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We describe recently developed algorithms for numerically inverting transforms to
calculate cumulative distribution functions and moments of random quantities of interest
in teletraffic models. This new work goes considerably beyond direct one-dimensiona
numerical inversion. We give a broad overview and describe two developments in some
detail. The first combines numerical transform inversion with numerical integration of
Pollaczek’s classical contour integrals to treat the general GI/G/1 queue. The second
combines numerical transform inversion (ordinary and multidimensional) and matrix-
analytic methods to describe the transient behavior of the BMAP/G/1 queue (with abatch
Markovian arrival process).

1. INTRODUCTION

It is well known that many mathematical results for queueing and teletraffic models
can be expressed in the form of transforms. Thirty years ago, this caused Kendall [1] to
make his celebrated remark about ‘‘the Laplacian curtain which has obscured much of
the detail of the queue-theoretic scene.”” However, it is becoming more and more clear
that these transforms can be numerically inverted, so that they can provide the numbers
needed for practical engineering studies.

The first numerical inversion algorithm used to study teletraffic models at AT& T Bell
Laboratories was developed by M. Eisenberg in about 1970; it is closely related to
Weeks [2] method, which he helped develop. Other algorithms were subsequently
developed by Jagerman [3]-[5]. Teletraffic applications of these algorithms appear in
[6]-9]. Recently we have aso begun working with numerical transform inversion. We
started, with J. Abate, by applying the Dubner-Abate [10] version of the Fourier-series
method to study the transient behavior of the M/M/1 queue [11], [12]. (However, many
guantities associated with this particular model can actualy be effectively computed by
direct numerical integration [13].) We then developed new versions of the Fourier-series
method and did afairly extensive survey [14]-{16].

Our purpose here is to briefly describe some of our recent contributions to numerical
inversion. This new work goes significantly beyond the one-dimensional numerical
inversion in the papers above. In this introduction we give a broad overview. In the



following two sections we describe two developments in more detail. Even more detail
is provided in the cited references.

First, we have combined numerical transform inversion [14] with numerical
integration of Pollaczek’s classical contour integrals [17], [18] to calculate the steady-
state waiting-time distribution in the genera GI/G/1 queue, where neither the
interarrival-time distribution nor the service-time distribution need have rational Laplace
transform [19]. (We discuss this further in Section 2.) Since the transforms need not be
rational, this algorithm is convenient for studying the impact of long-tail distributions
[20]. Thisis important because long-tail distributions have been observed in teletraffic
systems [21], [22]. Our numerical results show that the quality of approximations for
steady-state waiting-time tail probabilitiesin typical regions of interest (e.g., 10~2) based
on small-tail asymptotics can be remarkably bad when there are long-tail service-time
distributions.

We have also combined numerical inversion [14] with matrix-analytic methods
[23]-25] to calculate the steady-state distributions in the BMAP/G/1 queue, which has a
batch Markovian arrival process (BMAP) [26]. The BMAP/G/1 queue can be regarded
as amatrix generalization of the M/G/1 queue, so it is remarkably tractable. The BMAP
is a convenient representation of the versatile Markovian point process or Neuts process
which is a powerful model with many applications [23]-{30]. For example, since
superpositions of independent BMAPs are BMAPs, they are useful for studying
statistical multiplexing. We have applied the algorithms for BMAP/G/1 queues to study
the performance of approximations for steady-state distributions based on small-tail
asymptotics [29]-{33]. We have found that the quality of these asymptotic
approximations is often remarkably good when the service-time distribution has a finite
moment generating function [29]{31], but that the quality can deteriorate dramatically
when the arrival process is the superposition of many independent sources, which is a
case of great interest for ATM networks [32]-{33]. We provide numerical examples for
fairly complicated models, including arrival processes with 64 component two-state
Markov modulated Poisson process (MMPP) sources. (We discuss this work further in
another paper in these proceedings [33].)

Next, we have developed an algorithm for numerically computing an arbitrary number
of moments of a probability distribution from its moment generating function (which is
assumed to be well defined) [34]. The algorithm requires computation of the moment
generating function at several complex values of its argument, but it does not require
knowledge about the location and type of its singularities. A straightforward inversion of
the moment generating function can be difficult because the n!" moment can increase or
decrease rapidly with n. A key ingredient of the algorithm is dynamic scaling based on
the last two moments to control errors. The agorithm remains accurate even when the
moment order gets large. (e.g., several hundreds), or the moment itself gets very large
(e.g., 219%3) or very small (e.g., 271%%%). The algorithm is useful for computing the first
several moments that are routinely needed in telecommunication applications but are
difficult to compute directly for complex stochastic models. The algorithm is also useful
to do asymptotic analysis, as in [29]-[33]. The algorithm can be used to predict the



asymptotic form of a probability distribution and to calculate the asymptotic parameters.
We also use the moments to approximate a probability distribution accurately over its
entire range by matching both low-order and high-order moments [35].

We have also developed numerical inversion algorithms for multidimensional
transforms [36]. In addition to computing multivariate probability distributions, such as
the joint distribution of the length of a busy period and the number of customers served
in that busy period in the M/G/1 queue, we have applied the multivariate transform
inversion to compute the transient distributions in queueing systems that are not in steady
state. We have combined multivariate transform inversion with matrix-analytic methods
to calculate transient distributions for the BMAP/G/1 queue [37]. (We discuss this work
further in Section 3.) Thiswork shows that transient distributions in complex models are
well within our computational reach. These transient results are important for studying
the real-time control of communication networks and other teletraffic systems. We
provide numerical examples for fairly complicated models, including ten-state BMAPs.

We have extended the transient analysis of the M/G/1 queue to produce an algorithm
for computing the time-dependent workload distribution in a piecewise-stationary
M/G;/1 queue, where the arrival rates and service-time distributions change only at
finitely many time points [38]. (Corresponding agorithms for the BMAP;/G/1 queue
are being developed.) The problem reduces to a nested family of transient solutions of
stationary models, where the initial workload distribution in any interval where the model
is stationary is the final workload distribution in the previous interval where again the
model is stationary. We develop an effective recursive algorithm, exploiting both one-
dimensional and two-dimensional inversions, by storing and reusing intermediate values,
and by increasing the precision of the inversions. A straightforward application of
numerical inversion would cause the computation to grow exponentialy in the number n
of intervals and precision to be quickly lost. In our improved algorithm the computation
grows only quadratically with n and high precision is maintained even after 20 intervals.

We have shown how to iteratively calculate transform values for transforms that are
implicitly defined via functional equations[39], [40]. This approach is important for
calculating the busy-period distribution in the M/G/1 queue and its BMAP/G/1
generalization. These busy-period results have important applications to priority queues.
The transient analysis of the M/G/1 and BMAP/G/1 queues also requires the busy-period
transform [36]—38].

Finally, we mention recent work with K. K. Leung [41] in which we calculate
normalization constants (or partition functions) in closed queueing networks and related
product-form models by numericaly inverting their generating functions. We have
found that this approach can be an attractive aternative to available recursive algorithms.
Numerical inversion enables us to compute the normalization constant at a single
population vector without recursively computing all smaller values. The computation
grows exponentially in the dimension of the generating function, but great computational
savings can sometimes be achieved by dimension reduction and Euler summation. A key
ingredient here is scaling for error control.



In the remainder of this paper we describe two of these developments in somewhat
greater detail.

2. EXPLOITING POLLACZEK’'SGI/G/1 CONTOUR INTEGRAL

Consider the standard GI/G/1 queue with one server, unlimited waiting room, the
first-in first-out service discipline and i.i.d. service times that are independent of i.i.d.
interarrival times. Let U and V be generic interarrival times and service times and
assume that 0 < EV < EU < o, so that p = EV/EU < 1 and the steady-state waiting
time, say W, has a proper probability distribution. Let ¢(z) be the moment generating
functionof V-U, i.e,

o(z) = Ee®V™Y) = Ee?VEe W | (2.1)

which we assume is analytic for complex z in the strip [Re z< & for some positive .
Under this condition, Pollaczek [17], [18] showed that the Laplace transform of Wis

—W _ ol
Ee exp g— oo ‘[; ) log[1-¢(-2)] dzg , (2.2

where s is a complex number with Re(s) = 0 and C is a contour to the left of, and
parallel to, the imaginary axis, and to the right of any singularities of log[1—-@(—-2)] in
the left half plane [19].

To calculate the probabilities P(W < x), we use numerical transform inversion [14],
numerically integrating (2.2) in order to obtain the required transform values. A key step
in carrying out this program is identifying an appropriate contour to convert the integral
in (2.2) into a familiar integral of a real-valued function. For this purpose, we note that
the singularity of log[1—-@(—2)] in the left halfplane closest to the origin corresponds to
the singularity of Ee™*W in the left hafplane closest to the origin. We find this
singularity by finding the unique solution of the equation @(n) = 1lintherange (0,ns),
wherens = sup{s = 0: Ee® < «}, then we et the contour be avertical lineat —n/2.

Equation (2.2) becomes Ee™*V = exp(-1), where

= L1 5 togii-g(-2] + —>logl1-g(-2)]dy 23)
21 Oz(s-72) s(s-2) 0
withz = - n/2 +iyandz = —n/2 - iy. Sincel in (2.3) is in general complex, we

compute its real and imaginary parts by integrating the real and imaginary parts of the
integrand, respectively. We can also compute P(W > 0) and all the cumulants of W by
evaluating integrals similar to (2.3); no transform inversion is required for these.

The specific numerical integration procedure we used is fifth-order Romberg
integration. For greater efficiency, the integration interval (0,) in (2.3) is divided into
m + 1 subintervals: (0,bq), (by,b5),...,(bm-1,bm), (by,»). Thelast subinterval is
transformed into the finite interval (0,byl). Within each subinterval, fifth-order
Romberg integration is performed. The program generates successive partitions (going



from n to 2n points) until the estimated improvement is no more than an error tolerance
(chosen to be 1071%). The subintervals are chosen to prevent the ratio of the maximum
to the minimum value of the integrand within each subinterval from being too great; see
[19] for more details.

The effectiveness of our algorithm is illustrated in Table 1 where we present the
solution of the Ex/E/1 queue for k = 10’ for j = 1,2,3 and 4. Since these Erlang
distributions are nearly deterministic, the traffic intensity is set at p = 1-k™ 1. The
exponential distribution with mean 1 is approached ask - oo.

In [19] we also show how to treat service-time distributions that do not have moment
generating functions that are finite in a neighborhood of the origin, such as the Pareto
distribution and other long-tail service-time distributions. We approximate these
distributions by other distributions that do have this analyticity property. (We do
successive refinements to check that the approximation is good enough.) The
approximation is done by exponential damping (i.e., we replace a density f(x) by
e~ %*f(x) and renormalize to keep the same mean), so that we can compute the Laplace
transform whenever the original transform is known. By choosing a suitably small, we
make the damped distribution close to the original distribution.

3. THE TRANSIENT BMAP/G/1 QUEUE

The batch Markovian arrival process (BMAP) is a natural generaization of the
Poisson process. It can be constructed by considering atwo-dimensional Markov process
{[N(t),J(t)]: t =0} on the state space { (i,j): 1 =0, 1< | < m} with an infinitesimal
generator Q having the structure

Do D; D, D3 .0
0
Do D; Dy ...
Q=1 = (32)
Do Dy ...
0 0
0 Do .0

where Dy, k = 0, are mxm matrices, D o has negative diagonal elements and nonnegative

off-diagonal elements; Dy, k> 1, are nonnegative; and D= 3 Dy is an irreducible
k=0
infinitessmal generator. We assumethat D # D, so that arrivals do occur.

The variable N(t) counts the number of arrivalsin the interval (0,t], and the variable
J(t) represents an auxiliary state. Transitions from (i,j) to (i +k,1),k=0,1<j,1 <m,
correspond to batch arrivals of size k along with a change of state from j to |, and these
occur with intensity (D). Note that it is possible to have any of: (i) arrivals without
change of auxiliary state, (ii) arrivals with change of auxiliary state, and (iii) change of
auxiliary state without arrivals. A familiar special case is the Markov modulated Poisson
process (MMPP) having an m-dimensional Markovian environment with infinitesimal
generator M and an m-dimensional (diagonal) rate matrix A. (The environment is
governed by the Markov chain with generator M. When the chain is in state j, arrivals



occur according to a Poisson process with rate Aj.) An MMPP is a BMAP with
Do=M-A,D;=AandDy=0fork = 2.

A key quantity for the BMAP is the matrix generating function

D(z)= ¥ Dyz¢ for zis<1. (3.2)
k=0

Let Pjj (n,t) bethetransition function of the Markov process (N, J), i.e,,

Pij (n,t) =P(N(t)=n,J(t) =jtN(0) =0,J(0) =i) (3.3)

and let P(n,t) be the mxm matrix with elements P;;(n,t). Then the matrix generating
function of P(n,t), defined by P(z,t) = S P(n,t)z" for (zO< 1, can be shown to be

n=0
given explicitly by PY(z,t) =eP@! where e®@! is an exponential matrix [24].

Asshown in [37], just as for the M/G/1 queue, it is possible to derive transforms of the
transient distributions of the standard stochastic processes of interest in the BMAP/G/1
gueue. We illustrate by discussing the workload distribution. The workload at time't is
the remaining service time of all customersin the system at timet.

For this purpose, let F be the cdf of the initial work at time 0 and let f be its Laplace-
Stieltjes transform; let H be the cdf of a service time and let h be its Laplace-Stieltjes
transform; and let W(t,x) be the matrix whose (i, )" element is the joint probability that
the work in the system is less than or equal to x and the phase is| at timet, given that at
time O the phase was i and the initial workload (including the customer in service, if any)
was distributed according to F. Our object is to compute W(t,Xx).

Let w(t,s) be the (matrix) Laplace-Stieltjes transform of W(t,x) and let w(&,s) be the
Laplace transform of w(t,s), i.e.,

W(t,S):f e ¥d,W(t,x) and w(&,s) =}° e ftw(t,s)dt . (3.9
0 0

In [37] we show that the double transform w(& ,s) can be expressed as
W(E,s)=(f(s)! ~spo(&))[&1 —sl =D(h(s))] *, (3.5)

where f and h are the Laplace-Stieltjes transforms introduced above, | is the mxm
identity matrix, D(z) is the matrix generating function in (3.2), and po (&) is the Laplace
transform of the emptiness matrix P (t). The elements P} (t) of the emptiness matrix
Po(t) give the probability that at time t the system is empty and in phase k given that at
time O it was in phase  starting with the initial workload distributed according to F. In
[37] we show that

Po(§)=[ e %'Po(t)dt=f(&I -D[G(E)])(El -DI[G(E)]) " . (36)
0

where G(§) is the Laplace-Stieltjes transform matrix of the busy-period matrix é(x);



ie., éjk(x) is the probability that the first passage from state (i +1,j) at time O to state
(1,k) occurs no later than time x and k is the first state visited at level i. By [24], the
matrix G(s) isthe minimal solution to the functional equation

G(s) = fe-SXeD[G(SﬂXdH(x) = h(sl =D[G(s)]) . (3.7)
0

In [40] we show that an iteration for G(s) using (3.7) converges (even when server
utilization is bigger than 1) provided we start the iteration with G(s) = O where O
represents the null matrix. In general, computation of the right side of (3.7) is difficult.
However, in [37] we show that it may be computed efficiently (involving one matrix
inversion and afew matrix multiplications) if the Laplace transform h is rational.

Given that we can obtain G(s), we solve (3.6) to get the emptiness transform values
and, finally, (3.5) to get the workload double transform values w(&,s). We actually
calculate the complementary cdf W°€ (t,x) =1-W(t,x) by inverting its two-dimensional
Laplace transform

WE(E,s) =[ [ eGSO wWe(t,x)dt dx = L _wEs) (3.8)
00 s¢ S

We calculate W€(t,x) by numerically inverting the two-dimensional transform
wC(&,s) in (3.8), which uses only W(&,s) in (3.5). See [36] for the details of the
inversion algorithm. It requires w(&,s) for several complex values of its argument pairs.
A straightforward evaluation of W°(&,s) using (3.5), (3.6) and (3.7) would be too slow
mainly because G(¢) needs to be computed iteratively. However, usualy only a small
fraction of the computations of G(§) are at distinct & values. Therefore, we pre-compute
and store G(¢&) for al needed distinct values of & and use those stored values during the
computation of W°(&,s). This technique greatly speeds up the computations.

In Figure1l we show the transient workload distribution in an 5 MMPP;/E6/1
gueue with four MMPPs. Each MMPP alternates between a high-rate and a low-rate
state where the ratio of the arrival rates in the two states is 4:1. The durations of each
state are such that there is an average of five arrivals during the sojourns in each state.
We assume that at t = O, there is a departure, 2 sources are in the high-rate state, and
there are ig (0 or 32) customers in the system. The numerical examples not only show
that the agorithm is effective; they also show that the transient behavior can be
dramatically different from the steady-state behavior. Thus, we feel that the numerical
inversion can help us obtain a much better understanding of the performance of complex
systems.
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Table 1. Tail probabilities of the steady-state waiting time in the E/E /1 model
with traffic intensity p = 1 — k™1, as a function of k. The case k = o is an
exponential with mean 1.
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Figure1. Numerical results for the workload tail probabilities as a function of the timet
and the initial queue length i in the > MMPP;/Es/1 queue with traffic intensity
p = 0.7 and 2 of the four MMPPs starting in the high-rate state.



