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A Proofs of Asymptotic Optimality for the Delay-Cost Formulation

In this appendix we provide the proofs of Theorems 3.3 and 3.4 in the paper. We start by proving that

asymptotic efficiency (see Definition 3.5) implies the stochastic boundedness and C-tightness of Q̂λ
Σ(t). A

family {xλ, λ > 0} of processes in Dd[0, T ] is said to be stochastically bounded if

lim
k→∞

lim sup
λ→∞

P{‖xr‖T > k} = 0.

It is said to be tight if every subsequence with λk → ∞ contains a convergent subsequence and C-tight if

the limit of each such subsequence is continuous. We refer the reader to §5 Pang et al. (2007) for a detailed

discussion of these concepts.

Lemma A.1. (stochastic boundedness and C-tightness) For any family {πλ, λ > 0} ∈ Πe, the corre-

sponding family {Q̂λ
Σ(t), t ≥ 0} is stochastically bounded and C-tight.

Proof: By equation (52) of [10], we can write

X̂λ
Σ(t) = X̂λ

Σ(0)− βt +
∑

j∈J
µj

∫ t

0
Îλ
j (s)ds + M̂λ

Σ(t) + o(1) as λ →∞, (A1)

where M̂λ
Σ(t) is the square integrable Martingale defined prior to (52) in Gurvich and Whitt (2007b) for

each λ. Consequently,

|X̂λ
Σ(t)| ≤ |β|t + µ1

∫ t

0
Îλ
Σ(s)ds + |M̂λ

Σ(t)|.
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By the asymptotic efficiency assumption, ‖Îλ
Σ − [X̂λ

Σ]−‖T ⇒ 0 as λ →∞, so that

|X̂λ
Σ(t)| ≤ |β|t + µ1

∫ t

0
|X̂λ

Σ(s)|ds + |M̂λ
Σ(t)|+ o(1) as λ →∞.

Since M̂λ
Σ(t) is C-tight - see the proof of Lemma 4.2 in Gurvich and Whitt (2007b)) - it is also stochastically

bounded. Hence we can apply Gronwall’s inequality to deduce that the family X̂λ
Σ(t) is stochastically

bounded.

To establish C-tightness, we use (A1) to write

X̂λ
Σ(t)− X̂λ

Σ(s) = −β(t− s) +
∑

j∈J
µj

∫ t

s
Îλ
j (h)dh + M̂λ

Σ(t)− M̂λ
Σ(s) + o(1) as λ →∞

and, consequently,

|X̂λ
Σ(t)−X̂λ

Σ(s)| ≤ |β|(t−s)+µ1(t−s)‖X̂λ
Σ‖T +µ1

∫ t−s

0
|X̂λ

Σ(s+h)−X̂λ
Σ(s)|dh+|M̂λ

Σ(t)−M̂λ
Σ(s)|+o(1).

C-tightness now follows from the stochastic boundedness of X̂λ
Σ(t) and the C-tightness of M̂λ

Σ(t) through

an application of Gronwall’s inequality, just as in the proof of Lemma 4.2 in Gurvich and Whitt (2007b).

We have thus proved that the family X̂λ
Σ(t) is stochastically bounded and C-tight under the asymptotic

efficiency condition. To complete the proof, we apply the assumed asymptotic efficiency to deduce that

Q̂λ
Σ(t)− Q̂λ

Σ(s) = [X̂λ
Σ(t)]+ − [X̂λ

Σ(s)]+ + o(1) as λ →∞.

Consequently, the C-tightness and stochastic boundedness of X̂λ
Σ(t) imply these properties for Q̂λ

Σ(t). ¥

We turn now to the statement of the state-space collapse result for WIR.

Theorem A.1. (state-space collapse under WIR with pool-dependent rates)

If (X̂λ(0), Ẑλ(0)) ⇒ (X̂(0), Ẑλ(0)) in RI+I·J and Q̂λ
Σ(0) = 0 for all λ, then we have state-space

collapse:

Q̂λ
i (t)− Q̂λ

Σ(t)pi

(
Q̂λ

Σ(t)
)
⇒ 0 in D as λ →∞, i ∈ I, (A2)

and

Îλ
j (t)− Îλ

Σ(t)vj

(
Îλ
Σ(t)

)
⇒ 0 in D as λ →∞, j ∈ J . (A3)
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In addition, we have

aiŴ
λ
h,i(t)− Q̂λ

i (t) ⇒ 0 in D as λ →∞, i ∈ I. (A4)

Proof: We outline the changes that should be made to the proof of Theorem 4.3 to accommodate the special

features of WIR. Theorem 4.3 itself is proved in §4.3 of Gurvich and Whitt (2007b), as a special case of

Theorem 3.1 there. We will be making frequent references to that section.

First, the definition of the stopping time σλ in equation (54) of Gurvich and Whitt (2007b) should be

changed to

σλ := inf{t ≥ 0|B̂λ(t) ≥ 2B̂λ(0) ∨ 1} ∧ σ̃λ,

where

σ̃λ = inf{t ≥ 0 : max
i∈I

|Q̂λ
i (t)− aiŴ

λ
h,i(t)| ≥ ελ},

with ελ → 0 as λ →∞ sufficiently slow (to be precisely defined towards the end of the proof).

Then, the hydrodynamic model equations, (77)-(86) of Gurvich and Whitt (2007b), are augmented by

the additional equation

W̃h,i(t) = Q̃i(t)/ai.

The proof of state-space collapse now follows identically the proof of Theorem 4.3 with the exception

of Lemma 4.6 in Gurvich and Whitt (2007b), which should be slightly changed to take care of the new

definition of the stopping time σλ. Specifically, we add the following argument to the proof of Lemma 4.6:

First, we claim that, since state-space collapse holds on [0, T λ] and since Q̂λ
Σ(0) = 0 by assumption, the

C-tightness of the sequence Q̂λ(·∧T λ) = (Q̂λ
1(·∧T λ), . . . , Q̂λ

I (·∧T λ)) follows from that of Q̂λ
Σ(t), which

was proved in Lemma A.1. Indeed, by state-space collapse Q̂λ
i (t ∧ T λ) ≈ Q̂λ

Σ(t ∧ T λ)pi

(
Q̂λ

Σ(t ∧ T λ)
)

with pi(·) being a locally Hölder continuous function. Consequently, the tightness of Q̂λ
Σ(t) implies that of

Q̂λ
i (t).

Now let W λ
i (t) be the virtual waiting time of class-i at time t in the λth system and Ŵ λ

i (t) =
√

λW λ
i (t).

Note that Ŵ λ
i (t) is not necessarily equal to Ŵ λ

h,i(t) as the latter refers to the cumulative waiting time of the

customer at the head of the line. Having the C-tightness of Q̂λ
i (· ∧ T λ), we can apply the corollary in
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Puhalskii [1] to establish the joint convergence

(
Q̂λ

i (t ∧ T λ)
ai

, Ŵ λ
i (t ∧ T λ); i ∈ I

)
⇒

(
Q̂i(t), Q̂i(t)/ai; i ∈ I

)
in D2I as λ →∞,

where Ŵi(t) = Q̂i(t)/ai; see e.g. Lemma A.2 of Puhalskii and Reiman (2000). The convergence of Ŵ λ
i (t)

implies that the family {Ŵ λ
i (t)} is also stochastically bounded.

Since, by definition,

Ŵ λ
h,i(t) = Ŵi(t−W λ

h,i(t)), (A5)

we have that Ŵ λ
h,i(t) is itself stochastically bounded and the unscaled process W λ

h,i(t) satisfies

W λ
h,i(t ∧ T λ) ⇒ 0 in D as λ →∞.

We can then apply the Random-Time-Change Theorem to equation (A5) to have the joint convergence

(
Q̂λ

i (t ∧ T λ)
ai

, Ŵ λ
h,i(t ∧ T λ); i ∈ I)

)
⇒

(
Q̂i(t)

ai
,
Q̂i(t)

ai

)
in D2I as λ →∞.

By Theorem 11.4.8 in Whitt (2002) and the continuity of the limit, we then have

max
i∈I

‖Q̂λ
i − aiŴ

λ
h,i‖T λ ⇒ 0 in R as λ →∞,

so that

P

{
max
i∈I

‖Q̂λ
i − aiŴ

λ
h,i‖T λ > ελ

}
→ 0 as λ →∞

as long as {ελ} is such that ελ → 0 sufficiently slowly. Consequently, we have that σ̃λ → ∞. The rest of

the proof follows Lemma 4.6 in Gurvich and Whitt (2007b), allowing us to conclude that σλ →∞. Hence

the adaptation of the proof of Theorem 4.3 for WIR is complete. ¥

It remains to relate the proof of Theorem 3.3 to that of Theorem 3.1. That is accomplished in the

following proposition, which states that both cost criteria share essentially the same lower bound. For the

following, we say that a family {bλ} is oλ
P (1) if bλ ⇒ 0 as λ →∞.
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Proposition A.1. If {πλ} ∈ Πe is a sequence of admissible policies, then

Jλ
2 (πλ, T ) ≥

∫ T

0
Ca

i

(
q∗i (Q̂

λ,πλ

Σ (t))
)

dt + oλ
P (1) as λ →∞,

where Ca
i (·) := Ci(·/ai) for all i ∈ I.

Proof: The proof builds on the proof of Proposition 6 in Van Meighem (1995). Since there are some

differences, we give a detailed proof. Since the family Q̂λ
Σ(t) is C-tight by Lemma A.1, we can choose a

convergent subsequence {Q̂λk

Σ (t), k ∈ N} with λk → ∞ whose limit is continuous. We will show that the

result of the Proposition holds for every convergent subsequence and consequently for the whole sequence.

For simplicity of presentation, we assume that {λk} is the whole family; the reader should remember that

the proof applies to the subsequence.

Denote the limit by Q̂Σ(t). Together with the Functional Strong Law of Large Numbers (FSLLN), we

have the joint convergence

(
Aλ

1(t)
λ

, . . . ,
Aλ

I (t)
λ

, Q̂λ
Σ(t)

)
⇒ (a1t, . . . , aIt, Q̂Σ(t)) in DI+1 as λ →∞ . (A6)

Since the space D with the J1 topology is separable (see §11.5 of Whitt (2002)), we can use the Skorohod

representation Theorem, Theorem 3.2.2 in Whitt (2002), to construct all the processes on an alternative

probability space (Ω̃, F̃, P̃ ) such that the convergence holds for almost every ω ∈ Ω̃. We henceforth fix such

a realization ω. We consider the sequence {tk, k ≥ 0} of stopping times defined recursively as follows:

tk+1 = min{T, inf{tk < t ≤ T : |Q̂Σ(t)− Q̂Σ(tk)| ≥ ε}},

where t0 = 0. Fix ω ∈ Ω. Note that since Q̂Σ(t) is continuous on the compact interval [0, T ] we have that

there exists δ > 0 such that

inf
i

(tk+1 − tk) > δ. (A7)

By Jensen’s inequality,

Jλ
2 (πλ, T ) =

∑
i∈I

1
Aλ

i (t)

∑
k

∫ tk+1

tk
Ci(Ŵ λ

i (s))dAλ
i (s)

≥ ∑
i∈I

∑
k

[
1

Aλ
i (t)

[Aλ
i (tk+1)−Aλ

i (tk)]× Ci

(
[Aλ

i (tk+1)−Aλ
i (tk)]−1

∫ tk+1

tk
Ŵ λ

i (s)dAλ
i (s)

)]
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Since (A6) holds almost surely on Ω̃ and by our choice of the realization ω, we have that

[Aλ
i (tk+1)−Aλ

i (tk)]/λ = ai(tk+1 − tk) + oλ(1) as λ →∞ ,

where the approximation is uniform on [0, T ]. Thus,

Jλ
2 (πλ, T ) ≥

∑

i∈I

∑

k

[
[(tk+1 − tk) + oλ(1)]× Ci

(
[λ(tk+1 − tk + oλ(1))]−1

∫ tk+1

tk

Ŵ λ
i (s)dAλ

i (s)
)]

.

(A8)

We now use Proposition 4 of Van Mieghem (1995), which - with the appropriate modification to our setting

- states the following: Fix 0 ≤ a < b ≤ T , then

1
λi(b− a)

∫ b

a
Ŵ λ

i (s)dAλ
i (s)− 1

b− a

∫ b

a
Q̂λ

i (s)ds → 0, as λ →∞,

with the convergence holding almost surely. The proof of this result is identical to the proof in Van Mieghem

(1995), so it is omitted. Using (A7) and recalling that ai := λi/λ, we have

[λ(tk+1 − tk + oλ(1))]−1

∫ tk+1

tk

Ŵ λ
i (s)dAλ

i (s)− 1
ai(tk+1 − tk)

∫ tk+1

tk

Q̂λ
i (s)d(s) → 0 as λ →∞.

Plugging this back into (A8), we then have

Jλ
2 (πλ, T ) ≥

∑

i∈I

∑

k

[
[(tk+1 − tk) + oλ(1)]× Ci

(
1

ai(tk+1 − tk)

∫ tk+1

tk

Q̂λ
i (s)d(s) + oλ(1)

)]
. (A9)

Since Q̂λ
i (t) ≤ Q̂λ

Σ(t) and Q̂λ
Σ(t) is bounded by its continuity on [0, T ], we have that Q̂λ

i (t) is bounded. The

continuity of Ci, then implies that (A9) can be written as

Jλ
2 (πλ, T ) ≥

∑

i∈I

∑

k

[
(tk+1 − tk)× Ci

(
1
ai

∫ tk+1

tk

Q̂λ
i (s)d(s)

)]
+ oλ(1) as λ →∞.

The C-tightness of Q̂λ
Σ(t) now implies that

Ci

(
1

ai(tk+1 − tk)

∫ tk+1

tk

Q̂λ
i (s)d(s)

)
≥ Ca

i

(
q∗i (Q̂

λ
Σ(tk))

)
+ oλ(1) + O(ε), (A10)

where Ca
i := Ci(·/ai) and {q∗i (x), i ∈ I} is the optimal solution for (11) with the cost functions Ca

i
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replacing Ci. Finally, O(ε) → 0 as ε → 0. To establish (A10), note that

Ci

(
1

ai(tk+1 − tk)

∫ tk+1

tk

Q̂λ
i (s)d(s)

)
≥ Ci

(
1

ai(tk+1 − tk)

∫ tk+1

tk

q̃λ
i (s)

)
,

where q̃λ
i (s) is a solution to

minimize
∑

i∈I Ci

(
1

ai(tk+1−tk)

∫ tk+1

tk
qλ
i (s)ds

)
,

s.t.
∑

i∈I qλ
i (s) = Q̂λ

Σ(s), s ∈ [tk, tk+1],

qλ
i (s) ≥ 0, i ∈ I, s ∈ [tk, tk+1].

However, the C-tightness of Q̂λ
Σ(t) and the definition of the stopping times tk implies that, for all λ large

enough, |Q̂λ
Σ(s)− Q̂λ

Σ(tk)| ≤ 2ε for all s ∈ [tk, tk+1] so that (A10) follows from the continuity of Ci.

Consequently,

Jλ
2 (πλ, T ) ≥

∑

i∈I

∑

k

[
(tk+1 − tk)× Ca

i

(
q∗i (Q̂

λ
Σ(tk))

)]
+ oλ(1) + O(ε).

Since ε was arbitrary we may invoke the definition of the Rieman integral to obtain the result for almost

every ω ∈ Ω̃. Translating this back into the original probability space yields the claimed statement. ¥

Proof of Theorem 3.4: Using Proposition A.1 and the state-space collapse result in Theorem A.1, the

proof now follows exactly as the proof of Theorem 3.1 with the exception of the oλ
P (1) term - whose treat-

ment is trivial - and the replacement of Π1 by Πe. ¥
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