,  let a k = q k r  k w i t h O < r < l  for k>~Oand  a k = O f o r  k < O . )  
We then can consider the Fourier transform 

~b(u) = E ak elk", (5) 
k oo 

which has an inverse 

1 27 
ak = ~-~-~) 6 ( u )  e -ik" d u ,  (6) 

as can easily be verified by substituting (5) into (6); see p.511 of Feller [5]. With a k = qkr k for k >/0 and 
a k = 0 for k < 0, (6) reduces to (3). 

The error bound for the trapezoidal rule approximation to (6) now follows from the discrete Poisson 
summation formula. 

Theorem 2 (discrete Poisson summation formula). For integers k and m > 0, 

1 m - I  oc 

ak = -  E 6 ( 2 a r j / m )  e -ie~jk/ . . . .  Y[ ak+jm. 
m j=o j = - ~  

j 4 0  

Proof of Theorem 2. Given k and m, form the periodic sequence with terms 
o z  

a~:= E a,+j,.. (7) 
j =  

(The series in (7) converges absolutely since Y'Yj= ~ [ a j [ <  ~.) Next construct the discrete Fourier 
transform of {a['}, see p.51 of Rabiner  and Gold [12], to obtain 

1 m - I  
^ p a k = - -  ~ ay e i2~/ ' j / ' '  

m j=0 

1 m - 1 

-- E E aj+hn ei2~rjk/m 
m j=o I=-oc 

1 ~ aj e i2~jk/''~ 1 [ 2-rrk 
_ _ 

m j = _ =  m 
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Finally, f rom the inversion formula  for discrete Four ier  transforms, 

tn - 1 

a~' = E a] '  e -i2¢~;k/m 
j = o  

1 m 1 
- ~ c h ( 2 ~ r j / m )  e - i2~jk /m.  [ ]  

m j=o 

Theo rem 2 implies that the trapezoidal  rule approximat ion to (6) with step size 2~T/m has discretiza- 
tion error  

zG 

ed = E ak +jm" 
j =  zc  

j,LO 

For the special case of  a k 

ed = E a k  +jm = 
1 

so that 

(8) 

= q k r  k for k>~0 and a k 

~_, ( qk +j . , )r  k +jm 

j = l  

= 0  for k < 0 ,  

(9) 

r k  +m 

[ed ~< 1 - r  m (10) 

When we focus on qk, we divide (10) by r k and obtain the error bound r " / ( l  -rm), which yields 
Theorem 1 when we set m = 2k as in (4). We obtain the last equality in Theorem 1 because 
R e ( G ( z ) )  = Re(G(_~)). 

3. The M / M / 1 example 

The number  of  cus tomers  served in a busy period of  an M / M / 1  queue with traffic intensity P has a 
probabili ty mass funct ion 

1 
_ _ [ 2 k - 2  I( x 2k+l  

p k = k ~ k  i ) p  k l + p l  , k > ~ l ,  (11) 

and probabili ty genera t ing  function 

1 - V/1 - / 3 z  
P ( z ) = -  ~_, p k z  k -  (12) 

k =0 ~ ' 

where  /3 = 4 p / ( l  + p)Z; see p.65 of  Riordan [13]. The  tail probabilities 

q k = P k + l + P k + 2  + " ' "  (13) 

thus have genera t ing function 

1 
G ( z )  = Y'~ q k z  k (14) 

k - o  1 - z 

for P ( z )  in (12). 
The  displayed p rogram in Section 1 computes  qk to an accuracy of  10 ~ in the case p = 0.75. The  real 

par t  of  G ( z )  for any z is computed  in lines 80-84.  The  damping  pa ramete r  r is set equal to 10 -~/2k to 
achieve accuracy 10 ~ - 10 E = 10 a in lines 21-22.  The  sum in Theo rem 1 is computed  in lines 30-34.  
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Table 1 
A comparison of numerical-inversion and asymptotic approximations with exact values of Pk and qk in (11) and (13) 

k Pk qk 

exact values (inversion - e x a c t )  ( a s y m p  - e x a c t )  exact values (inversion - e x a c t )  ( a s y m p  - e x a c t )  

from (11) × 10 m for E = 7 +exact from (15) from (13) × 10 m for E = 7 +exact from (16) 

1 0.571428571 69 -0.44 0.428571429 
2 0.139941691 21 -0.20 0.288629738 
3 0.068542869 11 -0.13 0.220086869 
4 0.041965022 7 -0.10 0.178121847 
5 0.028776015 4 -0.08 0.149345832 

10 0.008803257 1 -0.04 0.079604889 
20 0.002483026 -0.02 0.035708032 
40 0.000575657 -0.009 0.012072949 
80 0.000088790 -0.005 0.002492008 

160 0.000006017 - 0.002 0.000208294 
240 0.000000629 - 0.002 0.000023794 
320 0.000000078 -0.001 0.000003121 
400 0.000000011 - 0.001 0.000000443 

220 
128 
87 
66 
51 
20 
5 
1 1.27  

0.70 
0.38 
0.27 
0.21 
0.17 

As  ind ica t ed  in R e m a r k  5 above,  the  t r ans fo rm can  be  used  to d e t e r m i n e  the asymptot ic  behav io r  of  
Pk and  qk as k ~ oo. In  par t i cu la r ,  f rom (12) and p. 150 of  Wi l f  [14] or  p. 498 of  B e n d e r  [2], we f ind that  

1 /3 k /3 k 
- ( 1 5 )  

Pk~ak = ~ k3/2F(- 1 / 2 )  2 f i p ~ - ~  ' 

whe re  Pk ~ ak  m e a n s  tha t  pk/ak -* 1 as k ~ ~ ,  which agrees  with wha t  we get  f rom (11) by apply ing  
St i r l ing 's  formula .  Moreover ,  f rom (14) we ob ta in  

a k 4p 
- -  - a k ( 1 6 )  

qk /3 - 1 -  1 ( 1 - p ) e  

for  a k in (15). 
Tab le  1 c o m p a r e s  the  exact  values  of  Pk and qk b a s e d  on (11) and  (13) with the  numer ica l  invers ion 

based  on T h e o r e m  1 and the asympto t ic  va lues  f rom (15) and (16). F r o m  Tab le  1, we see tha t  the  
asymptot ics  do not  b e c o m e  accura te  too  quickly, but  they b e c o m e  accura te  be fo re  the  ca lcu la t ion  
becomes  difficult .  I t  is in te res t ing  tha t  the  asymptot ics  a re  much be t t e r  for  the  p robab i l i ty  mass  funct ion 
values  Pk than  for  the  c o m p l e m e n t a r y  cumula t ive  d i s t r ibu t ion  funct ion  values  qk. (S imi lar  behav ior  holds  
for  the  con t inuous - t ime  length  of  the  M / M / 1  busy pe r iod . )  Final ly ,  note  tha t  the  numer ica l  invers ion 
cons is ten t ly  achieves  the  p re sc r ibed  10 -7 accuracy.  

4 .  C o n c l u s i o n  

W e  have a p p l i e d  the  d i sc re te  Poisson summat ion  fo rmula  ( T h e o r e m  2) to cha rac t e r i ze  the  d iscre t iza-  
t ion e r ro r  assoc ia ted  with  the  t r apezo ida l - ru l e  m e t h o d  for  numer ica l ly  in tegra t ing  s t a n d a r d  invers ion 
in tegra ls  for  gene ra t i ng  funct ions  ((3) and  (6)). Fo r  most  ope ra t i ons  research  appl ica t ions ,  suff icient  
accuracy  (e.g., 10 -8)  is o b t a i n e d  with a very m a n a g e a b l e  c o m p u t a t i o n  ( T h e o r e m  1). S imi lar  m e t h o d s  also 
can be used  to numer ica l ly  invert  o t h e r  t r ans fo rms  but  easi ly c o m p u t a b l e  e r ro r  bounds  a re  usual ly  not  
avai lable;  see [1]. In summary ,  we be l ieve  tha t  numer ica l  t r ans fo rm inversion deserves  a more  p r o m i n e n t  
p lace  in the  ope ra t i ons  r e sea rch  toolki t .  (However ,  we do  not  make  s t rong claims of  or iginal i ty ,  because  
these  t echn iques  a re  classical,  and  var iants  of  our  a lgor i thm L A T T I C E -  P O I S S O N  were  previously  
p r o p o s e d  by o thers . )  
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