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1. Introduction
Service systems typically have time-varying arrival
rates, with significant variation over the day, that
inhibit application of traditional stochastic modeling
and analysis. Thus operations researchers have devel-
oped a growing collection of tools to cope with the
time-varying arrival rates to analyze and improve
the performance of these systems; see the recent sur-
vey by Green et al. (2007). Service systems are also
becoming increasingly complex, exhibiting important
network structure. Network structure is evident in
many applications, e.g., healthcare delivery systems,
distributed customer contact centers, and emergency
response and relief organizations. Because the cus-
tomers typically are people, these service systems also
commonly have customer abandonment, including
nonexponential patience distributions.

These factors motivated us in Liu and Whitt (2011a)
to develop a new model incorporating all these fea-
tures. In particular, we introduced a time-varying
open network of many-server fluid queues, which
we call a fluid queue network (FQNet). The specific
model was the 4Gt/M/st +GI5m/Mt FQNet, which has
m fluid queues, each with a time-varying external
arrival rate (the Gt), a time-varying staffing function

(the st) with unlimited waiting space, exponential ser-
vice (the M) and abandonment from queue according
to a general distribution (the +GI), plus time-varying
proportional routing from one queue to another (the
final Mt). The general patience (time-to-abandon) dis-
tribution and service distribution (that appears in one
algorithm) lead to considering two-parameter perfor-
mance functions at each queue, such as Q4t1y5, the
fluid content in queue at time t that has been so for
at most time y, as a function of t and y.

In this paper we extend our previous work in four
important directions. First, we solve the more gen-
eral 4Gt/GI/st +GI5m/Mt FQNet with nonexponential
service-time distribution, which is important because
service time distributions are commonly found to
be nonexponential (often lognormal); e.g., see Brown
et al. (2005). Second, we develop an entirely new
algorithm based on solving an m-dimensional ordi-
nary differential equation (ODE) to find the vector
of time-varying arrival rates at each queue, for the
4Gt/M/st + GI5m/Mt FQNet with exponential service
times. Because the single-queue algorithm developed
in Liu and Whitt (2012a) requires solving an ODE
for the head-of-line waiting time, this new ODE
method is valuable because it provides a unified
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ODE framework for the entire analysis. Third, we
show that the new ODE framework allows us to give
closed-form expression for the arrival rates at each
queue in the case of a two-queue network. Finally,
we implement all the FQNet algorithms for the first
time here and study their computational complexity,
thus verifying that they can be efficiently applied. In
particular, we compare the two different algorithms
for solving the 4Gt/M/st +GI5m/Mt FQNet and reveal
the advantages of each. We study how the algorithms
perform for large networks by considering a family
of networks with m queues, with m going up to 160.

The FQNets studied here are deterministic fluid
models so that the performance is necessarily
described by deterministic functions. Nevertheless,
these fluid models are intended for applications to
systems that evolve with considerable uncertainty,
as commonly captured by stochastic models with
stochastic arrival processes, service times, abandon-
ment, and routing. The fluid models can provide
useful information when the predictable (determin-
istic) variation in arrival rates and other model
elements dominates or is comparable to the unpre-
dictable (stochastic) variation because of uncertainty.
This tends to be the case when the system experiences
periods of overloading. Accordingly, the fluid models
here are analyzed under the assumption that the sys-
tem alternates between successive overloaded (OL) and
underloaded (UL) intervals. This behavior commonly
occurs when it is too difficult or costly to dynamically
adjust staffing in response to time-varying arrival
rates to precisely balance supply and demand at all
times—commonly occuring in healthcare.

FQNets are legitimate models in their own right, but
they also are intended to serve as approximations for
corresponding non-Markovian stochastic queueing net-
works (SQNets), where the Mt routing becomes time-
varying Markovian routing; a departure from queue i
at time t goes (instantaneously) next to queue j with
probability Pi1 j4t5, independent of the system history
up to that time. In the FQNet, a proportion Pi1 j4t5 of the
fluid flow out of queue i at time t goes next to queue j .
In the SQNet, service times and patience times are ran-
dom times for individual customers. In the FQNet,
they specify flow proportions; i.e., with patience cumu-
lative distribution function (cdf) Fi at queue i, Fi4t5 repre-
sents the proportion of all fluid that abandons by time
t after it joins the queue, if it has not already entered
service. For the associated non-Markovian SQNets,
there are few useful analysis tools besides discrete-
event stochastic simulation. We envision the FQNets
here being used in performance analysis together with
simulation of associated SQNets. The FQNets can be
analyzed much more rapidly, and so may be used
efficiently in preliminary analyses, e.g., to efficiently

derive candidate staffing functions at all queues. Sim-
ulation of SQNets can then be applied to verify and
refine the FQNet analysis.

There is a body of important related literature. First,
there is a long history of fluid queue models (Newell
1982). Second, among the limited literature on SQNets
with time-varying arrival rates, an important con-
tribution was made by Mandelbaum et al. (1998),
who established many-server heavy-traffic limits for
Markovian SQNets, showing that FQNets and associ-
ated diffusion process refinements arise in the many-
server heavy-traffic limit, in which the arrival rate
and staffing are both allowed to grow; see also
Mandelbaum et al. (1999a, b). Detailed analysis can
also be successfully performed for infinite-server (IS)
SQNets, having infinitely many servers at each queue.
Markovian IS SQNets were studied by Massey and
Whitt (1993), and IS SQNets with time-varying phase-
type (PHt) distributions were studied by Nelson and
Taaffe (2004a, b). Nelson and Taaffe (2004a, b) investi-
gated 4PHt/PHt/�5m SQNets with multiple customer
classes and time-varying phase-type arrival and ser-
vice processes. They showed that this IS network with
k classes is mathematically equivalent to k single-
class IS networks, each of which is furthermore equiv-
alent to the PHt/PHt/� IS model with a modified
service distribution. They therefore directly applied
the numerical algorithm they first developed for the
PHt/PHt/� model to the 4PHt/PHt/�5m SQNets. Par-
alleling that analysis technique, we demonstrate how
the algorithm for the single Gt/GI/st +GI fluid queue
in Liu and Whitt (2012a) can be applied to the
4Gt/Mt/st +GIt5

m/Mt FQNet.
The motivation and theory for non-Markovian sin-

gle many-server fluid queues was given by Whitt
(2006) and Liu and Whitt (2011a, b; 2012a; 2013).
Those works include extensive comparisons with
simulations of stochastic models and supporting
heavy-traffic limit theorems. Kang and Pang (2011)
developed an alternative algorithm for a fluid queue
based on a random-measure perspective that does not
require alternating OL and UL intervals, but so far
requires constant staffing (which can be applied more
generally in a piecewise-constant manner).

We evaluate the performance of the algorithms
by implementing them and conducting simulation
experiments for associated SQNets for several exam-
ples. To relate the FQNets to associated SQNets, we
use many-server heavy-traffic scaling, as in Liu and
Whitt (2012b, 2013) and references therein. Thus, for
a stochastic queue indexed by scale parameter n, we let
the arrival rate be n�4t5 and the number of servers be
�ns4t5�, where �4t5 and s4t5 are the fluid model coun-
terparts, and �x� is the least integer greater than or
equal to x.

We illustrate now with an example of a two-
queue SQNet as depicted in Figure 1 of Liu and
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Figure 1 A Comparison of Performance Functions in the Two-Queue FQNet with Single Sample Paths from a Simulation of the Corresponding SQNet
with Scale Parameter n = 41000

Whitt (2011a); see §6.2 for details about this example.
Figure 1 compares the fluid approximation (the
dashed lines) with simulation estimates of the perfor-
mance in the stochastic model (the solid lines) for n=

41000. We plot single sample paths of the following
processes: (i) the elapsed waiting time of the customer
at the head of the line, Wn4t5; (ii) the scaled num-
ber of customers waiting in queue, Q̄n4t5 ≡ Qn4t5/n;
(iii) the scaled number of customers in service, B̄n4t5≡

Bn4t5/n; and (iv) the scaled total number of customers
in the system, X̄n4t5 ≡ Xn4t5/n. For this extremely
large value of n, there is little variability in the simula-
tion sample paths. Figure 1 shows that each simulated
sample path falls right on top of the FQNet approx-
imation. The close agreement confirms that both the
numerical algorithm and the simulation must be done
correctly, and it empirically validates the many-server
heavy-traffic limit.

For more realistic stochastic models with fewer
servers, the fluid performance functions serve as
approximations for the mean values of the corre-
sponding stochastic processes. A figure nearly iden-
tical to Figure 1 (Figure 8 in the online supplement,
available at http://dx.doi.org/10.1287/ijoc.1120.0547)
shows that the fluid model provides excellent approx-
imations for the mean values of the same example

with n = 50. Then the solid lines become simula-
tion estimates of the mean of these scaled stochastic
processes, obtained by averaging multiple indepen-
dent sample paths.

The rest of this paper is organized as follows. In §2
we review the single Gt/Mt/st +GIt fluid queue stud-
ied in Liu and Whitt (2011a, 2012a). In §3 we review the
4Gt/Mt/st +GIt5

m/Mt FQNet and its results developed
in Liu and Whitt (2011a). We also specify the first fixed
point equation (FPE)-based algorithm, Alg(FPE), in §3.2.
In §4 we develop the alternative algorithm, Alg(ODE),
based on solving an m-dimensional ODE. In §5 we
develop the new FPE-based algorithm, Alg(FPE, GI),
for the 4Gt/GI/st + GIt5

m/Mt model with general
service-time distributions at each queue. In §6 we
demonstrate the performance of the algorithms by
considering several examples. We also confirm con-
clusions drawn about the computational complexity.
Additional material appears in the online supplement,
including a discussion about checking for violation of
staffing feasibility.

2. The Gt/Mt/st +GIt Single
Fluid Queue

In this section we review the Gt/Mt/st + GIt fluid
queue model and its performance; see Liu and Whitt
(2011a, 2012a) for more details.
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2.1. Specifying the Model
A single fluid queue is a service facility with finite
capacity and an associated waiting room or queue
with unlimited capacity. Fluid is a deterministic,
divisible, and incompressible quantity that arrives
over time. Fluid input flows directly into the ser-
vice facility if there is free capacity available; other-
wise it flows into the queue. Fluid leaves the queue
and enters service in a first-come, first-served (FCFS)
manner whenever service capacity becomes available.
There cannot be simultaneously free service capacity
and positive queue content.

The staffing function (service capacity) is an abso-
lutely continuous positive function s4t5 with deri-
vative s′4t5. The service capacity is exogenously
specified, providing a hard constraint. In general,
there is no guarantee that some fluid that has entered
service will not be later forced to leave without
completing service, because we allow s to decrease.
We directly assume that phenomenon does not occur;
i.e., we directly assume that the given staffing func-
tion is feasible. However, Liu and Whitt (2011a,
Theorem 6) show how to construct a minimum feasi-
ble staffing function greater than or equal to an initial
infeasible staffing function.

The total fluid input over an interval 601 t7 is å4t5,
the integral of a positive arrival rate function �4t5.
Service and abandonment occur deterministically in
proportions. Because the service is Mt , the proportion
of fluid in service at time t that will still be in service
at time t + x is

Ḡt4x5 = e−M4t1 t+x51

where M4t1 t + x5≡

∫ t+x

t
�4y5dy1 (1)

for t ≥ 0 and x ≥ 0. The cdf of the service time of a
quantum of fluid that enters service at time t is Gt ≡

1 − Ḡt4x5; Ḡt4x5 is the complementary cdf (ccdf). The
cdf Gt has density gt4x5 = �4t + x5Ḡt4x5 and hazard
rate hGt

4x5=�4t + x5, x ≥ 0.
The model allows for abandonment of fluid waiting

in the queue. In particular, a proportion Ft4x5 of any
fluid to enter the queue at time t will abandon by time
t+x if it has not yet entered service, where Ft is a cdf
with density ft4y5 for each t. Let hFt

4y5 ≡ ft4y5/F̄t4y5
be the hazard rate associated with the patience (aban-
donment) cdf Ft .

System performance is described by a pair of
two-parameter deterministic functions 4B̂1 Q̂5, where
B̂4t1 y5 (Q̂4t1 y5) is the total quantity of fluid in service
(in queue) at time t that has been so for a duration
at most y, for t ≥ 0 and y ≥ 0. (Alternatively, 4B̂1 Q̂5
can be regarded as a pair of time-varying measures.)
These functions were shown to be absolutely contin-
uous in the second parameter, so that

B̂4t1y5≡
∫ y

0
b4t1x5dx and Q̂4t1y5≡

∫ y

0
q4t1x5dx1 (2)

for t ≥ 0 and y ≥ 0. Performance is primarily charac-
terized through the pair of two-parameter fluid con-
tent densities 4b1 q5. Let B4t5 ≡ B̂4t1�5 and Q4t5 ≡

Q̂4t1�5 be the total fluid content in service and in
queue, respectively. Let X4t5≡ B4t5+Q4t5 be the total
fluid content in the system at time t. Because service
is assumed to be Mt , the performance will primarily
depend on b via B. (We will not directly discuss B̂.)
The total service completion rate and abandonment
rate at time t are

�4t5≡

∫ �

0
b4t1 x5hGt

4x5dx = B4t5�4t51 t ≥ 01 (3)

�4t5≡

∫ �

0
b4t1 x5hFt

4x5dx1 (4)

respectively. The total amount of fluid to complete
service in the interval 601 t7 is

S4t5≡

∫ t

0
�4y5dy =

∫ t

0
B4y5�4y5dy1 t ≥ 00 (5)

Because fluid in service (queue) that is not served
(does not abandon or enter service) remains in ser-
vice (queue), the fluid content densities b and q must
satisfy the equations

b4t +u1x+u5= b4t1 x5
Ḡt−x4x+u5

Ḡt−x4x5

= b4t1 x5e−M4t1 t+u51 (6)

q4t +u1x+u5= q4t1 x5
F̄t−x4x+u5

F̄t−x4x5
1

0 ≤ x+u<w4t51 (7)

for t ≥ 0, x ≥ 0, and u ≥ 0, where M is defined in (1),
and w4t5 is the boundary waiting time (BWT) at time t,

w4t5≡ inf
{

x > 02 q4t1 y5= 0 for all y > x
}

0 (8)

(By Assumptions 7–9 of Liu and Whitt 2011a, we
never divide by zero in (6) and (7). Because the ser-
vice discipline is FCFS, fluid leaves the queue to enter
service from the right boundary of q4t1 x5.)

Let A4t5 be the total amount of fluid to abandon,
and let E4t5 be the total amount of fluid to enter ser-
vice in 601 t7. For each t, we have the flow conservation
equations

Q4t5=Q405+å4t5−A4t5−E4t5 and

B4t5= B405+E4t5− S4t50
(9)

The abandonment satisfies

A4t5≡

∫ t

0
�4y5dy1 �4t5≡

∫ �

0
q4t1 y5hFt−y

4y5dy (10)

for t ≥ 0, where �4t5 is the abandonment rate at
time t and hFt

4y5 is the hazard rate associated with the
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patience cdf Ft . (Recall that Ft is defined for t extend-
ing into the past.) The flow into service satisfies

E4t5≡

∫ t

0
b4u105 du1 t ≥ 01 (11)

where b4t105 is the rate fluid enters service at time t.
If the system is OL, then the fluid to enter service
is determined by the rate that service capacity becomes
available at time t:

�4t5≡ s′4t5+�4t5= s′4t5+B4t5�4t51 t ≥ 00 (12)

Then �4t5 coincides with the maximum possible rate that
fluid can enter service at time t:

�4t5≡ s′4t5+ s4t5�4t50 (13)

To describe waiting times, let the BWT w4t5 be the
delay experienced by the quantum of fluid at the
head of the queue at time t, already given in (8), and
let the potential waiting time (PWT) v4t5 be the vir-
tual delay of a quantum of fluid arriving at time t
under the assumption that the quantum has infinite
patience. Proper definitions of q, w, and v are some-
what complicated, because w depends on q, and q
depends on w, but that has been done in §7 in Liu
and Whitt (2012a).

The initial conditions are specified via the initial
fluid densities b401x5 and q401x5, x ≥ 0. Then B̂401y5
and Q̂401y5 are defined via (2), and B405≡ B̂401�5 and
Q405≡ Q̂401�5 as before. Let w405 be defined in terms
of q401 ·5 as in (8). We assume that B4051 Q405 and
w405 are finite. In summary, the sextuple 4�4t5, s4t51
�4t51 Ft4x51 b401x51 q401x55 of functions of the vari-
ables t and x specifies the model data that we assume is
suitably smooth; see Assumption 5 of Liu and Whitt
(2011a). The system performance is characterized by
4b4t1 x51 q4t1 x51 w4t51 v4t51 �4t51 �4t55.

We analyze the fluid queue by considering alter-
nating intervals over which the system is either UL
or OL, where these intervals include what is usually
regarded as critically loaded. In particular, an interval
starting at time t0 with (i) Q4t05 > 0 or (ii) Q4t05= 0,
B4t05= s4t05 and �4t05 > s′4t05 + �4t05, is OL. Let R
denote the current system regime; e.g., we write
R4t05 ≡ OL. The OL interval ends at the OL termina-
tion time:

TOL4t05 ≡ inf
{

u≥ t02 Q4u5=0 and

�4u5≤s′4u5+�4u5
}

0 (14)

Case (ii), where Q4t05 = 0 and B4t05 = s4t05, is often
regarded as critically loaded, but because the arrival
rate �405 exceeds the rate that new service capacity
becomes available, s′4t05 + �4t05, we must have the
right limit Q4t0+5 > 0, so that there exists � > 0 such

that Q4u5 > 0 for all u ∈ 4010 + �5. Hence, we neces-
sarily have TOL4t05 > 0.

An interval starting at time t0 with (i) Q4t05 < 0 or
(ii) Q4t05 = 0, B4t05 = s4t05, and �4t05 ≤ s′4t05+ �4t05 is
UL, designated by R4t05 = UL. The UL interval ends
at UL termination time:

TUL4t05 ≡ inf
{

u≥ t02 B4u5= s4u5 and

�4u5 > s′4u5+�4u5
}

0 (15)

As before, case (ii), in which Q4t05 = 0, and B4t05 =

s405, is often regarded as critically loaded, but because
the arrival rate �4t05 does not exceed the rate that new
service capacity becomes available, �4t05 ≡ s′4t05 +

�4t05, we must have the right limit Q4t0+5 = 0. The
UL interval may contain subintervals that are con-
ventionally regarded as critically loaded; i.e., we may
have Q4t5 = 0, B4t5 = s4t5, and �4t5 = s′4t5 + �4t5. For
the fluid models, such critically loaded subintervals
can be treated the same as UL subintervals. However,
unlike an overloaded interval, we cannot conclude
that we necessarily have TUL4t05 > 0 for a UL inter-
val. Moreover, even if TUL4t05 > 0 for each UL inter-
val, we could have infinitely many switches between
OL intervals and UL intervals in a finite interval. Thus
we make assumptions to ensure that those patho-
logical situations do not occur; see §3 of Liu and
Whitt (2011a). In general, the termination time of the
current interval is defined by

TR4t05≡ TOL4t0518R4t05=OL9 + TUL4t0518R4t05=UL90 (16)

2.2. The Performance Formulas
From the basic performance vector P̂4t5 ≡ 4b4t1 ·51
q4t1 ·55 and the definitions in §2.1, we can easily com-
pute the performance vector

P4t5 ≡
(

P̂4t51w4t51v4t51B4t51Q4t51X4t51�4t51 S4t51

�4t51A4t51E4t5
)

0 (17)

We now review the way the basic functions
4b1 q1w1v5 can be computed from the model data D≡

4�1 s1�1 F 1 P̂4055. For the fluid model with unlimited
service capacity starting at time 0,

b4t1 x5= e−M4t−x1 t5�4t − x518x≤t9

+ e−M401 t5b401x− t518x>t91 (18)

B4t5=

∫ t

0
e−M4t−x1 t5�4t − x5dx+B405e−M401 t51 t ≥ 01

for M in (1). The same formulas apply to a UL
finite-capacity system over 601T 5, where T ≡ inf8t ≥ 0:
B4t5 > s4t59, with T = � if the infimum is never
obtained. In an OL interval, B4t5= s4t5 and

b4t1 x5 =
(

s′4t − x5+ s4t − x5�4t − x5
)

e−M4t−x1 t518x≤t9

+ b401x− t5e−M401 t518x>t90 (19)
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Let q̃4t1 x5 be q4t1 x5 during an OL interval 601T 7
under the assumption that no fluid enters service
from queue. During an OL interval,

q̃4t1 x5 = �4t − x5F̄t−x4x518x≤t9

+ q401x− t5
F̄t−x4x5

F̄t−x4x− t5
18t<x93

q4t1 x5 = q̃4t − x105F̄t−x4x518x≤w4t5∧t9

+ q̃401x− t5
F̄t−x4x5

F̄t−x4x− t5
18t<x≤w4t593 (20)

= �4t − x5F̄t−x4x518x≤w4t5∧t9

+ q401x− t5
F̄t−x4x5

F̄t−x4x− t5
18t<x≤w4t590

We characterize the BWT w appearing in the for-
mula for q above by equating the quantity of new
fluid admitted into service in the interval 6t1 t + �5 to
the amount of fluid removed from the right boundary
of q4t1 x5 that does not abandon in 6t1 t+�5. By careful
analysis (Liu and Whitt 2012a, Theorem 3), that leads
to the nonlinear first-order ODE

w′4t5=ì4t1w4t55≡ 1 −
�4t5

q̃4t1w4t55
(21)

for � in (13). (By Assumptions 6–9 of Liu and Whitt
2011a, there is no division by 0 in (20) and (21). Overall,
w is continuously differentiable everywhere except for
finitely many t.) The end of an OL interval is the first
time t that w4t5 = 0 and �4t5 ≤ s′4t5 + s4t5�4t5. During
an OL interval, the PWT v is finite and is characterized
as the unique solution of the equation

v4t −w4t55=w4t5 for all t ≥ 00 (22)

2.3. The Fluid Algorithm for Single Queues
The previous results yield an efficient algorithm to
compute the basic performance four-tuple 4b1 q1w1v5
over a finite interval 601T 7 that we call the fluid algo-
rithm for single queues (FASQ). First, for each UL inter-
val, we compute b directly via (18), terminating the
first time we obtain B4t5 > s4t5. Second, for each OL
interval, we compute b via (19), q̃ via (20), and then the
BWT w by solving the ODE (21). We consider termi-
nating the OL interval when w4t5 = 0. We actually do
terminate the OL interval if �4t5 ≤ s′4t5+ s4t5�4t5. The
proof of Theorem 5 in Liu and Whitt (2012a) provides
an elementary algorithm to compute v during an OL
interval from (22) once w has been computed. Theorem
6 of Liu and Whitt (2012a) shows that v satisfies its own
ODE under additional regularity conditions.

The key step beyond direct computation is to con-
trol the switching between UL and OL intervals. This
can be done by selecting a fixed switching step size ãT

over which to perform all calculations before checking
to see if there is a regime change. Starting at time t in
regime R4t5, the calculations are performed over the
interval 6t1 t +ãT 7. Then the algorithm finds the first
time s in 4t1 t+ãT 7 at which there is a regime change,
if any, and that becomes the new initial time t. If the
switching step size ãT is too large, then there can be
much wasted computation. Otherwise, the algorithm
tends to be insensitive to the choice of ãT , as we show
in §C of the online supplement.

A formal statement of the single-queue algorithm
appears in §C of the online supplement. For a time
interval 601T 7 with S regime switches, examples
show that the running time of the FASQ tends to be
linear in both T , for fixed S, and S, for fixed T ,
and independent of ãT , provided that ãT is suitably
small, e.g., if ãT ≤ T /S, assuming that the switch-
ing points are approximately uniformly distributed
throughout the interval 601T 7. Thus, for a fixed den-
sity of switches per time, the run time should be
O4T 25, because S would be proportional to T . These
observations are illustrated by a numerical example
in §C of the online supplement.

3. The 4Gt/Mt/st +GIt5
m/Mt

Fluid Network
We now review the 4Gt/Mt/st +GIt5

m/Mt FQNet intro-
duced by Liu and Whitt (2011a) and the FPE-based
algorithm to compute all transient performance func-
tions proposed there.

3.1. Model Properties
There are m queues, where each queue has model
parameters as given in §2.1. In addition, a propor-
tion Pi1 j4t5 of the fluid output from queue i at time t
is routed immediately to queue j , and a proportion
Pi104t5 ≡ 1 −

∑m
j=1 Pi1 j4t5 ≤ 1 is routed out of the net-

work. Consistent with the terminology, we assume
that P4t5 is substochastic for each t.

If two input streams are combined to form a single
input (superposition), then the arrival rate functions
are added. If one stream with arrival rate function �
is split, such that a proportion p4t5 of that stream goes
into a new split stream at time t, then the arrival rate
function of the split stream is �p4t5 ≡ �4t5p4t5. Simi-
larly, if the departure flow from one queue becomes
input to another, then the resulting arrival rate func-
tion is � . (We do not let the abandonment flow from
one queue become input to another.) We next discuss
converting departure rate into new input rate.

As in open queueing networks, there is an external
exogenous arrival rate function to each queue (from
outside the network, which could be null at some
queues), denoted by �

405
j , and there is a total arrival

rate (TAR) function to each queue (which we simply
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call the arrival rate function), taking into account the
flow from other queues, denoted by �j . The exter-
nal arrival rate functions are part of the model data.
The arrival rate functions satisfy the system of traffic
rate equations

�j4t5= �
405
j 4t5+

m
∑

i=1

�i4t5Pi1 j4t51 (23)

where
�i4t5= Bi4t5�i4t51 t ≥ 00 (24)

Equations (23) and (24) produce a system of equa-
tions, with �j depending upon �i for 1 ≤ i ≤ m,
whereas �i in turn depends on �i for each i, because
Bi depends on �i. The formulas for Bi as a function
of �i have been given in §2.2, provided that we know
whether the queue is OL or UL. That requirement is
the major source of complexity.

Because (23) is a linear equation, it can be written
in matrix notation as Ë = Ë405 + Ñ P by omitting the
argument t as below, provided that the product �P is
interpreted as in (23). Moreover, we can combine (23)
and (24) to express � as the solution of a fixed point
equation. Hence the vector B4t5≡ B14t51 0 0 0 1Bm4t5 is a
function of � over 601 t5 and the model data. Hence,
we can express (23) and (24) abstractly as Ë = ë4Ë5,
where ë4x54t5 depends on its argument x only over
601 t7 for each t ≥ 0. Here the function ë depends on
all the model data 4�

405
i 1 si1�i1 Fi1 ·1 bi401 ·51 qi401 ·51P5,

1 ≤ i ≤m.
We assume that there are only finitely many

switches between OL and UL intervals in each finite
interval 601T 7. Under that assumption, the operator ë
mentioned above is a monotone contraction operator,
by Liu and Whitt (2011a, Theorem 10). Therefore, a
recursive algorithm can be developed. If the recursion
starts with initial vector Ë̃=Ë405, the vector of external
arrival rate functions, then the kth iterate �

4k5
j is the

arrival rate of fluid that has previously experienced
k transitions in the fluid network. With this notation,
we can write the recursive formulas

�
4n5
j 4t5 = ë 4n54�4055j4t5

= �
405
j 4t5+

m
∑

i=1

�
4n−15
i 4t5Pi1 j4t51 n≥ 11 (25)

where �
4n5
i 4t5 = B

4n5
i 4t5�i4t5, n ≥ 0. Because necessarily

�
415
i ≥ �

405
i for each i, this recursion converges mono-

tonically to the fixed point Ë.

3.2. The FPE-Based Algorithm Alg(FPE)
The algorithm Alg(FPE) consists of two succes-
sive steps: (i) solving the traffic-rate Equations (23)

and (24) and (ii) solving for the performance vector
4b1 q1w1v1�1�5 at each queue using the algorithm
in §2.3. For step (i), we start with an initial vector of
arrival rate functions, which can be an initial rough
estimate of the final arrival rate functions or the given
external arrival rate functions. We then apply the per-
formance formulas in §2.2 to determine the perfor-
mance functions Bi and �i at each queue to determine
a new vector of arrival rate functions. We then itera-
tively calculate successive vectors of arrival rate func-
tions until the difference (measured in the supremum
norm over a bounded interval) is suitably small. Then
we apply step (ii).

Given a desired duration T of an interval 601T 7, we
specify the following input data: (i) the model param-
eter vector
(

Ë4051 s1G1F1Ð405
)

≡
(

�
405
i 4t51 si4t51Gi1 Fi1Pi4051

1 ≤ i ≤m1 t ∈ 601T 7
)

1 (26)

where the initial performance vector (at time 0) of
queue i, 1 ≤ i ≤m, is

Pi405 ≡
(

bi401 ·51 qi401 ·51Bi4051Qi4051

wi4051vi4051�i4051�i405
)

1

and (ii) the algorithm parameters: the iteration error
tolerance parameter (ETP) � and the switching step size
ãT , both assumed to be strictly positive. (We assume
that the switching step size is the same for all queues,
which usually provides little loss of generality.) We
give a formal statement of the algorithm in the online
supplement.

From the structure of algorithm Alg(FPE), we
can directly determine the computational complex-
ity (computer-dependent required run time) CFPE ≡

CFPE4�1T 1m1S5 as a function of the ETP �, number
of queues m, length of the time interval T , and the
number of regime switches per queue S, but we will
also confirm it in numerical examples.

Proposition 1 (Computational Complexity of
Alg(FPE)). The computational complexity of Alg(FPE) is

CFPE ≡CFPE4m1T 1S1 �5=O4mTS log 41/�550 (27)

If we may regard S = O4T 5, as is the case with periodic
models, then CFPE4m1T 1 �5=O4mT 2 log 4�55.

Proof. Let I ≡ I4�5 be the number of iterations
of the FPE as a function of the ETP �. Roughly, we
need to apply the FASQ for each of the m queues
I times, although the full FASQ is not needed in
the steps before the final one needed to compute the
actual performance functions at each queue. Let Si

be the number of regime switches at queue i over
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601T 7. Thus the overall complexity should be CFPE =

O4IT
∑m

i=1 Si5. Assuming that Si ≈ S for all i, with
the switches at different queues occurring at differ-
ent times, that yields CFPE4I1m1T 1S5 = O4ITmS5.
Moreover, I4�5 = O4log 41/�5 where � is the ETP,
because the convergence to the fixed point in succes-
sive iterations is geometrically fast.

Unfortunately, unlike the other parameters, the
number of regime switches per queue S cannot be
directly observed from the model data. However, if
the model parameters, such as � and s, are peri-
odic functions with periods �� and �s , then the total
number of switchings is usually bounded by 2T /�� +

2T /�s so that we may regard S = O4T 5 making
CFPE4m1T 1 �5=O4mT 2 log 4�55. �

Proposition 1 is supported by the examples in §6.

4. The Alternative ODE-Based
Algorithm Alg(ODE)

Now we develop the new algorithm Alg(ODE) for
the 4Gt/Mt/st +GIt5

m/Mt FQNet. Again, the key is to
compute total arrival rates for all queues and then treat
each queue independently. In some special cases, ana-
lytic formulas are available.

4.1. Finding the Total Arrival Rate Vector
Instead of solving the fixed-point equation, as in §3,
to find the TARs, we now solve an m-dimensional
ODE. To do that, we need to work over subintervals
where all queues are in specified regimes. So now we
consider successive switching times for any queue in
the network. We recursively solve the ODE in each of
these intervals. The key is to characterize and update
the system regime in different intervals and recur-
sively advance in t. We describe the system regime at t
with two sets: U4t5 is the set of indices of queues that
are UL, and O4t5 is the set of indices of queues that
are OL. In other words,

U4t5≡
{

1 ≤ i ≤m2 Bi4t5≤ si4t51 Qi4t5= 0
}

1 (28)

O4t5≡
{

1 ≤ i ≤m2 Bi4t5= si4t51 Qi4t5 > 0
}

0 (29)

Of course, U4t5 is simply the complement of O4t5
within the set 811 0 0 0 1m9.

Given U4t5 and O4t5, consider 1 ≤ i ≤ m. (i) If
queue i is UL, i.e., i ∈ U4t5, flow conservation
implies that

B′

i4t5 = �
405
i 4t5+

∑

j∈U4t5

�j4t5Pj1 i4t5Bj4t5

+
∑

k∈O4t5

�k4t5Pk1 i4t5sk4t5−�i4t5Bi4t50

If i ∈ O4t5, Bi4t5 = si4t5. We partition and regroup
the indices of queues so that B4t5 ≡ 6BU4t51 BO4t57

T ,

Ë4t5 ≡ 6ËU4t51 ËO4t57
T , Ë4054t5 ≡ 6Ë

405
U 4t51 Ë

405
O 4t57T ,

Ì4t5 ≡ 6ÌU4t51 ÌO4t57
T , s4t5 ≡ 6sU4t51 sO4t57T , âU4t5 ≡

diag4ÌU4t55, âO4t5 ≡ diag4�O4t55, â 4t5 ≡ diag4âU4t51
âO4t55, and

P4t5≡

U O
U

O

[

PUU4t5 PUO4t5

POU4t5 POO4t5

]

1

where PUU4t5 (POU4t5, PUO4t5, and POO4t5) denotes the
transition probability from a state in U 4O, U, and O)
to a state in U 4U, O, and O) at time t. Let POU4t5 =

PUO4t5= POO4t5=Ô when PUU4t5= P4t5 (i.e., all queues
are UL), and let POU4t5 = PUO4t5 = PUU4t5 = Ô when
POO4t5= P4t5 (i.e., all queues are OL), where � denotes
an empty matrix (with rank 0).

Therefore, in matrix notation we have

B′

U4t5=C4t5 ·BU4t5+D4t5 and BO4t5= sO4t51 (30)

where

D4t5≡Ë
405
U 4t5+PT

OU4t5âO4t5sO4t51

C4t5≡ 4PT
UU4t5− I5âU4t50

If the service rates and the routing probability matrix
are independent of time, �i4t5 = �i and Pi1 j4t5 =

Pi1 j , i.e., the model becomes the 4Gt/M/st +GIt5
m/M

network, then âU ≡ âU4t5 = diag4�U5, C ≡ C4t5 =

4PT
UU − I5âU, and (30) has the unique solution

BU4t5= e−Ct

(

∫ t

0
e−CuD4u5du+B405

)

0

In all cases, the TAR vector can be represented as

Ë4t5=Ë4054t5+PT 4t5â 4t5 ·B4t50 (31)

4.2. Explicit Formulas for m= 2
The ODE-based approach yields analytic solutions
when m = 2. Consider the following four system
regimes:

(i) When queue 1 is OL and queue 2 is UL (i.e.,
B14t5= s14t5, Q14t5≥ 0, B24t5 < s24t5),

B14t5= s14t51

B′

24t5=�
405
2 4t5+P1124t5�14t5s14t5+4P2124t5−15�24t5B24t51

which has a unique solution

B24t5 = e
∫ t

0 4P2124u5−15�24u5du

[

∫ t

0
e
∫ u

0 4P2124v5−15�24v5dv4�
405
2 4u5

+ P1124u5�14u5s14u55 du+B2405
]

0
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(ii) When queue 1 is UL and queue 2 is OL (i.e.,
B14t5 < s14t5, B24t5= s24t5, Q24t5≥ 0),

B′

14t5=�
405
1 4t5+4P1114t5−15�14t5B14t5+P2114t5�24t5s24t51

B24t5= s24t51

which has a unique solution

B14t5 = e
∫ t

0 4P1114u5−15�14u5du

[

∫ t

0
e
∫ u

0 4P2114v5−15�14v5dv4�
405
1 4u5

+P2114u5�24u5s24u55 du+B1405
]

0

(iii) When both queues are OL,

B14t5= s14t51 B24t5= s24t50

(iv) When both queues are UL,

B′

14t5=�
405
1 4t5+4P1114t5−15�14t5B14t5+P2114t5�24t5B24t51

B′

24t5=�
405
2 4t5+P1124t5�14t5B14t5+4P2124t5−15�24t5B24t51

or

B′4t5=Ë4054t5+C4t5 ·B4t51 (32)

where

C4t5≡ 4PT 4t5− I5â 4t5 and â 4t5≡

[

�14t5 0
0 �24t5

]

0

After B4t5 is obtained, the TARs are

�14t5= �
405
1 4t5+ P1114t5�14t5B14t5+ P2114t5�24t5B24t51

�24t5= �
405
2 4t5+ P1124t5�14t5B14t5+ P2124t5�24t5B24t50

4.3. The Overall Algorithm and Its Complexity
Just as for FASQ in §2.3, the key step beyond direct
computation is to control the switching between
regimes. Because each queue can be either UL or OL,
there are overall 2m different network regimes. We say
that the system changes its regime at some time if one
or more of the queues changes its regime, either from
UL to OL or from OL to UL. We provide the following
regime termination time:

TR4t05≡ T14t05∧ T24t051 where

T14t05≡ inf
{

t > t02 some i ∈ O4t05

s.t. Qi4t5= 01�i4t5≤ �i4t5
}

1

T24t05≡ inf
{

t > t02 some j ∈U4t05

s.t. Bj4t5= sj4t51�j4t5 > �j4t5
}

1

(33)

with t0 being the starting time of the desired interval
and the infimum of an empty set understood to be
infinity.

Within each regime, we use an ODE to compute
the TARs �i4t5 and the service content functions Bi4t5,
based on (30) and (31). Given the TARs at all queues,
we use the FASQ to calculate the performance func-
tions. We give a formal algorithm statement in §E of
the online supplement.

The computational complexity clearly depends
largely on the computational complexity of the ODE
solver. Fortunately the ODEs arising in the present
context tend not to be computationally difficult; e.g.,
they are rarely stiff. Let OODE4m1 t5 be the computa-
tional complexity for solving an m-dimensional ODE
over an interval of length t. For the conventional
solvers we use (see §6.1), we should have approx-
imately OODE4m1 t5 = O4mt5. From the structure of
algorithm Alg(ODE), we can determine the computa-
tional complexity CODE ≡CODE4T 1m1S5 as a function
of the number of queues m, length of the time interval
T , and number of regime switches per queue S, but
we will also confirm it in numerical examples.

Proposition 2 (Computational Complexity of
Alg(ODE)). If the computational complexity of the ODE
solver is OODE4m1 t5 = O4mt5, then the computational
complexity of Alg(ODE) is

CODE ≡CODE4T 1m1S5=O4m2ST 50 (34)

Proof. As in §3.2, the parameter pair 4m1T 5 is
directly observable, but S is not. Let Si be the num-
ber of regime switches at queue i over 601T 7. Hence
the total number of regime switches for any queue
in the network is

∑m
i=1 Si. Assuming that Si ≈ S for

all i as before, we see that the ODE must be solved
mS times over subintervals, whose combined length
is T . In addition, there is some computational cost of
carrying out the switching in each regime switch. For
the ODE portion of the algorithm, the computational
complexity is

O4m1S1T 5=

mS
∑

j=1

O4m1Ti51 where
mS
∑

j=1

Ti = T 0 (35)

Hence, the overall computational complexity for
the ODE solver is O4mT 5. But we must factor
in the regime switching, which has computational
effort proportional to the number of network regime
switches, O4mS5. Assuming that these components
each contribute significantly, we get the overall com-
putational complexity in (35). �

We find that Proposition 2 is consistent with numer-
ical examples; e.g., see Figure 2.
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Figure 2 Computing Times of Algorithms Alg(FPE) and Alg(ODE) for the m-Queue FQNet as a Function of m, 2≤m ≤ 160

5. Allowing GI Service Distributions:
Alg(FPE,GI)

We now generalize the model, allowing the ser-
vice distribution at each queue to be GI instead
of M . We need a new algorithm because neither the
FPE-based algorithm Alg(FPE) in §3 nor the ODE-
based algorithm Alg(ODE) in §4 is directly applicable.
For simplicity, we focus on the 4Gt/GI/st + GI5m/Mt

FQNet, where the service and patience distributions
are not time varying; the analysis can be easily
generalized to 4Gt/GIt/st + GIt5

m/Mt . As part of the
model data, we let 4Gi11 ≤ i ≤ m5 be the general ser-
vice cdfs of the 4Gt/GI/st + GI5m/Mt FQNet, and let
Ḡi ≡ 1 − Gi be the associated ccdf; e.g., Ḡi4x5 = e−�i x

for M service.

5.1. A New FPE for the TAR Vector
The key is to obtain the TAR �i4t5 for 1 ≤ i ≤ m and
0 ≤ t ≤ T . Once �i4t5 is obtained, the single-queue
algorithm for GI service developed in Liu and Whitt
(2012a) can be applied to compute all other perfor-
mance measures; see §8 and Appendix G in Liu and
Whitt (2012a). This single-queue algorithm for GI ser-
vice is a generalization of FASQ, which requires solv-
ing another FPE to find the rate at which fluid enters
service b4t105 (which we call the rate into service (RIS))
during each OL interval. For M service, this FPE for
RIS simplifies to (19) with x = 0.

We next analyze the transient dynamics of the
4Gt/GI/st +GI5m/Mt model at arbitrary time t assum-
ing the knowledge of the current system status.
We refer to the explicit formulas for b4t1 x5 developed
in Liu and Whitt (2012a) during our analysis. The for-
mulas for q4t1 x5 and w4t5 are identical to those in §2.

Consider a queue j that is UL, i.e., j ∈ U4t5. From
Proposition 2 of Liu and Whitt (2012a) we have that

(as a generalization of (18)),

bj4t1x5=Ḡj4x5�j4t−x518x≤t9+
Ḡj4x5

Ḡj4x−t5
bj401x−t518x>t91

�j4t5=

∫ �

0
bj4t1 x5hG1 j4x5dx

=

∫ t

0
gj4x5�j4t − x5dx

+

∫ �

0

gj4x+ t5

Ḡj4x5
bj401x5dx0 (36)

Note that formula (36) for queue j is in terms of the
TAR �i, which is unknown.

Consider a queue k that is OL, i.e., k ∈ O4t5. From
Equations (17)–(20) of Liu and Whitt (2012a) we
obtain

�k4t5= bk4t105− s′

k4t51 (37)

where the RIS bk4t105 satisfies the FPE (as a general-
ization of (19))

bk4·105=ê4bk4·10551 (38)

with

ê4y54t5≡ âk4t5+
∫ t

0
y4t − x5gk4x5dx1

âk4t5≡ s′

k4t5+
∫ �

0

bk401y5gk4t + y5

Ḡk4y5
dy0

Moreover, we have shown in Liu and Whitt (2012a,
Theorem 2) that ê is a contraction operator under
mild conditions, and thus implies that the FPE (38)
has a unique solution.

We note that the RIS for an OL queue depends on
the rate at which the service capacity becomes avail-
able (defined in (12)) and is independent of the TAR,
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unlike during a UL regime. Hence, having �k4t5 and
bk4t105 available (by solving the FPE (38) and (37)) for
all OL queues (i.e., for all k ∈ O4t5), the TAR of queue i
satisfies the following traffic-rate equation:

�i4t5 = �
405
i 4t5+

∑

k∈O4t5

Pk1 i4t5�k4t5+
∑

j∈U4t5

Pj1 i4t5�j4t5

= �̂i4t5+
∑

j∈U4t5

Pj1 i4t5

(

∫ t

0
gj4x5�j4t − x5dx

)

1 (39)

where

�̂i4t5 ≡ �
405
i 4t5+

∑

k∈O4t5

Pk1 i4t5�k4t5

+
∑

j∈U4t5

Pj1 i4t5
∫ �

0

gj4x+ t5

Ḡj4x5
bj401x5dx1

with �̂i not depending on the TAR and determined by
the FPE (38) and the second equality holding by (36).

Equation (39) expresses the TAR vector � as the
solution of an FPE, i.e.,

�=J4�51 (40)

where J2 �m →�m with

J4u5i4t5 ≡ �̂i4t5+
∑

j∈U4t5

Pj1 i4t5

(

∫ t

0
gj4x5uj4t − x5dx

)

1

1 ≤ i ≤m1 (41)

where u ≡ 4u11 0 0 0 1um5 ∈ �m. Under regularity condi-
tions, we can show that there exists a unique solution
to Equation (39) by applying the Banach contraction
theorem. We will use the complete (nonseparable)
normed space �m with the uniform norm over the
interval 601T 7, i.e.,

�u�T ≡

m
∑

i=1

sup
0≤t≤T

�ui4t5�0 (42)

Theorem 1 (TAR for GI Service). Assume the system
regime does not change in a small interval 601T 7, then the
operator J in (41) is a monotone contraction operator on
�n with norm defined in (42).

Proof. Assume that T > 0 is small enough so that
the system regime does not change, i.e., U4t5=U and
O4t5= O for 0 ≤ t ≤ T . Then

�J4u15−J4u25�T

=

m
∑

i=1

sup
0≤t≤T

∣

∣

∣

∣

∑

j∈U

Pj1 i4t5

[

∫ t

0
gj4x54u11 j4t−x5−u21 j4t−x55dx

]

∣

∣

∣

∣

≤

m
∑

i=1

sup
0≤t≤T

∑

j∈U

�u11 j −u21 j�T Pj1 i4t5Gj4t5

≤mmax
1≤j≤m

Gj4T 5· sup
0≤t≤T

∑

j∈U

�u11 j −u21 j�T ≤ C̃4T 5�u1 −u2�T 1

where C̃4T 5 ≡ mmax1≤j≤mGj4T 5. This provides what
we need, because we can make C̃4T 5 < 1 for suffi-
ciently small T > 0, because Gi4t5→ 0 as t → 0 for all
1 ≤ i ≤ m by our assumption on the existence of the
service densities. �

5.2. The Overall FPE-Based Algorithm with
GI Service

Algorithm Alg(FPE, GI) has two parts: (i) regime
switching and (ii) the new FPE within each fixed net-
work regime. The regime switching can be managed
just as for the FASQ and Alg(ODE). As before, we
work with a regime switching step size ãT . Given a
time t, we apply the new FPE in §5.1 to find a new
TAR vector over the interval 6t1 t + ãT 7. However,
after doing that calculation, we must check to see if
there is a regime switch at any queue in the network.
If such a regime switch occurs at time s ∈ 6t1 t +ãT 7,
then we replace t with s and repeat. In this way, we
move forward in time until we compute the TAR vec-
tor for all of 601T 7.

Within each interval with fixed network regime, we
calculate the TAR using FPE (40). Given that TAR
within each interval with fixed network regime, we
apply the single-queue algorithm from Liu and Whitt
(2012a) to calculate the queue performance at each
queue. This is more complicated than the FASQ in §2,
because it is necessary to solve the FPE (38) at each
queue that is OL in that particular network regime.

For this last algorithm, the computational complex-
ity is more difficult to determine from the algorithm
structure, because the algorithm is more complicated.
Just as for Alg(ODE), there are O4mS5 network
regimes, so that regime switching should have com-
plexity of order O4mS5. The new FPE is more com-
plicated, requiring an FPE within the overall FPE at
each queue. Because the first-step FPE (38) is done
at each queue throughout 601T 7, we can estimate its
complexity as O4mT 5. The second-step FPE (40) may
also have complexity of order O4mT 5. In addition,
these FPEs depend on the ETPs �. Because both oper-
ators are contraction, the rate of convergence is geo-
metric. Hence the computational complexity of both
iterations as functions of � are O4log 41/�55. Thus, we
estimate that the computational complexity should be

CFPE1GI4m1T 1S1 �5 = O

(

4mT +mT 5mS log
(

1
�

))

= O4m2ST log 41/�550 (43)

6. Examples
In this section we report the results of implementing
the algorithms in §§3–5 and applying them to three
examples: (i) a Markovian 4Mt/M/s + M52/M two-
queue FQNet, (ii) a Markovian 4Mt/M/s + M5m/M
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FQNet with m queues, 2 ≤ m ≤ 160, and (iii) a non-
Markovian 4Gt/LN/s + E25

2/M model. For simplic-
ity, in these examples we make only the arrival rate
time varying. The extension to time-varying staffing
is of course very important and is not difficult to
do as well, as we illustrate with an example in the
online supplement. Adding time-varying functions to
the service, abandonment and routing are less impor-
tant, so we do not directly illustrate those extensions.
The third algorithm applies to all three examples, but
the first two algorithms only apply to the first two
examples. In §6.1 we first provide details about our
implementation.

6.1. Implementation Details
Before discussing the examples, we briefly explain
how we implemented the numerical algorithms and
conducted the simulation experiments. For both, we
used MATLAB on a personal computer. To numer-
ically solve ODEs both one-dimensional for w4t5 at
each queue as in (21), and multidimensional for
the TAR as in (30), we used the MATLAB solvers
“ode23” and “ode45,” which employ automatic step-
size Runge–Kutta–Fehlberg integration methods. The
first one, ode23, uses a pair of simple second-order
and third-order formulas. The second, ode45, uses
a pair of fourth-order and fifth-order formulas. See
Thomas (1995) for details on finite-difference methods
for numerically solving differential ODEs. As a base
case for the examples, we considered a system start-
ing empty over the time interval 601T 7 with T = 20.
In that framework, we divided the continuous time
interval 601T 7 into discrete intervals with length 00002.

Care is needed in estimating the various time-
dependent performance functions in the simulation
experiments. For the mean head-of-line waiting time
E6W4t57, the mean queue length E6Q4t57, and the
mean number of busy servers E6B4t57, we divide the
interval 601T 7 into subintervals or bins. For E6W4t57,
we keep track of all customer arrivals in each sample
path. For a customer n, we keep track of the arrival
time An and the time that the customer enters ser-
vice En. Therefore, one value for this sample path is
4t1 Ŵ 4t55= 4En1En−An5. Of course, this customer may
have already abandoned by time En. Because we are
interested in the potential waiting time, assuming infi-
nite patience, we keep track of the time that the cus-
tomer would enter service even after they abandon;

Table 1 The Number of Iterations I4�5, Computation Time T4�5, and Terminating Error ET 4I4�55 for Algorithm Alg(FPE) as a
Function of the ETP � ≡ 10−n, n ≥ 1, for the Two-Queue FQNet Example Using T = 20 and ãT = 2

log104�5 −1 −2 −3 −4 −5 −6 −7 −8 −9

I4�5 3 6 8 11 13 15 16 17 19
T4�5 1003 1082 2041 2090 3012 3067 3094 4028 4073
ET 4I4�55 00081 00007 9.2E−4 4.8E−5 4.9E−6 2.8E−7 5.2E−8 8.3E−9 1.4E−10

i.e., our procedure includes the behavior of virtual
customers. The bin size for E6W4t57 is 001, whereas the
bin size for E6Q4t57 and E6B4t57 is 0005. Thus, we sam-
pled the queue length once every 0005 units of time.

6.2. A Two-Queue FQNet Example
We first consider the two-queue 4Mt/M/s + M52/M
FQNet discussed in §1. It has sinusoidal external
arrival rates

�
405
i 4t5= ai + bi sin4cit +�i51 i = 1123 (44)

exponential service and patience distributions Ḡi4x5=

e−�ix and F̄i4x5 = e−�ix, i = 112, respectively; constant
staffing functions si, i = 11 2; and a constant 2 × 2
Markov transition probability matrix P with elements
P112 = P211 = 002 and Pi1 i = 003, so that Pi10 = 005,
i = 1, 2. Let a1 = a2 = 005, b1 = 0025, b2 = 0035, c1 =

c2 = 1, �1 = 0, �2 = −3, �1 = 1, �2 = 005, �1 = 005,
�2 = 003, s1 = 1, and s2 = 2. We let the network be ini-
tially empty.

We first show how the FPE-based algorithm
Alg(FPE) from §3 works. It is based on an FPE for
the TARs �14t5 and �24t5 for 0 ≤ t ≤ T . Figure 6
in Section G.1 of the online supplement displays
the arrival rates in successive iterations, dramatically
showing both the monotone convergence and the geo-
metric rate of convergence of the operator ë in §3.1.
Alg(FPE) terminates after iteration I4�5, where � > 0
is the prespecified ETP, and

I4�5≡ inf
{

n≥ 02 ET 4n5≡ max
j=112

��
4n5
j −�

4n−15
j �T ≤ �

}

1

yielding final TARs �i ≡ �
4I4�55
i , i = 112. For this exam-

ple, we show how the number of iterations I4�5,
the total run time T4�5, and the terminating error
ET 4I4�55 depend on the EPT � in Table 1.

Figure 7 in Section G.1 of the online supplement
shows plots of all the standard performance func-
tions in the fluid network using Alg(FPE), including
�i, Qi, wi, Bi, Xi, and bi4·105, i = 112. Figure 1 com-
pares the fluid approximations with results from a
simulation experiment for a very large-scale queueing
system. The queueing model has nonhomogeneous
Poisson external arrival processes with sinusoidal rate
functions �

405
n1 i4t5 = n�

405
i 4t5, i = 112, with n = 41000.

We compare the fluid model predictions to a single
sample path of the queueing system (one simulation
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Table 2 The Number of IterationsI4m5 and Computation TimeT4m5 (Seconds) as a Function ofm, the Number of Queues, Using Alg(FPE) with Fixed
EPT � = 10−5

m 2 4 6 8 10 12 14 16 18 20

I4m5 12 12 12 13 12 12 12 12 12 12
T4m5 2086 4068 6043 8075 11002 11096 13096 15063 17039 19021

m 30 40 50 60 70 80 100 120 140 160

I4m5 12 12 12 12 12 12 12 12 12 12
T4m5 29076 37037 48067 58042 68015 73063 96077 11500 134084 14707

run). In Figure 1 the solid lines are the simulation esti-
mations of single sample paths applied with fluid scal-
ing, and the dashed lines are the fluid approximations.

When the scale of the queueing model is not large,
i.e., when n is smaller, single sample paths of the
queueing functions typically do not agree closely with
the fluid functions because of stochastic fluctuations.
However, the mean functions of these processes can
be well approximated, as shown in Section G.1 of the
online supplement, Figure 8, for the case n = 50. In
this example, the two queues do not become OL (UL)
at the same time because of the phase difference of
the external arrival rates (i.e., �1 = 0, �2 = −3). We
also consider different phases �i in another example
in Section G.1 of the online supplement.

All three algorithms were run on this example;
the resulting identical performance functions con-
firm all of the algorithms. For this small FQNet
example, the most important characteristic is ease of
implementation, for which Alg(ODE) from §4 tends
to be easiest, whereas Alg(FPE, GI) from §5 is hard-
est. For all examples, Alg(FPE, GI) tends to have the
longest run time, as expected because it involves an
FPE for each queue as well as an FPE for the TARs.
For two-queue examples like the one just considered,
the running time of Alg(FPE, GI) tends to be twice as
long as that of Alg(ODE).

6.3. A Network with Many Queues
We next evaluate the performance of algorithms
Alg(FPE) and Alg(ODE) as a function of the number
of queues m. To do so, we consider a simple idealized
network with m queues. Each queue i has a time-
varying arrival rate as in (44), exponential service and
patience times with rates �i and �i, constant staffing
level si, and constant routing probabilities Pi1 j , where

ai = 0051 bi = iai/m1 �i =�4105 − i/m51 �i = 0051
ci = si =�i = 11 Pi1 j = 1/2m1 1 ≤ i ≤m1 1 ≤ j ≤m0

Table 3 The Computation Time T4m5 (Seconds) as a Function of the Number of Queues m Using Alg(ODE)

m 2 4 6 8 10 12 14 16 18 20

T4m5 2077 3067 6016 8092 12003 15046 20035 25095 31030 37037

m 30 40 50 60 70 80 100 120 140 160

T4m5 64072 107005 132065 17807 227064 312061 411009 567015 765055 1101301

Figure 13 in Section G.2 of the online supplement
shows plots of the performance functions for m= 10.

Table 2 shows the number of iterations I4m5 and
computation time T4m5 in seconds as a function of
the number of queues m, 2 ≤m≤ 160, using algorithm
Alg(FPE) with fixed EPT � = 10−5. In this example we
observe that (i) the number of iterations I4m5 does
not grow with the number of queues m, and (ii) the
computation time T4m5 grows linearly in m.

We also analyzed the performance of this same
model using Alg(ODE). Table 3 shows the computa-
tion times T4m5 as a function of m. Because we used
the ODE solvers ode23 and ode45, which are O4m5
algorithms, the running time for Alg(ODE) becomes
O4m2S5. Figure 2 dramatically shows the difference
in the algorithm performance.

We conclude this section with some general obser-
vations comparing the performance of the two algo-
rithms Alg(FPE) and Alg(ODE). For small m (e.g.,
2 ≤ m ≤ 8) and small � (e.g., � < 10−5), Alg(ODE)
runs faster than Alg(FPE); for big m and medium �,
Alg(FPE) runs faster than Alg(ODE). Of course, the
complexity of Alg(ODE) depends on the choice of
the multidimensional ODE solver. The polynomial
growth in m as shown in Table 3 is attributed to
the specific numerical scheme (such as Runge–Kutta–
Fehlberg) of the ODE solver.

6.4. A 4Gt/LN/s+E25
2/M Non-Markovian Example

We now consider an example with a nonexponential
service-time distribution for which only the final algo-
rithm Alg(FPE, GI) introduced in §5 applies. To illus-
trate this example, we consider the 4Gt/LN/s+E25

2/M
model with lognormal service distributions at each
queue (the LN ) and Erlang-2 patience distributions
at each queue (the E25. Specifically, we let the service
time at station i be Si ≡ eZi , where Zi is a normal
random variable with mean �̂i and variance �̂2

i , i.e.,
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Figure 3 Computing the Fluid Performance Functions for the 4Mt/LN/st + E25
2/Mt Network Fluid Model

Zi ∼ N4�̂i1 �̂
2
i 5, i = 112. The service probability density

function (pdf) is

gi4x5=
1

x�̂i

√
2�

e−4log x−�̂i5
2/42�̂2

i 51 x ≥ 01 i = 1120

For i = 112, the mean service times and the vari-
ances are

�−1
i ≡ E6Si7= e�̂i+41/25�̂2

i and

�2
i ≡ Var4Si5= 4e�̂

2
i − 15e2�̂i+�̂2

i 0

The LN assumption is representative because Brown
et al. (2005) showed that service times in call centers
follow LN distributions.

We let the patience distribution be Erlang-2 (E2)
with pdf

fi4x5= 4�2
i xe

−2�ix1 x ≥ 00

Letting Ai be a generic patience time of a customer at
queue i, we have E6Ai7= 1/�i, i = 112. The E2 distribu-
tion has a squared coefficient of variation c2 ≡ Var4X5/
E6X72 = 1/2. We choose �̂1 = −00549, �̂1 = 10048, �̂2 =

00144, and �̂2 = 10048 such that �1 = 1, �2 = 005, �2
1 = 2,

and �2
2 = 8. Thus, we have c2 = 2 for the service dis-

tributions. We let �1 = 005, �2 = 003. In this way both
the service rates (�1 and �2) and the patience rates
(�1 and �2) remain the same as in the example in §6.2.
For comparison, we let the external arrival rate �405

be sinusoidal as in (44) and the Markovian routing
matrix P be constant with the same parameters as in
§6.2. We also let the system be initially empty.

Figure 3 and Figure 14 in Section G.3 of the
online supplement show plots of the standard per-
formance functions and compares them to simulation
experiments in the two cases n = 41000 and n = 50.
These two figures are analogs of Figures 7 and 8 in the
online supplement. As before, for n = 41000 the fluid
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performance agrees with individual sample paths of
the SQNet; for n = 50 the fluid performance agrees
with the mean values of the time-varying stochas-
tic SQNet performance. In Figure 3, we compare the
fluid functions of the two-queue Markovian model
(the solid line for queue 1 and dotted line for queue 2)
and those of the non-Markovian 4Mt/LN/s + E25

2/M
model (the dashed line for queue 1 and dashed and
dotted line for queue 2). As indicated earlier, these
two models have the same model parameters, includ-
ing the service and patience rates � and �, except for
the service and patience distributions.

In addition to showing that the new algorithm
Alg(FPE, GI) is effective, Figure 3 shows that the ser-
vice and patience distributions beyond their means
play an important role in the time-dependent perfor-
mance of the fluid network with time-varying model
parameters. For the stationary G/GI/s + GI fluid
queue, Whitt (2006) showed that the patience dis-
tribution beyond its mean plays an important role,
whereas the service-time distribution does not. In Liu
and Whitt (2012a) we showed that the service-time
distribution beyond its mean is also important in the
time-dependent behavior.

Supplemental Material
Supplemental material to this paper is available at http://dx
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