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1. Introduction
We have just celebrated the 50th anniversary of the famous
paper by Little (1961) on the fundamental queueing rela-
tion L= �W with a retrospective by Little (2011) himself,
which emphasizes the applied relevance as well as review-
ing the advances in theory, including the sample-path proof
by Stidham (1974) and the extension to H = �G. Several
books provide thorough treatments of the theory, including
the sample-path analysis by El-Taha and Stidham (1999)
and the stationary framework involving the Palm trans-
formation by Sigman (1995) and Baccelli and Bremaud
(2003), as well as the perspective within stochastic net-
works by Serfozo (1999). As a consequence, L= �W and
the related conservation laws are now on a solid mathemat-
ical foundation.

The relation L= �W can be quickly stated: The average
number of customers waiting in line (or items in a system),
L, is equal to the arrival rate (or throughput) � multiplied
by the average waiting time (time spent in system) per cus-
tomer, W . If we know any two of these quantities, then we
necessarily know all three. The easily understood reason is
reviewed in §2. With queueing models where � is known,
the relation L= �W yields the value of L or W whenever
the other has been calculated.

1.1. Measurements Over a Finite Time Interval

However, in many applications, these conservation laws
are applied with measurements over a finite-time interval
of length t, yielding finite averages L̄4t5, �̄4t51 and SW4t5
(defined in (1) below). Indeed, the applied relevance with
measurements motivated Little (2011) to discuss relations

among finite-time measurements instead of the stationary
framework in Little (1961). However, with finite averages,
the large body of supporting theory often does not apply
directly, because that theory concerns either long-run aver-
ages (limits) or the expected values of stationary stochastic
processes in stochastic models. The available measurements
are neither of these.

Here is the essence of a typical application: We start
with the observation of L4s5, the number of items in the
system at time s, for 0 ¶ s ¶ t. From that sample path,
we can directly observe the arrivals (jumps up) and depar-
tures (jumps down). Hence, we can easily estimate the
arrival rate � and the average number in system L. How-
ever, based only on the available information, we typically
cannot determine the time each item spends in the sys-
tem, because the items need not depart in the same order
that they arrived. Nevertheless, we can estimate the average
waiting time by W = L/�, using our estimates of L and �.

In this paper we focus on the typical application in the
preceding paragraph, estimating W given estimates of L
and �, illustrated by data from a large call center. The first
issue is that, with commonly accepted definitions (see (1)
below), the relation L = �W is not valid as an equal-
ity over a finite-time interval unless the system starts and
ends empty, which often is either not feasible or not desir-
able. In §2 we review the exact relation that holds for
finite-time intervals and a way to modify the definitions so
that the edge effects do not occur, even when the system
does not start and end empty. Using modified definitions
to make L̄4t5 = �̄4t5SW4t5 valid for all finite intervals is
the approach of the “operational analysis” proposed by
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Buzen (1976) and Denning and Buzen (1978), motivated
by performance analysis of computer systems, which is
also discussed by Little (2011). Changing definitions in
that way can be very helpful to check the consistency of
measurements and data analysis, which is a legitimate con-
cern. Although changing the definitions is one option, we
advocate not doing so, because it leads to problems with
interpretation.

1.2. A Statistical Approach

We advocate taking a statistical approach with data over a
finite-time interval. Thus we regard the finite averages as
realizations of random estimators of underlying unknown
“true” values. We suggest estimating confidence intervals.
Because the initial estimators may be biased, we suggest
refined estimators to reduce the bias. To the best of our
knowledge, a statistical approach has not been taken pre-
viously in the literature on applications of L = �W with
measurements; e.g., see Denning and Buzen (1978), Little
and Graves (2008), Little (2011), Lovejoy and Desmond
(2011) and Mandelbaum (2011).

1.2.1. A Stationary Framework. Two very different
settings can arise: stationary and nonstationary. Preliminary
data analysis should be done to determine if the data are
from a stationary environment. In a stationary framework,
we assume that Little’s Law theory applies, so that L, �1
and W are well defined, corresponding to both means of
stationary probability distributions and limits of averages
(assumed to exist), and related by L= �W . We thus regard
the underlying parameters L, �1 and W as the true values
that we want to estimate; we regard the averages L̄4t5, �̄4t51
and SW4t5 based on measurements over a time interval [01 t]
as estimates of these parameters.

To learn how well we know L, �1 and W when we
compute the averages L̄4t5, �̄4t51 and SW4t5, we suggest
estimating confidence intervals. Given a single sample path
from an interval that can be regarded as approximately sta-
tionary, we suggest applying the method of batch means to
estimate confidence intervals, as is commonly done in sim-
ulation output analysis, and has been studied extensively;
e.g., see Alexopoulos and Goldsman (2004), Asmussen and
Glynn (2007), Tafazzoli et al. (2011), Tafazzoli and Wilson
(2011) and references therein. We present theory support-
ing its application in the present context.

In addition, we are concerned with the statistical problem
of how to make inferences from limited data. We illustrate
by focusing on estimating W given the finite averages L̄4t5
and �̄4t5 when the waiting times are not directly observed.
We pay special attention to the indirect estimator SWL1�4t5≡

L̄4t5/�̄4t5 suggested by Little’s Law. We show the spe-
cial definition used to obtain equality for L̄4t5= �̄4t5SW4t5
within each subinterval seriously distorts the batch-means
estimators when the modified definition is used within each
subinterval.

1.2.2. A Nonstationary Framework. However, many
applications with data involve nonstationary settings; e.g.,
service systems typically have arrival rates that vary sig-
nificantly over each day. Estimation is more complicated
without stationarity, because conventional Little’s Law the-
ory no longer applies. Indeed, the parameters L, �1 and W

are typically no longer well defined. To specify what we
are trying to estimate, we assume that there is an unspec-
ified underlying stochastic queueing model, which may be
highly nonstationary (for which the processes in §2.1 are
well defined). As usual with Little’s Law, it is not necessary
to define the underlying queueing model in detail. Then
we regard the vector of time averages 4L̄4t51 �̄4t51 SW4t55 as
a random vector with an associated vector of finite mean
values (E6L̄4t571E6�̄4t571E6SW4t57). We propose that mean
vector as the quantity to be estimated.

Since the method of batch means is no longer appropriate
without stationarity, we suggest an approach corresponding
to independent replications. That approach is appropriate
for call centers when the data comes from multiple days
that can be regarded as independent and identically dis-
tributed. In a nonstationary setting, the bias can be much
more important, so we discuss ways to reduce it.

1.2.3. Validation by Simulation. Because actual sys-
tem data may be complicated and limited, we suggest
applying simulation to study how the estimation procedures
proposed here work for an idealized queueing model of
the system. In doing so, we presume that we do not know
enough about the actual system to construct a model that
we can directly apply to compute what we are trying to
estimate, but that we know enough to be able to construct
an idealized model to evaluate how the proposed estimation
procedures perform. We illustrate this suggested simulation
approach with our call center example in §3.2.

1.3. Organization

Here is how the rest of this paper is organized: In §2 we
discuss the finite-time version of L= �W , emphasizing the
interval edge effects. In §3 we apply the statistical approach
to a banking call center example and associated simulation
models. In §4 we study ways to estimate confidence inter-
vals. In §5 we study ways to estimate and reduce the bias
in the estimator SWL1�4t5 ≡ L̄4t5/�̄4t5. In §6 we perform
experiments combining the insights in §§4 and 5; we esti-
mate confidence intervals for refined estimators designed
to reduce bias. Finally, in §7 we draw conclusions. Addi-
tional material appears in the e-companion and a technical
report (Kim and Whitt 2012) is available on the authors’
web pages; the contents of both are described at the begin-
ning of the e-companion. Kim and Whitt (2013) is a sequel
to this paper on estimating waiting times with the time-
varying Little’s Law. Supplemental material to this paper is
available at http://dx.doi.org/10.1287/opre.2013.1193.
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2. Measurement Over a Finite Time
Interval: Definitions and Relations

In this section we review analogs of L = �W for a finite-
time interval, denoted by [01 t]. Consistent with most appli-
cations, we assume that the system was in operation in the
past, prior to time 0, and that it will remain in operation
after time t. We will use standard queueing terminology,
referring to the items being counted as customers. We focus
on the customers that are in the system at some time during
the interval [01 t]. Let these customers be indexed in order
of their arrival time, which could be prior to time 0 if the
system is not initially empty (with some arbitrary method
to break ties, if any).

2.1. The Performance Functions and
Their Averages

For customer k, let Ak be the arrival time, Dk the departure
time, and Wk ≡Dk −Ak the waiting time (time in system),
where −� < Ak < Dk < �, 601 t7 ∩ 6Ak1Dk7 6= �1 and
≡ denotes “equality by definition.” Let R405 count the cus-
tomers that arrived before time 0 that remain in the system
at time 0; let A4t5 count the total number of new arrivals in
the interval [01 t]; and let L4t5 be the number of customers
in the system at time t. Thus, A4t5= max 8k¾ 02 Ak ¶ t9−
R405, t ¾ 0, and L405 = R405 + A405, where A405 is the
number of new arrivals at time 0, if any. We will carefully
distinguish between R405 and L405, but the common case
is to have A405= 0 and L405=R405.

The respective averages over the time interval [01 t] are

�̄4t5≡ t−1A4t51 L̄4t5≡ t−1
∫ t

0
L4s5ds1

SW4t5≡ 41/A4t55
R405+A4t5
∑

k=R405+1

Wk1

(1)

where 0/0 ≡ 0 for SW4t5. The first two are time averages,
whereas the last, SW4t5, is a customer average, but over all
arrivals during the interval [01 t].

We will focus on these averages over [01 t] in (1), but we
could equally well consider the averages associated with
the first n arrivals. To do so, let Tn be the arrival epoch of
the nth new arrival, i.e., Tn ≡An+R405, n¾ 0,

�̄n ≡ n/Tn1 L̄n ≡ 41/Tn5
∫ Tn

0
L4s5ds1

SWn ≡ n−1
R405+n
∑

k=R405+1

Wk0

(2)

As in (1), the first two averages in (2) are time averages,
but over the time interval [01 Tn], whereas the last, SWn, is a
customer average over the first n (new) arrivals. If there is
only a single arrival at time Tn, then the averages in (2) can
be expressed directly in terms of the averages in (1): �̄n =

�̄4Tn5, L̄n = L̄4Tn51 and SWn = SW4Tn5, so that conclusions
for (1) yield analogs for (2).

Just as we can use the relation L= �W and knowledge of
any two of the three quantities L, �1 and W to compute the
remaining one, so we can use any two of the three estima-
tors in (1) to create a new alternative estimator, exploiting
L= �W :

L̄W1�4t5≡ �̄4t5SW4t51 �̄L1W 4t5≡
L̄4t5

SW4t5
1 and

SWL1�4t5≡
L̄4t5

�̄4t5
0

(3)

For the typical application mentioned in §1 in which we
observe L4s5, 0 ¶ s ¶ t, we can directly construct the aver-
ages L̄4t5 and �̄4t5, but we may not observe the individual
waiting times. Hence, we may want to use SWL1�4t5 in (3)
as a substitute for SW4t5 in (1).

2.2. How the Averages in (1) Are Related

Figures 1 and 2 show how the three averages in (1) are
related. These averages are related via L̄4t5 = �̄4t5SW4t5 if
the system starts and ends empty, i.e., if R405 = L4t5 = 0,

Figure 1. The total work in the system during the inter-
val [01 t] with edge effects: Including arrivals
before time 0 and departures after time t.
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Figure 2. Six regions: Waiting times (i) of customers
that both arrive and depart inside [01 t] (D),
(ii) of arrivals before time 0 (A∪B∪C), and
(iii) of departures after time t (C ∪E ∪ F ).
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as we show in Theorem 1. However, more generally, these
averages are not simply related. To illustrate, in Figures 1
and 2 a bar of height 1 is included for each of the cus-
tomers in the system at some time during [01 t] with the
bar extending from the customer’s arrival time to its depar-
ture time. (In this example the customers do not depart in
the same order they arrived.) Thus the width of the bar is
the customer’s waiting time. For 0 ¶ s ¶ t, the number of
bars above any time s is L4s5.

To better communicate what is going on visually, we
have ordered the customers in a special way. In Figures 1
and 2, the customers that arrive before time 0 but are
still there at time 0 are placed first, starting at the bot-
tom and proceeding upwards. These customers are ordered
according to the arrival time, so the customers that arrived
before time 0 appear at the bottom. One of these customers
also departs after time t. The customers that arrived before
time 0 and are still in the system at time 0 contribute to
the regions A, B1 and C in Figure 2.

After the customers that arrived before time 0, we place
the customers that arrive after time 0 and depart before
time t, in order of arrival; they constitute region D in Fig-
ure 2. Finally, we place the customers that arrive after
time 0 but depart after time t. These customers are ordered
according to their arrival time as well; they constitute
regions E and F in Figure 2. Three extra horizontal lines
are included, along with the vertical lines at times 0 and t,
to separate the regions. The arrival numbers are indicated
along the vertical y axis. The condition R405 = L4t5 = 0
arises in Figure 2 as the special case in which all regions
except region D are empty.

The averages can be expressed in terms of the two cumu-
lative processes,

CL4t5≡

∫ t

0
L4s5ds and

CW 4t5≡

R405+A4t5
∑

k=R405+1

Wk1 t ¾ 00
(4)

The difference between these two cumulative processes can
be expressed in terms of the process T

4r5
W 4t5, recording the

total residual waiting time of all customers in the system
at time t, i.e.,

T
4r5
W 4t5≡

L4t5
∑

k=1

W r1 t
k 1 (5)

where W r1 t
k is the remaining waiting time at time t for cus-

tomer k in the system at time t (with index k assigned at
time t among those remaining). The averages in (1) are
the time average L̄4t5≡ t−1CL4t5 and the customer average
SW4t5 ≡ CW 4t5/A4t5. For a region A in Figure 2, let �A� be
the area of A. In general, the cumulative processes can be
expressed in terms of the regions in Figure 2 as CL4t5 =

�B ∪ D ∪ E� and CW 4t5 = �D ∪ E ∪ F �, whereas T
4r5
W 405 =

�B ∪C� and T
4r5
W 4t5= �C ∪ F �, so that

CL4t5−CW 4t5= �B� − �F � = �B ∪C� − �F ∪C�

= T
4r5
W 405− T

4r5
W 4t50 (6)

This relation for CL4t5 is easy to see if we let � be the
total number of arrivals and departures in the interval [01 t],
�k be the kth-ordered time point among all the arrival times
and departure times in 601 t7, with ties indexed arbitrarily
and consistently, �0 ≡ 0 and ��+1 = t. Then

CL4t5≡

∫ t

0
L4s5ds =

�+1
∑

j=1

∫ �j

�j−1

L4s5ds

=

�+1
∑

j=1

L4�j−154�j − �j−15= �B ∪D∪E�1

where the last relation holds because L4�j−15 is the num-
ber of single-customer unit-height bars above the interval
6�j−11 �j 7. Since CL4t5 = CW 4t5 = �D� if R405= L4t5= 0,
we necessarily have the following well-known result,
appearing as Theorem I of Jewell (1967).

Theorem 1 (Traditional Finite-Time Little’s Law). If
R405= L4t5= 0, then L̄4t5= �̄4t5SW4t5.

Proof. Under the condition, L̄4t5 ≡ CL4t5/t = CW 4t5/t =

4A4t5/t54CW 4t5/A4t55≡ �̄4t5SW4t5. �
On the other hand, for the common case in which there

are customers in the system during [01 t] that arrived before
time 0 and/or depart after time t, as in Figures 1 and 2,
there is no simple relation between these cumulative pro-
cesses and the associated averages, because of the interval
edge effects. Nevertheless, the analysis above exposes the
relationship that does hold. Variants of these relations are
needed to establish sample-path limits in Little law theory,
so the following result should not be considered new; e.g.,
see Glynn and Whitt (1986, Theorem 1). A variant appears
in Mandelbaum (2011, p. 17.4), who credits it to his stu-
dent Abir Koren and emphasizes its importance for looking
at data.

Theorem 2 (Extended Finite-Time Little’s Law). The
averages in (1) and (3) are related by

ãL4t5 ≡ L̄W1�4t5− L̄4t5=
�F � − �B�

t

=
T

4r5
W 4t5− T

4r5
W 405

t
3

ãW 4t5 ≡ SWL1�4t5− SW4t5=
�B� − �F �

A4t5
= −

ãL4t5

�̄4t5

=
T

4r5
W 405− T

4r5
W 4t5

A4t5
3

(7)

ã�4t5 ≡ �̄L1W 4t5− �̄4t5=

(

�B� − �F �

�D� + �E� + �F �

)

�̄4t5

= −
ãL4t5

SW4t5
1
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where �B� is the area of the region B in Figure 2 and T
4r5
W 4t5

is defined in (5).

Since we focus on inferences about the average wait
based on L̄4t5 and �̄4t5 using SWL1�4t5, we focus on ãW 4t5
in (7). Given that the customers need not depart in the order
they arrive and we only observe L4s5, 0 ¶ s ¶ t, the random
variables T

4r5
W 405 and T

4r5
W 4t5 appearing in ãW 4t5 in (7) are

not directly observable; we only have partial information
about these random variables.

2.3. Alternative Definitions to Force Equality:
The Inside View

Denning and Buzen (1978), Little (2011), and others have
observed that we can preserve the relation L̄4t5= �̄4t5SW4t5
in Theorem 1 without any conditions on R405 and L4t5
if we change the definitions. Equality can be achieved in
general if we assume that our entire view of the system
is inside the interval [01 t]. We see arrivals before time 0
but only as arrivals appearing at time 0, and we see the
portions of all waiting times only within the interval [01 t].
To achieve the inside view, let A4i54t5 count the number of
new arrivals plus the number of customers initially in the
system, and let W

4i5
k measure the waiting time inside the

interval [01 t]; i.e., let

A4i54t5≡R405+A4t51 t ¾ 01 and

W
4i5
k ≡ 4Dk ∧ t5− 4Ak ∨ 051 k¾ 11

(8)

where a∧b ≡ min 8a1 b9 and a∨b ≡ max 8a1 b9. Now con-
sider the associated averages

�̄4i54t5≡ t−1A4i54t5 and SW 4i54t5≡

∑A4i54t5
k=1 W

4i5
k

A4i54t5
0 (9)

By an elementary modification of the proof of Theo-
rem 1, we obtain the following “operational analysis” rela-
tion. (The equality relation corresponds to the operational
Little’s Law of Denning and Buzen 1978, p. 235; Little
2011, Theorem LL.2.)

Theorem 3 (Finite-Time Version of Little’s Law
with Altered Definitions). With the new definitions in
(8) and (9), �̄4i54t5 ¾ �̄4t5, SW 4i54t5 ¶ SW4t51 and L̄4t5 =

�̄4i54t5SW 4i54t5.

Given that we only see inside the interval [01 t], the
reduced waiting times are censored. Indeed, there is no
valid upper bound on SW4t5 based on the inside view.
Arrivals before time 0 can have occurred arbitrarily far in
the past prior to time 0, and customers present at time t can
remain arbitrarily far into the future after time t. Any fur-
ther properties of SW4t5 must depend on additional assump-
tions about what happens outside the interval [01 t].

Even though the new definitions provide a good frame-
work for checking the consistency of the data processing,
and can be regarded as proper definitions, we advocate not

using this modification because it causes problems in inter-
pretation. We think it is usually better to account for the
fact that an important part of the story takes place out-
side the interval [01 t], even if we do not see it all. The
alternative definitions in (8) also cause problems with the
method of batch means used to construct confidence inter-
vals; see §3.4.

3. A Banking Call Center Example
We illustrate the statistical approach by considering data
from a telephone call center of an American bank from the
data archive of Mandelbaum (2012). In 2001, this banking
call center had sites in four states, which were integrated
to form a single virtual call center. The virtual call center
had 900–1,200 agent positions on weekdays and 200–500
agent positions on weekends. The center processed about
300,000 calls per day during weekdays, with about 60,000
(20%) handled by agents, with the rest being served by
integrated voice response (IVR) technology. As in many
modern call centers, in this banking call center there were
multiple agent types and multiple call types, with a form
of skill-based routing (SBR) used to assign calls to agents.

Because we are only concerned with estimation related
to the three parameters L, �1 and W , we do not get involved
with the full complexity of this system. For this paper, we
use data for one class of customers, denoted by “Summit,”
for 18 weekdays in May 2001; the data used and the anal-
ysis procedure are available from the authors’ Websites.
Each working day covers a 17-hour period from 6 a.m. to
11 p.m., referred to as [6123].

3.1. Sample Paths for a Typical Day

For some of the analyses, we will use a single day, Friday,
May 25, 2001. Over this 17-hour period on that one day
there were 5,749 call arrivals (of this one type requesting an
agent), of which 253 (4.4%) abandoned from queue before
starting service. We do not include these abandonments in
our analysis. Figures 3 and 4 show plots of the total number
of arrivals into the queue (system), Aq4s5, and into service,
Aser4s5, together with the total number of departures from
the queue (system), Dq4s5, and from service, Dser4s5, all
over the interval [01 s], 0 ¶ s ¶ t, first over the entire work-
ing day [6123] and then over the hour [14115]. These are
based on the counts over one-second subintervals. Note that
the four curves in Figure 3 are too close to discern due to
short waiting time (time in system, measured in minutes)
relative to the time scale (hours). We see better when we
zoom in, as in Figure 4.

From the first plot in Figure 3, we see that the arrival
rate is not stationary over the entire day (because the
slope is not nearly constant), but it appears to be approx-
imately stationary over the middle part of the day, e.g.,
in the six-hour interval [10116]. When the arrival rate is
nearly constant, so is the departure rate. The stationary-
and-independent-increments property associated with a
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Figure 3. Arrivals and departures over the full day of
May 25, 2001.
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Figure 4. Arrivals and departures over the hour [14115]
within that day.
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homogeneous Poisson process over [10116] and the nonsta-
tionarity over [6110] and [16123] were confirmed by apply-
ing the turning points test, the difference-sign test and the
rank test for randomness discussed in Brockwell and Davis
(1991, p. 312); the details appear in §2 of the e-companion.

To confirm what we deduce from the arrival and depar-
ture rates, we also plot the number in system Lsys and the
waiting times (times spent in the system), Wsys, and their
hourly averages over the full day in Figures 5 and 6.
Consistent with the plots in Figure 3, we see that the
number in system looks approximately stationary in the 6-
hour interval [10116], but not over the full day [6123]. In
addition, Figure 6 shows that the hourly averages of the
waiting times do not change much, especially in the inter-
val [10116]. During that six-hour period [10116], during
which the system is approximately stationary, agents han-
dled 3,427 calls, of which only 28 (0082%) abandoned.
However, closer examination shows that the sample means
L̄ are 2803 and 3206 over the hours [13114] and [14115],

Figure 5. Lsys and its hourly averages over the full day.
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Figure 6. Wsys and its hourly averages over the full day.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

5

10

15

20

25

30

35

t

T
im

e 
sp

en
t i

n 
th

e 
sy

st
em

 (
m

in
ut

es
)

Wsys

Hourly average

respectively, so that the differences can be shown to be sta-
tistically significant, but are minor compared to differences
at the ends of the day. Since stationarity clearly does not
hold exactly, caution should be used with the estimates.

To illustrate both the statistical approach to this exam-
ple and the consequence of nonstationarity, we estimated
L, �1 and W both over the full day [6123] and over the
approximately stationary subinterval [10116]. For both, we
used the method of batch means, dividing the interval into
m= 20 batches of equal length, producing batch lengths of
51 and 18 minutes, respectively. Over the full day, we have
the estimates (measuring time in minutes)

L̄full = 2002 ± 6011 �̄full = 5039 ± 10841 and

SWfull = 4018 ± 00563
(10)

over the interval [10116], we have the estimates

L̄stat = 3108 ± 1001 �̄stat = 9044 ± 00311 and

SWstat = 3039 ± 00150
(11)
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For each estimate in (10) and (11), we also include
the halfwidth of the 95% confidence interval, estimated
as described in §4.3. We draw the following conclu-
sions: (i) the confidence intervals tell us more than the
averages alone, (ii) paying attention to stationarity is impor-
tant, (iii) the halfwidths themselves reveal the nonsta-
tionarity, because we get far smaller halfwidths with the
shorter subinterval [10116], and (iv) since the mean wait-
ing time is much less than the batch length, the number of
batches is not grossly excessive (but that requires further
examination).

3.2. Supporting Call Center Simulation Models

Many-server systems such as call centers are characterized
by having many servers working independently in paral-
lel. In such systems (if managed properly), the waiting
times in queue tend to be short compared to the service
times, and the service times tend to be approximately i.i.d.
and independent of the arrival process. Thus, it is nat-
ural to use an idealized infinite-server paradigm, involv-
ing an infinite-server (IS) model with i.i.d. service times
independent of the arrival process to approximately ana-
lyze statistical methods. Because the service times coincide
exactly with the waiting times in the IS model, the waiting
times are i.i.d. with constant mean E6S7, even though we
are considering a nonstationary setting. That often holds
approximately in service systems, as illustrated by our call
center example.

For the call center, we have data on the arrival times
and waiting times as well as the number in system L4s5,
0 ¶ s ¶ t, but we do not have data on the staffing and
the complex call routing. Thus, as suggested in §1.2.2, to
evaluate the estimation procedures, we simulate the single-
class, single-service-pool Mt/GI/� IS model and asso-
ciated Mt/GI/st models with time-varying staffing levels
chosen to yield good performance, exploiting the square
root staffing (SRS) formula s4t5 ≡ m4t5+�

√

m4t5, where
m4t5 is the offered load, the time-varying mean number of
busy servers in the IS model, as in Jennings et al. (1996).
As described in §3.1 of the e-companion, we fit the arrival
rate function to a continuous piecewise-linear function,
with one increasing piece over [6110] starting at 0, a con-
stant piece over [10116], and two decreasing linear pieces
over [16118] and [18123], the first steeper and the second
ending at 0. We then simulated a nonhomogeneous Poisson
arrival process with this arrival rate function. We assumed
that all the service times were i.i.d., with a distribution
obtained to match the observed waiting time distribution.
A lognormal distribution with mean 3038 and squared coef-
ficient of variation c2

s = 1002 was found to be a good fit,
but an exponential distribution with that mean (and c2

s = 1)
was also a good approximation, and so was used, because
it is easier to analyze (see §3.2 of the e-companion). The
IS model was simulated with that fitted arrival rate function
and service-time distribution. The offered load m4t5 was
also computed by formulas (6) and (7) of Jennings et al.

(1996), drawing on Eick et al. (1993b); then the staffing
function s4t5 was determined by the SRS formula using a
range of quality-of-service (QoS) parameters � (see §3.3 of
the e-companion). We simulated 1,000 independent repli-
cations of each of these models to study how the meth-
ods to estimate confidence intervals performed. In the next
subsection, we report results from simulation experiments
showing that the finite-server models perform much like
the IS model.

3.3. Confidence Intervals for the Call
Center Data and Simulation

We applied the method of batch means to estimate con-
fidence intervals for the parameters L, �1 and W using
the direct sample averages from (1) plus indirect estimate
SWL1�4t5 from (3) for the time interval [10116] over which
the system is approximately stationary. (For both the call
center data and the simulation model, we observe the wait-
ing times, but we examine the alternative estimator SWL1�4t5
from (3) to see how it would perform if we could not
observe the waiting times.)

We also consider the idealized Mt/M/� and Mt/M/st
simulation models introduced in §3.2 and explained in
detail in §3 of the e-companion. The estimation results are
shown in Table 1. Additional results with more values of
m appear in Kim and Whitt (2012, Tables 4–9).

For large QoS parameter �, e.g., � ¾ 200, the perfor-
mance in the finite-server model is essentially the same as
in the associated IS model, as can be seen from Table 1.
However, as � decreases, more customers have to wait
before starting service. Thus, the estimated mean waiting
time increases from 3038 in the IS model to 3039 and 3044,
respectively, for � = 105 and 100, respectively. Similarly,
the estimated mean number in the system increases from
3105 to 3106 and 3201 for these same cases. Of special
interest is the confidence interval (CI) coverage in the sim-
ulations based on 1,000 replications. Table 1 shows it is
excellent for all values of m, being very close to the tar-
get 9500%, for all � ¾ 105. However, we see a drop in
coverage for � = 1. Thus, to be conservative, we advo-
cate using for the call center model the largest estimated
CI, which usually should be associated with the smallest
number of batches m = 5 for the call center data. Overall,
Table 1 shows that the indirect estimator SW

4m5
L1�4t5 behaves

very much the same as the direct estimator SW4t5. Indeed,
that is consistent with the theory and other experiments in
this paper.

To illustrate what happens with a shorter sample-path
segment, we consider the interval [14115]. Table 2 shows
the corresponding estimates for the IS model and the call
center. Additional results with more values of m appear in
Tables 10 and 11 of Kim and Whitt (2012). In this case,
m = 5, 10, and 20 corresponds to 5 batches of 12 min-
utes, 10 batches of 6 minutes, and 20 batches of 3 minutes,
respectively. The CI coverage is again excellent for the IS
model for all cases. However, since the mean waiting time
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Table 1. Direct estimates of L, �1 and W from (1) plus indirect estimate SWL1�4t5 from (3) with associated 95% con-
fidence intervals for the approximately stationary time interval 6101167, constructed using batch means for
m= 51101 and 20 batches for the call center data and idealized simulation models, including the Mt/M/� and
Mt/M/st models with piecewise-linear arrival rate function fit to data, mean service time of 3038 minutes and
time-varying staffing based on the square-root-staffing formula using QoS parameter � taking values ranging
from 100 to 205.

Case m L̄4m54t5 �̄4m54t5 SW 4m54t5 Cov. 4%5 SW
4m5
L1�4t5 Cov. 4%5

�= � 5 3105 ± 200 9033 ± 0042 3038 ± 0015 9501 3038 ± 0015 9504
(Mt/M/�) 10 3105 ± 106 9033 ± 0035 3038 ± 0013 9500 3038 ± 0013 9507

20 3105 ± 104 9033 ± 0033 3038 ± 0012 9404 3038 ± 0012 9503
�= 205 5 3105 ± 200 9033 ± 0042 3038 ± 0015 9503 3038 ± 0015 9509
4Mt/M/st5 10 3105 ± 106 9033 ± 0035 3038 ± 0013 9502 3038 ± 0013 9508

20 3105 ± 104 9033 ± 0033 3038 ± 0012 9500 3038 ± 0012 9503
�= 200 5 3105 ± 200 9033 ± 0042 3038 ± 0016 9502 3038 ± 0016 9507

10 3105 ± 106 9033 ± 0035 3038 ± 0013 9503 3038 ± 0013 9506
20 3105 ± 104 9033 ± 0033 3038 ± 0012 9500 3038 ± 0012 9505

�= 105 5 3106 ± 202 9033 ± 0042 3039 ± 0017 9508 3039 ± 0017 9509
10 3106 ± 107 9033 ± 0035 3039 ± 0014 9409 3039 ± 0014 9501
20 3106 ± 105 9033 ± 0033 3039 ± 0013 9400 3040 ± 0013 9409

�= 100 5 3201 ± 206 9033 ± 0042 3044 ± 0021 9500 3044 ± 0021 9503
10 3201 ± 201 9033 ± 0035 3044 ± 0017 9302 3044 ± 0017 9305
20 3201 ± 108 9033 ± 0033 3044 ± 0015 9104 3044 ± 0015 9205

Data 5 3109 ± 109 9044 ± 0049 3038 ± 0022 3038 ± 0019
(call center) 10 3109 ± 103 9044 ± 0036 3039 ± 0015 3038 ± 0016

20 3109 ± 100 9044 ± 0030 3039 ± 0015 3038 ± 0011

Note. Estimated confidence interval coverage is shown for the two waiting-time estimates for the simulations based on 11000 replications.

Table 2. Direct estimates of L, �1 and W from (1) plus indirect estimate SWL1�4t5 from (3) with associated 95% confidence
intervals for the approximately stationary time interval 6141157 constructed using batch means for m = 51101
and 20 batches for the call center data and simulation of the idealized Mt/M/� models, with piecewise-linear
arrival rate function fit to data, mean service time of 3038 minutes, and time-varying staffing based on the
square-root-staffing formula using QoS parameter �.

Case m L̄4t5 �̄4t5 SW4t5 Cov. 4%5 SW
4m5
L1�4t5 Cov. 4%5

�= � 5 3104 ± 400 9032 ± 1004 3037 ± 0037 9506 3038 ± 0037 9408
(Mt/M/�) 10 3104 ± 209 9032 ± 0087 3037 ± 0032 9508 3040 ± 0032 9504

20 3104 ± 201 9032 ± 0082 3037 ± 0030 9509 3046 ± 0032 9403
Data 5 3206 ± 109 9082 ± 0082 3033 ± 0021 3033 ± 0010
(call center) 10 3206 ± 106 9082 ± 0079 3033 ± 0021 3034 ± 0016

20 3206 ± 103 9082 ± 0081 3032 ± 0023 3043 ± 0031

Note. Estimated confidence interval coverage based on 11000 replications is shown for the two waiting time estimates for the simulations.

is about 304 minutes, we regard only m = 5 appropriate
for the interval [14115]. (We also note that the difference
between SW

4m5
L1�4t5 and SW4t5 in Table 2 becomes greater as

m increases. See §3.4.1 for more discussion on this.)

3.4. Edge Effects and the Method of Batch Means

The issue of interval edge effects discussed in §2 becomes
more serious with the method of batch means. For a fixed
sample-path segment of length t and m batches, there are
m intervals, each with edge effects, and each interval is of
length t/m instead of t.

3.4.1. The Error Due to the Interval Edge Effects.
Formula (7) shows that the difference between SWL1�4t5 and

SW4t5 should be inversely proportional to t in a stationary
setting, because the distribution of T

4r5
W 4t5 is independent

of t, whereas �̄4t5 ≡ t−1A4t5 → � as t → �. We should
expect serious bias if t is less than or equal to W , the aver-
age time spent in the system, but very little bias if t is
much greater. Since W ≈ 304 minutes for the call center
example from §3, we expect serious bias if t = 3 minutes,
some bias if t = 30 minutes and almost no bias if t = 300
minutes. Those expectations are confirmed by the averages
shown in Table 3. In each case, the averages over subinter-
vals correspond to batch means. (See Tables 12–14 of Kim
and Whitt 2012 for more details.)

In Table 3 we see that the relative error ãrel
W 4t5 ≡

ãW 4t5/SWL1�4t5 takes the values 2003%, 506%1 and 005%,
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Table 3. Comparison of the direct and indirect estimators SW4t5 and SWL1�4t5 for three values of t: 3, 301 and 300 minutes
for the data from §3.

t SW4t5 SWL1�4t5 �ãW 4t5� ãrel
W 4t5 (%) �U � �A� (%) �B� (%) �C� (%) �D� (%) �E� (%) �F � (%) �F � − �B� (%)

3 3032 3043 00713 2003 311 3408 1905 1403 301 809 1904 603
30 3080 3080 00241 506 11101 907 902 000 6208 904 808 405
300 3044 3044 00016 005 91754 104 102 000 9409 102 103 004

Note. Averages are given for the 20 subintervals of 6141157 for t = 3 minutes, for the 20 subintervals of 681187 for t = 30 minutes and for the
four overlapping five-hour subintervals of 691177, from 691147 to 6121177, for t = 300 minutes.

respectively, for t = 3, 301 and 300 minutes. For the regions
in Figure 2, for t ¾ 30 minutes, we see that �C� = 0, the
areas of regions B, C, E1 and F are approximately indepen-
dent of t, while the area of D is proportional to t. Table 3
shows the area of the union of all six regions, U ≡ A ∪

B ∪C ∪D ∪ E ∪ F , and the percentages of that total area
made up by each of the six regions, as well as �F � − �B�.
The simple case occurs when region D dominates the six
regions. The percentage of the total area provided by D is
9409% for t = 300 minutes, 6208% for t = 30 minutes, and
301% for t = 3 minutes.

3.4.2. Additional Error from the Altered Definitions.
The altered definitions in §2.3 become more unattractive
with batch means, because the shorter intervals distort the
meaning even more. The average truncated waiting times
SWc4t5 in (9) tend to be even less than the true average wait-
ing times W , whereas the average augmented arrivals �̄i4t5
in (9) tend to be even more than the true average arrival
rate �. The altered definitions lead to double counting for
arrivals. Customers that are in the system during more than
one interval are counted as arrivals in all these intervals.

To illustrate, we consider the call center data over the
interval [10116]. Without using batches, we have �̄4t5 =

9044 arrivals per minute and SW4t5= 3038 minutes, whereas
the estimators using the altered definitions in (9) are �̄i4t5=

9055 and SWc4t5 = 3033. With m batches, 1 ¶ m ¶ 20, the
estimator �̄4t5 is unchanged and the estimator SW4t5 dif-
fers by only 00001 from the original value of 3038 for
m= 1. In contrast, �̄i4t5 assumes the values 9055, 9088,
100331 and 11016 for m = 1, 5, 10, and 20, respectively.
Similarly, SWc4t5 assumes the values 3033, 3022, 3009, and
2086 for m = 1, 5, 10, and 20, respectively. For m = 20,
the errors in �̄i4t5 and SWc4t5 are 18% and 15%, respec-
tively. When confidence intervals are formed based on
batch means (for nonnegligible m), the systematic errors
caused by the altered definition far exceed the halfwidth of
the confidence interval. Hence, we recommend not using
the modified definitions in (9).

4. Confidence Intervals: Theory and
Methodology

We now consider how to apply the estimator SWL1�4t5 in (3)
to estimate a confidence interval (CI) for W in a stationary
setting and for E6SW4t57 in a nonstationary setting, without

observing the waiting times. We will be using statistical
methods commonly used in simulation experiments. How-
ever, unlike simulation, we anticipate that system data is
likely to be limited, so we may not be able to achieve high
precision. Nevertheless, we want to have some idea how
well we know the estimated values. With that in mind, we
suggest applying standard statistical methods. To evaluate
how well these statistical procedures should perform, e.g.,
to verify that CI coverage should be approximately as spec-
ified, we advocate studying associated idealized simulation
models of the system more closely as suggested in §1.2.2
and as illustrated in §3.2.

For the common case in which we have only a single
sample-path segment, we advocate applying the method of
batch means, as specified in §4.3. That method depends
on the batch means being approximately i.i.d. and nor-
mally distributed. We point out that there is a risk that
these assumptions may not be justified, so that estimated
CIs should be used with caution. We suggest using multi-
ple i.i.d. replications of the supporting simulation model to
confirm these properties and evaluate the confidence inter-
val coverage. If these standard methods do not perform well
for the supporting simulation models, then we can consider
more sophisticated estimation methods, as in Alexopoulos
et al. (2007), Tafazzoli et al. (2011), Tafazzoli and Wilson
(2011) and references therein.

4.1. A Ratio Estimator

In both stationary and nonstationary settings, a CI (inter-
val estimate) for E6SW4t57 without observing the waiting
times can be obtained using SWL1�4t5 if we can apply the
following theorem, implementing the delta method; see
Asmussen and Glynn (2007, §III.3 and Proposition §IV.4.1)
for related results.

Theorem 4 (Asymptotics for the Ratio of Low-
Variability Positive Normal Random Variables). If
there is a sequence of systems indexed by n such that
√
n4L̄4n54t5−L1 �̄4n54t5−�5

=⇒ N401è5 in �2 as n→ �1 (12)

where L and � are positive real numbers and N401è5 is a
mean-zero bivariate Gaussian random vector with variance
vector 4�2

L1�
2
�5 and covariance �2

L1�, and SW 4n54t5 satisfies

SW 4n54t5/SW
4n5
L1�4t5 =⇒ 1 as n→ �1 (13)
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for SW
4n5
L1�4t5≡ L̄4n54t5

/

�̄4n54t5, then
√
n4SW 4n54t5− 4L/�55

=⇒ N401�2
W 5 in � as n→ � (14)

for

�2
W =

1
�2

(

�2
L −

2L�2
L1�

�
+

L2�2
�

�2

)

0 (15)

Proof. Apply a Taylor expansion with the function
f 4x1 y5≡ x/y, having first partial derivatives fx = 1/y and
fy = −x/y2, to get

L̄4n54t5

�̄4n54t5
=

L

�
+

L̄4n54t5−L

�
−

L4�̄4n54t5−�5

�2

+ o
(

max 8�L̄4n54t5−L�1 ��̄4n54t5−��9
)

1 (16)

so that
√
n
(

SW
4n5
L1�4t5− 4L/�5

)

=

√
n4L̄4n54t5−L5

�
−

√
nL4�̄4n54t5−�5

�2

+ o415 as n→ �1 (17)

from which (14) follows, given (12) and (13). �
We can apply the theorem if our system can be regarded

as system n for n sufficiently large that we can replace
the limits with approximate equality. The approximate con-
fidence interval estimate for E6SW 4n54t57 would then be
6SW

4n5
L1�4t5−1096�W /

√
n1 SW

4n5
L1�4t5+1096�W /

√
n7, where �W

is the square root of the variance �2
W in (15). Since the

variance �2
W in (15) is typically unknown, we must esti-

mate it. That can be done by inserting estimates for all
the components of (15). Assuming that the estimates con-
verge as n → �, we still have asymptotic normality with
the estimated values of the variance �2

W .
The sequence of systems indexed by n satisfying con-

dition (12) in Theorem 4 can arise in two natural ways:
First, condition (12) is typically satisfied if the averages
are collected from a single observation over successively
longer time intervals in a stationary environment, i.e., if t
is allowed to grow with n, with tn → �. Then, of course,
E6SW 4n54t57 → W as n → �, and we are simply estimat-
ing W . Second, whether or not there is a stationary envi-
ronment, condition (12) is satisfied if the averages indexed
by n correspond to averages taken over n multiple inde-
pendent samples for a fixed interval [01 t]. The second case
is important for the common case of service systems with
strongly time-varying arrival rates over each day, provided
that multiple days can be regarded as i.i.d. samples.

Condition (13) in Theorem 4 is of course also satisfied
if the averages are collected from a single observation over
successively longer time intervals in a stationary environ-
ment. However, condition (13) may well not be satisfied,
even approximately, if the averages indexed by n corre-
spond to averages taken over n multiple independent sam-
ples for a fixed interval [01 t], because the bias may be sig-
nificant, and it does not go away with increasing n; see §5.

4.2. The Supporting Central Limit Theorem in a
Stationary Setting

With one sample-path segment, we suggest applying the
method of batch means. A partial basis for that is the cen-
tral limit theorem (CLT) version of Little’s Law in Glynn
and Whitt (1986) and Whitt (2012). To apply it, we assume
that the system is approximately stationary over the des-
ignated subinterval [01 t]. Hence we regard the finite aver-
ages in (1) as estimators of the unknown parameters L, �,
and W . The CLT states that, under very general regularity
conditions,

(

L̂4t51 �̂4t51 Ŵ 4t51 L̂W1�4t51 �̂L1W 4t51 ŴL1�4t5
)

=⇒ 4XL1X�1XW 1XL1X�1XW 5 in �6 (18)

as t → �, where

(

L̂4t51 �̂4t51 Ŵ 4t5
)

≡
√
t
(

L̄4t5−L1 �̄4t5−�1 SW4t5−W
)

1
(

L̂W1�4t51 �̂L1W 4t51 ŴL1�4t5
)

≡
√
t
(

L̄W1�4t5−L1 �̄L1W 4t5−�1 SWL1�4t5−W
)

1

(19)

with the averages given in (1) and (3), and the limiting ran-
dom vector 4XL1X�1XW 5 is an essentially two-dimensional
mean-zero multivariate Gaussian random vector with XW =

�−14XL −WX�55, so that the variance and covariance terms
are related by

�2
W ≡ Var4XW 5=E6X2

W 7

= �−24�2
L − 2W�2

�1L +W 2�2
�51

�2
L1W ≡ Cov4XL1XW 5=E6XLXW 7

= �−14�2
L −W�2

�1L51
(20)

�2
W1� ≡ Cov4XW 1X�5=E6XWX�7

= �−14�2
�1L −W�2

�50

Note that �2
W in (20) agrees with (15).

Under general regularity conditions (essentially, if
t1/2T

4r5
W 4t5⇒ 0 for T 4r5

W 4t5 in (5)), a functional central limit
theorem (FCLT) generalization of the joint CLT in (18) is
valid if a FCLT is valid in �2 for any two of the first three
components. For example, it suffices to start with (FCLT
generalization of) the bivariate CLT

√
t4L̄4t5−L1 �̄4t5−�5

=⇒ 4XL1X�5 in �2 as t → �1 (21)

where the limit 4XL1X�5 is a bivariate mean-zero Gaussian
random vector with variances �2

� , �2
L1 and covariance

�2
�1L. Natural sufficient conditions are based on regenera-

tive structure for the stochastic process 8L4t52 t ¾ 09, as
in Asmussen (2003, §VI.3) and Glynn and Whitt (1987).
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We directly assume that the limit in (18) is valid, and dis-
cuss how to apply it. Note that condition (21) coincides
with condition (12) in Theorem 4, but now the conclusion
directly gives a CLT for SW4t5 as well as for SWL1�4t5.

The form of the limit in (18) implies that the alternative
estimators L̄W1�4t5, �̄L1W 4t51 and SWL1�4t5 in (3) not only
converge to the same limits L, � and W just as the nat-
ural estimators L̄4t5, �̄4t51 and SW4t5 in (1) do, but also
the corresponding CLT-scaled random variables are asymp-
totically equivalent as well, i.e., �4L̂4t51 �̂4t51 Ŵ 4t55 −

4L̂W1�4t51 �̂L1W 4t51 ŴL1�4t55� ⇒ 0 as t → �, where � · � is
the Euclidean norm on �3.

In summary, the CLT version of L= �W implies that the
asymptotic efficiency (halfwidth of confidence intervals for
large sample sizes) is the same for the alternative estimators
in (3) as it is for the natural estimators in (1) (in a stationary
setting). However, if one of the parameters happens to be
known in advance, one estimator can be more efficient than
the other; see Glynn and Whitt (1989). For example, with
simulation, the arrival rate is typically known in advance.

4.3. Estimating Confidence Intervals by the
Method of Batch Means

Assuming that the conditions for the CLT in the previ-
ous section are satisfied, given the sample-path segments
84A4s51L4s552 0 ¶ s ¶ t9 and 8Wk2 R405+ 1 ¶ k¶ R405+

A4t59 over the time interval [01 t] (or only two of these
three segments), we can use m batches based on mea-
surements over the m subintervals 64k − 15t/m1kt/m7,
1 ¶ k¶m. To define the batch averages, let Rk ≡R4kt/m5,
the number of customers remaining in the system at
time kt/m from among those that arrived previously. Let
Āk4t1m5, L̄k4t1m5, and SWk4t1m5 denote the averages over
the interval 64k− 15t/m1kt/m7, i.e.,

Āk4t1m5≡ 4m/t5Ak4t1m51

L̄k4t1m5≡ 4m/t5Lk4t1m51

SWk4t1m5≡ 41/Ak4t1m55Wk4t1m51

Ak4t1m5≡A4kt/m5−A44k− 15t/m51

Lk4t1m5≡
∫ kt/m

4k−15t/mL4s5ds1 Wk4t1m5≡
∑Rk−1+Ak4t1m5

j=Rk−1+1 Wj 0

(22)

The FCLT version of the CLT in the previous sec-
tion implies that, as t → �, the vector of scaled batch
means

√
t/m4Āk4t1m5 − �1 L̄k4t1m5 − L1 SWk4t1m5 − W5,

1 ¶ k¶m, are asymptotically m i.i.d. mean-zero Gaussian
random vectors with variances �2

� , �2
L, and �2

W , and covari-
ances �2

L1�, �2
�1W 1 and �2

L1W . By Theorem 4, as t → �, the
associated scaled vector

√
t/m4SWL1�1k4t1m5−W5, 1 ¶ k¶

m, are asymptotically m i.i.d. mean-zero random variables
with variance �2

W in (15). Hence, as t → �, also

∑m
k=14SWL1�1k4t1m5− SW

4m5
L1�4t55

√

S2
4m54t5/m

=⇒ tm−11 (23)

where tm−1 is a random variable with the Student t distri-
bution with m− 1 degrees of freedom,

SW
4m5
L1�4t5≡

1
m

m
∑

k=1

SWL1�1k4t1m5 and

S2
4m54t5≡

1
m− 1

m
∑

k=1

4SWL1�1k4t1m5− SW
4m5
L1�4t55

20

(24)

Thus,
[

SW
4m5
L1�4t5−

t000251m−1S4m54t5
√
m

1 SW
4m5
L1�4t5+

t000251m−1S4m54t5
√
m

]

is an approximate 95% confidence interval for W based on
the t distribution and the average SW

4m5
L1�4t5 of batch means.

Of course, the same procedure applies to other averages of
batch means as well.

It remains to choose the number of batches, m. Since we
obtain larger batch sizes, and thus more nearly approximate
the asymptotic condition t → �, if we make m small, we
advocate keeping it relatively small, e.g., m= 5. Neverthe-
less, in our examples we consider a range of m values.

5. Estimating and Reducing the Bias
We now discuss ways to estimate and reduce the bias in
the estimator SWL1�4t5 in (3) as an estimator for E6SW4t57
for SW4t5 in (1). In doing so, we are primarily concerned
with nonstationary settings. In stationary settings, SW4t5 in
(1) is typically a biased estimator of W , whereas SWL1�4t5
is typically a biased estimator of both W and E6SW4t57, but
these biases are less likely to be serious, e.g., see §5.4.

An important conclusion from our analysis is that the
bias depends on the underlying model. We demonstrate
by considering two idealized paradigms: the infinite-server
and single-server paradigms. We emphasize the infinite-
server paradigm, which often is appropriate for call centers.
In §5.4, we show that the bias in SW4t5 for estimating W
tends to be negligible in the infinite-server paradigm.

5.1. Bias in SWL1�4t5 as an Estimator of the
Expected Average Wait E6SW4t57

Since the bias in SWL1�4t5 as an estimator for E6SW4t57
is E6ãW 4t57 for ãW 4t5 ≡ SWL1�4t5 − SW4t5 in (7), we can
apply Theorem 2 to obtain an exact expression for the bias
E6ãW 4t57. We also give the conditional bias E6ãW 4t5 � Ot7
given the observed data over the interval [01 t], which we
assume is O4t5 ≡ 4t1 L̄4t51 �̄4t51R4051L4t55, from which
we can also deduce A4t5. We use the conditional bias to
create a refined estimator given the observed data.

Corollary 1 (Exact Bias and Conditional Bias). The
bias in SWL1�4t5 in (3) as an estimator for E6SW4t57 for SW4t5
in (1) is E6ãW 4t57 = E6E6ãW 4t5 � O4t577, where ãW 4t5
is given in (7), the vector of observed data is O4t5 ≡

4t1 L̄4t51 �̄4t51R4051L4t55 and the conditional bias is

E6ãW 4t5 �Ot7=

∑R405
k=1 E6W

r10
k �Ot7−

∑L4t5
k=1E6W

r1 t
k �Ot7

A4t5
0 (25)

Proof. Apply Theorem 2 using (5). �
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5.2. Two Approximations

The bias in Corollary 1 is not easy to analyze. Given
that 4R4051L4t51A4t55 is observed, it remains to estimate
the conditional residual waiting times E6W r10

k � Ot7, 1 ¶
k ¶ R405, and E6W r1 t

k � Ot7, 1 ¶ k ¶ L4t5. The conditional
expectations E6W r10

k � Ot7 are complicated, because we are
conditioning on events in the future after the observation
time 0. Thus, we develop two approximations and then
show that they apply to the infinite-server paradigm.

5.2.1. Simplification from the Bias Approximation
Assumption. As t increases, we expect the “initial edge
effect” 8R4051W r10

k 31 ¶ k ¶ R4059 to be approximately
independent of the “terminal edge effect” 8L4t51W r1 t

k 31 ¶
k¶ L4t59 and the total number of arrivals A4t5. With that in
mind, we use the following approximation, which primarily
means that we are assuming that t is sufficiently large.

Bias Approximation Assumption 4BAA5. For O4t5 ≡

4t1 L̄4t51 �̄4t51R4051L4t55, t ¾ 0,

E6W r10
k � Ot7≈E6W r10

k �R40571 0 ¶ k¶R4051 and

E6W r1 t
k � Ot7≈E6W r1 t

k � L4t571 0 ¶ k¶ L4t50

Invoking the BAA, we obtain the following approxima-
tion directly from Corollary 1:

E6ãW 4t5 � Ot7

≈

∑R405
k=1 E6W

r10
k �R4057−

∑L4t5
k=1 E6W

r1 t
k � L4t57

A4t5
0 (26)

We think that BAA is reasonable if t is suffi-
ciently large. That is easy to see for stationary models,
because then as t→� (i) L̄4t5→L and �̄4t5→� and
(ii) under regularity conditions (e.g., regenerative structure),
8R4051W r10

k ; 1 ¶ k¶R4059 will be asymptotically indepen-
dent of 8L4t51W r1 t

k ; 1 ¶ k¶ L4t59.

5.2.2. Using SWL1�4t5 to Estimate the Residual Wait-
ing Times. We can obtain an applicable estimate of
the conditional bias E6ãW 4t5 � Ot7 in (25) if we esti-
mate all the remaining conditional waiting times by the
observed SWL1�4t5. In doing so, we are ignoring the inspec-
tion paradox (since these are remainders of waiting times
in progress), the model structure and the available informa-
tion O4t5. This step is likely to be justified approximately if
the distribution of the waiting times is nearly exponential.

That step yields the approximation

E6ãW 4t5 � Ot7≈
4R405−L4t55SWL1�4t5

A4t5
for

O4t5≡ 4R4051L4t51 L̄4t51 �̄4t550 (27)

We can apply approximation (27) to obtain the new candi-
date refined estimator of E6SW4t57, exploiting the observed
vector 4R4051L4t51A4t55:

SWL1�1 r4t5≡ SWL1�4t5−E6ãW 4t5 � Ot7

≈ SWL1�4t5

(

1 −
R405−L4t5

A4t5

)

0
(28)

(The refined estimator SWL1�1 r4t5 in (28) is a candidate
refinement of the indirect estimator SWL1�4t5 (3).) The asso-
ciated approximate relative conditional bias is thus

E6ãrel
W 4t5 � O4t57≡

E6ãW 4t5 � Ot7

E6SW4t57
≈

E6ãW 4t5 � Ot7

SWL1�4t5

≈
R405−L4t5

A4t5
0 (29)

In the next section we show that the analysis in (27)–(29)
can be supported theoretically in the infinite-server
paradigm when the waiting times are exponential, so we
propose the refined estimator in (28) as a candidate estima-
tor for many-server systems. However, the crude analysis
above is not justified universally; e.g., it is not good for the
single-server models, as we show in §5.5.

5.3. The Infinite-Server Paradigm

If, in addition to BAA, we consider the Gt/M/� IS model
with exponential service times having mean E6S7, then (26)
becomes

E6ãW 4t5 � Ot7≈ 4R405−L4t55E6S7/A4t50 (30)

Since the waiting times coincide with the service times in
the IS model, it is natural to use the observed SWL1�4t5 as an
initial estimate of E6S7. If we use SWL1�4t5 as an estimate of
E6S7 in (30), then the formula in (30) reduces to the bias
approximation in (27). Thus, under these approximations,
the refined estimator (28) becomes unbiased. Hence, we
propose the refined estimator in (28) for light to moderately
loaded many-server systems with service time-distributions
not too far from exponential.

To better understand the consequence of nonexponential
service times in the infinite-server paradigm, we now con-
sider the Mt/GI/� IS model with nonexponential service
times. We assume that it starts empty at some time in the
past (possibly in the infinite past) having bounded time-
varying arrival rate �4t5, i.i.d. service times, independent
of the arrival process, with generic service-time S having
cdf G4x5 ≡ P4S ¶ x5 with E6S27 < � and thus the finite-
squared coefficient of variation (SCV) c2

S ≡ Var4S5/E6S72.
Let Gc4x5 ≡ 1 − G4x5 be the complementary cdf. Let Se
be an associated random variable with the associated sta-
tionary excess or residual lifetime distribution,

P4Se ¶ x5≡
1

E6S7

∫ x

0
Gc4u5du and

E6Sk
e 7=

E6Sk+17

4k+ 15E6S7
0

(31)

For this IS model, we can characterize the conditional
expected value of the remaining work T

4r5
W 4t5 in (5) and (7)

given L4t5, but it requires the full waiting-time cdf G.
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Theorem 5 (Total Remaining Work for the Mt/GI/�
Infinite-Server Model). For the Mt/GI/� model above,

E6T
4r5
W 4t5 � L4t57

=
L4t5

∫ �

0 �4t − u5E6S − u3S > u7du

E6L4t57
1 (32)

for T
4r5
W 4t5 in (5), where E6S − u3S > u7 = E6S −

u � S > u7P4S > u5, E6S − u � S > u7 =
∫ �

0 4Gc4x −

u5/Gc4u55dx, and

E6L4t57=
∫ �

0
�4t − u5Gc4u5du

=E6�4t − Se57E6S71 t ¾ 00 (33)

Proof. Conditional on L4t5 = n, the n customers remain-
ing in service have i.i.d. service times distributed as St with

P4St > x5=

∫ �

0 �4t − u5P4S > x+ u5du

E6L4t57
1 (34)

for E6L4t57 given in (33), by Goldberg and Whitt (2008,
Theorem 2.1), which draws on Eick et al. (1993a). There
the system starts empty at time 0, but the result extends
to the present setting, given that we have assumed that
the arrival rate function is bounded and E6S27 < �. The
second expression in (33) is given in Eick et al. (1993a,
Theorem 1). �

If we now invoke the BAA for the Mt/GI/� model,
then we obtain the approximation

E6ãW 4t5 �Ot7≈
E6T

4r5
W 405 �L4057−E6T

4r5
W 4t5 �L4t57

A4t5
1 (35)

where (32) can be used to compute both terms in the
numerator.

In practice, we presumably would not know the full
service-time cdf, so that the approximation in (35) based
on Theorem 5 would not appear to be very useful, but we
now show that it provides strong support for the refined
estimator in (28) if the service time is not too far from
exponential. For that purpose, we observe that the compli-
cated formula above simplifies in special cases. First, for
Mt/M/�, formula (32) reduces to

E6T
4r5
W 4t5 � L4t57= L4t5E6S71

taking us back to (27). Second, for the stationary M/GI/�
model starting empty in the infinite past, St in (34) is dis-
tributed as Se in (31), so that formula (32) reduces to

E6T
4r5
W 4t5 � L4t57= L4t5E6Se7= L4t5E6S74c2

s + 15/2

and (35) reduces to

E6ãW 4t5 � Ot7= 4R405−L4t55E6S74c2
s + 15/2A4t51

depending only on the first two moments of the distribution.
This result for the stationary M/GI/� model applies

to the nonstationary Mt/GI/� system if the arrival rate is

nearly constant just prior to the two times 0 and t, where
we would be applying Theorem 5. Thus, we conclude that
this section provides strong support for the refined estima-
tor SWL1�1 r4t5 in (28) in the common case where (i) the
arrival rate changes relatively slowly compared to the mean
service time and (ii) the service-time SCV c2

s is not too far
from 1, as is often the case in call centers, e.g., here (where
c2
s = 10017) and in Brown et al. (2005). We could obtain a

further refinement if we could estimate the SCV c2
s .

5.4. Bias of SW4t5 in the Infinite-Server Paradigm

We now observe that the bias of SW4t5 as an estimator of W
should usually not be a major factor in the infinite-server
paradigm. We do so by showing that the bias is quantifi-
ably small for an IS model. We use the Gt/GI/� model
with general, possibly nonstationary, arrival counting pro-
cess A. The key assumption is that the waiting times, which
coincide with the service times, are i.i.d. with mean W
and independent of the arrival process. Using that indepen-
dence, we can write

E6SW4t5 �A4t5 > 07=E6E6SW4t5 �A4t57 �A4t5 > 07

=E6W �A4t5 > 07=W0 (36)

Given that we have defined SW4t5 ≡ 0 when A4t5 = 0, we
have the following result.

Theorem 6 (Conditional Bias of the Average Wait-
ing Time in the Gt/GI/� Model). For the Gt/GI/�
infinite-server model, having i.i.d. service times with
mean W , that are independent of a general arrival process,

E6SW4t57=WP4A4t5 > 050 (37)

For a stationary Poisson arrival process with rate �,
W −E6SW4t57=We−�t , t ¾ 0.

5.5. The Single-Server Paradigm

To show that the refined estimator SWL1�1 r4t5 in (28) is not
always good and that the bias can be analyzed exactly
in some cases and can be significant, we now consider
a single-server model. Let L4t5 be the number of cus-
tomers waiting in queue in a single-server Gt/GI/1 queue-
ing model with unlimited waiting space and the first-come
first-served service discipline, with a general arrival process
possibly having a time-varying arrival-rate function �4t5
and service times Si that are independent and identically
distributed (i.i.d.) and independent of the arrival process,
each distributed as a random variable S having cdf G4x5.
In addition to the model structure, we assume that we know
the mean E6S7, which in practice may be based on a sample
mean estimate.

We now assume that T 4r5
W 405 in (5) is observable, which

is reasonable because customers depart in order of arrival
in the single-server model. It is also necessary for all these
customers to have departed by time t, which is reasonable
if t is not too small. Let S4r54t5 be the residual service time
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of the customer in service at time t, if any, In this setting,
the total remaining waiting time of all customers in the
system at time t is given by

T
4r5
W 4t5≡

L4t5
∑

k=1

W r1t
k =L4t5S4r54t5+

L4t5−1
∑

k=1

4L4t5−k5Sk+11 (38)

where Sk, k ¾ 2, are i.i.d. and independent of L4t5 and
S4r54t5, but in general L4t5 and S4r54t5 are dependent. Fur-
ther simplification occurs if S is exponential.

Theorem 7 (Bias Reduction for the Gt/M/1/�
Model). For the Gt/M/1/� model,

E6T
4r5
W 4t5 � L4t51E6S77= L4t54L4t5+ 15E6S7/21 (39)

so that, if T 4r5
W 405 is fully observable in 601 t7, then

E6ãW 4t5 � Ot7=
T

4r5
W 405−L4t54L4t5+ 15E6S7/2

A4t5
for

O4t5≡ 4L4t51 L̄4t51 �̄4t51 T
4r5
W 4051E6S750 (40)

Proof. Formula (40) follows directly from (39), which in
turn follows from (38) given that S4r54t5 has the same
exponential distribution as S1 and 1 + · · · + 4n − 15 =

n4n− 15/2. �
We apply Theorem 7 to obtain the single-server refined

estimator

SWL1�1 r114t5≡ SWL1�4t5

−
T

4r5
W 405−L4t54L4t5+ 15E6S7/2

A4t5
0 (41)

Even if we do not know the mean E6S7, formulas (39)–(41)
provide important insight, showing that E6T r

W 4t5 �L4t51
E6S77 is approximately proportional to L4t52 instead of
L4t5 as in (27) and §5.3. We next show that the bias in
(40) can be significant by considering a transient M/M/1
example.

A Simulation Example: The M/M/1 Queue Starting
Empty. To illustrate the bias for single-server models dis-
cussed in §5.5, we report results from a simulation experi-
ment for the M/M/1 queue with mean service time 1/�=

1 starting empty over the interval [0110] for three values
of the constant arrival rate �: 007, 100 and 200. The respec-
tive 95% confidence intervals (CIs) for the exact value of
E6SW4t57 estimated by the sample average of 1,000 replica-
tions of SW4t5 were 1088 ± 0008, 2070 ± 00121 and 6036 ±

0019; the sample means are regarded as the exact values.
(In an application of Little’s Law, these direct estimates
would not be available.) To see that the refined estimator
SWL1�1 r114t5 in (41) has essentially no bias at all, without
expense of wider CIs, the corresponding CIs for it based on
the same 1,000 replications were 1090 ± 0008, 2068 ± 0011
and 6038 ± 0018. In contrast, the unrefined SWL1�4t5 in (3)
produced the corresponding tighter erroneous CIs 1047 ±

0006, 1082±0006 and 2085±0006. From the analysis above,
we should not expect that the Gt/M/� refined estimator

(28) should perform well here. That is confirmed by the
corresponding CIs 1083±0008, 2046±0010 and 4046±0011.
That is pretty good for � = 007, but it misses badly for
�= 200.

6. Confidence Intervals for the
Refined Estimator

We now see how the two statistical techniques in §§4 and 5
can be combined. We estimate confidence intervals for the
refined estimators in (28) and (41), as well as the other
estimators in (1) and (3).

6.1. Confidence Intervals for the Mean Wait
in the Transient M/M/1 Queue

We now give an example in which both bias reduction and
estimating confidence intervals contribute significantly to
our understanding. To see large bias, we return to the exam-
ple of the transient M/M/1 queue in §5.5. We now show
how the sample average approach can be applied to esti-
mate confidence intervals for the refined estimator in (41)
that eliminates the bias. We now consider 10 i.i.d. sam-
ples of the same M/M/1 model over the interval [0110],
starting empty at time 0. We study the CI coverage by per-
forming 1,000 replications of the entire experiment.

Table 4 shows that the unrefined estimator SWL1�4t5 in (3)
does a very poor job in estimating the mean wait because
of the bias, but the performance of the refined estimator
SWL1�1 r4t5 in (28) and the direct estimator SW4t5 is not too
bad. It is known that residual skewness of the estimates
can degrade the performance of confidence intervals, but
we find that our estimates are not extreme examples of
nonnormality and skewness; see §4 of the e-companion for
details. In an effort to obtain a better estimate of confi-
dence intervals, one can consider using the appropriate con-
fidence interval inflation factor. We estimate it to be about
1055, 10451 and 1005 for � = 007, 1001 and 200, respec-
tively (details in §4 of the e-companion). For more dis-
cussion on skewness-adjusted CI, see Johnson (1978) and
Willink (2005); in the context of batch means and their
residual skewness and correlations, see Alexopoulos and
Goldsman (2004), Tafazzoli et al. (2011), Tafazzoli and
Wilson (2011), and references therein.

6.2. Evaluating the Refined Estimator
with the Call Center Data

Given that the call center should approximately fit the
infinite-server paradigm and that the waiting-time distri-
bution is approximately exponential, we can apply Equa-
tion (29) to see that the bias should be relatively small
in the call center example. We now use data from the 18
weekdays in May 2001 for the call center example in §3
to confirm that observation and show that the refined esti-
mator in (28) is effective in reducing the bias.

Since we observe strong day-to-day variation in the aver-
age waiting times, we do not try to estimate the overall
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Table 4. Confidence intervals for the mean wait in the transient M/M/1 queue for �= 00711001 and 200.

� L̄4t5 �̄4t5 SW4t5 Cov. 4%5 SWL1�4t5 Cov. 4%5 SWL1�1 r4t5 Cov. 4%5

0.7 1010 ± 0057 0070 ± 0017 1089 ± 0085 9003 1046 ± 0057 5803 1088 ± 0082 8909
1.0 1091 ± 0088 1000 ± 0021 2063 ± 1016 9005 1080 ± 0063 3105 2062 ± 1011 9202
2.0 5082 ± 1074 2000 ± 0029 6036 ± 2007 9103 2083 ± 0063 000 6038 ± 1095 9301

Notes. Results are based on 1,000 replications of 10 i.i.d. samples of the same M/M/1 model over the interval [0110], starting empty at
time 0. True mean wait values are estimated using 100,000 simulation runs and assumed to be 1.8913, 2.6354, and 6.3786 for �= 007, 1.0,
and 2.0, respectively.

Table 5. Comparison of the refined estimator SWL1�1 r4t5 in (28) to the unrefined estimator SWL1�4t5 in (3): Average over
the day of the average absolute errors (AAE) and average squared errors (ASE) for each time interval over 18
weekdays in the call center example.

Subinterval Intervals Unrefined in (3) Refined in (28)
length averaged over SWL1�4t5 AAE ASE SWL1�1 r4t5 AAE ASE

Hours [6110] 3032 00241 00117 3054 00082 00018
[10116] 3061 00076 00010 3060 00058 00006
[16123] 4046 00271 00160 4028 00153 00057

All 3089 00195 00097 3086 00103 00030
Half hours [6110] 3027 00303 00198 3049 00169 00068

[10116] 3062 00161 00052 3060 00110 00020
[16123] 4055 00533 00673 4025 00340 00322

All 3092 00347 00342 3084 00219 00156

mean over all days, but aim to estimate the mean of spec-
ified intervals on each day (for sample averages over all
days and their associated confidence interval, see §6.3). In
particular, we compute the average over the 18 days of
the absolute errors �SWL1�4t5 − SW4t5� (AAE) and associ-
ated average squared errors (ASE) for each of the 17 hours
and 34 half hours of the day. We choose hours and half
hours, because they represent typical staffing intervals in
call centers; see Green et al. (2007). Table 5 highlights
the results; AAE and ASE of each subinterval (hours and
half hours) are again averaged over the intervals 661107,
6101167, 6161237, and all day. More details appear in Kim
and Whitt (2012, Tables 15 and 16).

Table 5 shows that the refined estimator reduces the AAE
from 00195 (about 500% of the overall average wait, 3089)
to 00103 (2.6%) for hours over all hours, while the refined
estimator reduces the AAE from 00347 (809%) to 00219
(5.6%) for half hours over all half hours. In both cases,
there is more bias and more bias reduction at the ends
of the day when the system is nonstationary. In addition,
we note that the unrefined estimator underestimates SW4t5
during [6110] when the arrival rate is increasing, and that
it overestimates SW4t5 during [16123] when the arrival rate
is decreasing, as expected.

6.3. Sample Averages Over Separate Days

For many service systems, whether stationary or not, we
may be able to estimate CIs for E6SW4t57 in (1) without
observing the waiting times via E6SWL1�4t57 in (3) using
sample averages over multiple days, regarding those days as
approximately i.i.d. We assume that the time average opera-
tion makes the vector 4L̄4t51 �̄4t55 approximately Gaussian

for each day. Thus, by Theorem 4, the associated random
variable SWL1�4t5 should be approximately Gaussian as well
with (unknown) variance given in (15). We also assume
that any refinement SWL1�1 r4t5 is approximately Gaussian
as well.

Based on n days regarded as i.i.d., we can construct CI
in the usual way. Let Xi denote the time average SWL1�4t5
or (preferably) its refinement SWL1�1 r4t5 based on the bias
analysis described in §5 for day i. Let the sample mean
and variance be

X̄n ≡
1
n

n
∑

i=1

Xi and S2
n ≡

1
n− 1

n
∑

i=1

4Xi − X̄n5
20 (42)

Then 4X̄n−E6SW4t575/
√

S2
n/n should be approximately dis-

tributed as tn−1, Student t with n− 1 degrees of freedom.
Then X̄n ± t�/21 n−1Sn/

√
n is a 1 −� CI for E6SW4t57.

To assess how well indirect estimators perform in esti-
mating E6SW4t57 over separate days and in different set-
tings, we again consider our call center data and divide each
day into three intervals, [6110], [10116], and [16123] so
that the arrival rate is increasing in [6110], approximately
stationary in [10116], and decreasing in [16123]. The per-
formance of two indirect estimators, the refined estima-
tor SWL1�1 r4t5 in (28) and the unrefined estimator SWL1�4t5
in (3), as well as that of the direct estimator, is illustrated in
Table 6. (Additional estimation results appear in Kim and
Whitt 2012, Tables 17–19.) We see that the refined estima-
tor SWL1�1 r4t5 behaves very similarly to the direct estimator
in all cases. The unrefined estimator performs well in the
stationary region [10116], but shows the impact of bias in
nonstationary regions, [6110] and [16123], as expected.
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Table 6. Estimating E6SW4t57 and its associated 95%
confidence interval over 18 weekdays in the
call center example: Comparison of the refined
estimator SWL1�1 r4t5 in (28) to the unrefined
estimator SWL1�4t5 in (3).

Direct estimator Unrefined in (3) Refined in (28)
Intervals SW4t5 SWL1�4t5 SWL1�1 r4t5

661107 3047 ± 0022 3035 ± 0023 3047 ± 0023
6101167 3060 ± 0011 3061 ± 0011 3060 ± 0011
6161237 4024 ± 0026 4035 ± 0026 4022 ± 0025

7. Conclusions
Little’s Law is an important theoretical cornerstone of oper-
ations research, but it does not apply directly to appli-
cations involving measurements over finite-time intervals.
As reviewed in §2.3, it is possible to modify the defini-
tions so that the relation L̄4t5 = �̄4t5SW4t5 always holds
for finite averages, but we advocate not doing so. Instead,
we advocate taking a statistical approach, estimating con-
fidence intervals (§4) and considering modified estimators
that reduce bias (§5), which exploit the extended finite-time
Little’s Law in Theorem 2. We have illustrated the statisti-
cal approach by applying it to the call center example in §3.
We have focused on the problem of estimating the unknown
mean values W and E6SW4t571 using SWL1�4t5 ≡ L̄4t5/�̄4t5
when the waiting times cannot be directly observed.

Supplemental Material
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