APPENDIX

to

Approximations for Heavily-Loaded $G / G I / n+G I$ Queues

by

Yunan Liu, Ward Whitt, and Yao Yu

A Overview

This appendix supplements the main paper by providing additional numerical examples evaluating the performance of the Gaussian approximations DGA, TGA and TGA-G.

First, in $\S B$, we give more examples providing examples of the good performance. Then, in §C, we give more examples that further expose the limitations of the approximations. In §C. 1 we give examples showing that the abandonment rates cannot be too much larger than 1 ; otherwise the system ceases to be OL. In \S C. 2 we give more examples showing that the performance of underloaded models is not good except for a few performance measures. Here we consider models with smaller scale. In §C. 3 we give examples showing the degraded performance of the approximations when the traffic intensity ρ is too close to 1 . We fix $n=100$ and let ρ decrease toward 1 .

B More Good examples

We first give additional positive examples for Markov models in §§B.1-B. 2 and non-Markov models in §B.3.

B. 1 More Examples of Markov $M / M / n+M$ Models

In the main paper, we compare the exact solution with DGA's and TGA's in heavily loaded regime ($\rho=1.2$). Table 18 provides results for $\rho=1.5$. In this very highly loaded system, the TGA and DGA approximations are nearly identifical, but we see some small differences in the cases with $\theta>1$.

Table 18: A comparison of the TGA and DGA approximations to exact numerical values in the $M\left(\lambda^{-1}\right) / M(1) / 100+M\left(\theta^{-1}\right)$ model with $\lambda=100 \rho$ and $\rho=1.5$ for six values of $\theta, 0.10 \leq \theta \leq 4.00$.

Perf.	$\theta=0.1$			$\theta=0.25$			$\theta=0.5$		
	Sim.	DGA	TGA	Sim.	DGA	TGA	Sim.	DGA	TGA
$\mathrm{E}[X]$ rel. err.	$\begin{gathered} 5.99 \mathrm{E}+2 \\ \pm 9.19 \mathrm{E}-1 \end{gathered}$	$\begin{gathered} 6.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	same	$\begin{aligned} & 3.00 \mathrm{E}+2 \\ & \pm 4.01 \mathrm{E}-1 \end{aligned}$	$\begin{gathered} 3.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	same	$\begin{gathered} 2.00 \mathrm{E}+2 \\ \pm 2.01 \mathrm{E}-1 \end{gathered}$	$\begin{gathered} 2.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	same
$\operatorname{Var}(X)$ rel. err.	$\begin{gathered} 1.49 \mathrm{E}+3 \\ \pm 1.10 \mathrm{E}+3 \end{gathered}$	$\begin{gathered} 1.50 \mathrm{E}+3 \\ 1 \% \end{gathered}$	same	$\begin{gathered} 6.00 \mathrm{E}+2 \\ \pm 2.41 \mathrm{E}+2 \end{gathered}$	$\begin{gathered} 6.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	same	$\begin{gathered} 3.00 \mathrm{E}+2 \\ \pm 8.10 \mathrm{E}+1 \end{gathered}$	$\begin{gathered} 3.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	same
$\mathrm{E}[Q]$ rel. err.	$\begin{gathered} 4.99 \mathrm{E}+2 \\ \pm 9.19 \mathrm{E}-1 \end{gathered}$	$\begin{gathered} 5.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	$\begin{gathered} 5.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	$\begin{gathered} 2.00 \mathrm{E}+2 \\ \pm 4.01 \mathrm{E}-1 \end{gathered}$	$\begin{gathered} 2.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	$\begin{gathered} 2.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	$\begin{gathered} 1.00 \mathrm{E}+2 \\ \pm 2.01 \mathrm{E}-1 \end{gathered}$	$\begin{gathered} 9.99 \mathrm{E}+1 \\ 0 \% \end{gathered}$	$\begin{gathered} 9.99 \mathrm{E}+1 \\ 0 \% \end{gathered}$
$\begin{aligned} & \operatorname{Var}(Q) \\ & \text { rel. err. } \end{aligned}$	$\begin{gathered} 1.49 \mathrm{E}+3 \\ \pm 9.19 \mathrm{E}+2 \end{gathered}$	$\begin{gathered} 1.50 \mathrm{E}+3 \\ 1 \% \end{gathered}$	$\begin{gathered} 1.50 \mathrm{E}+3 \\ 1 \% \end{gathered}$	$\begin{gathered} 6.00 \mathrm{E}+2 \\ \pm 1.61 \mathrm{E}+2 \end{gathered}$	$\begin{gathered} 6.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	$\begin{gathered} 6.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	$\begin{gathered} 3.00 \mathrm{E}+2 \\ \pm 4.08 \mathrm{E}+1 \end{gathered}$	$\begin{gathered} 3.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	$\begin{gathered} 3.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$
$\mathrm{E}[W]$ rel. err.	$\begin{aligned} & 4.05 \mathrm{E}+0 \\ & \pm 7.53 \mathrm{E}-3 \end{aligned}$	$\begin{gathered} 4.06 \mathrm{E}+0 \\ 0 \% \end{gathered}$	$\begin{gathered} 4.06 \mathrm{E}+0 \\ 0 \% \end{gathered}$	$\begin{gathered} 1.63 \mathrm{E}+0 \\ \pm 3.28 \mathrm{E}-3 \end{gathered}$	$\begin{gathered} 1.62 \mathrm{E}+0 \\ 0 \% \end{gathered}$	$\begin{gathered} 1.62 \mathrm{E}+0 \\ 0 \% \end{gathered}$	$\begin{gathered} 8.17 \mathrm{E}-1 \\ \pm 1.64 \mathrm{E}-3 \end{gathered}$	$\begin{gathered} 8.11 \mathrm{E}-1 \\ 1 \% \end{gathered}$	$\begin{gathered} 8.11 \mathrm{E}-1 \\ 1 \% \end{gathered}$
$\begin{aligned} & \operatorname{Var}(W) \\ & \text { rel. err. } \end{aligned}$	$\begin{gathered} 9.98 \mathrm{E}-2 \\ \pm 7.53 \mathrm{E}-3 \end{gathered}$	$\begin{gathered} 1.00 \mathrm{E}-1 \\ 0 \% \end{gathered}$	$\begin{gathered} \hline 1.00 \mathrm{E}-1 \\ 0 \% \end{gathered}$	$\begin{gathered} 4.01 \mathrm{E}-2 \\ \pm 3.28 \mathrm{E}-3 \end{gathered}$	$\begin{gathered} \hline 4.00 \mathrm{E}-2 \\ 0 \% \end{gathered}$	$\begin{gathered} 4.00 \mathrm{E}-2 \\ 0 \% \end{gathered}$	$\begin{gathered} 2.00 \mathrm{E}-2 \\ \pm 1.64 \mathrm{E}-3 \end{gathered}$	$\begin{gathered} 2.00 \mathrm{E}-2 \\ 0 \% \end{gathered}$	$\begin{gathered} 2.00 \mathrm{E}-2 \\ 0 \% \end{gathered}$
PoD rel. err.	$\begin{gathered} 1.00 \mathrm{E}+0 \\ \pm 0.00 \mathrm{E}+0 \end{gathered}$	$\begin{gathered} 1.00 \mathrm{E}+0 \\ 0 \% \end{gathered}$	same	$\begin{gathered} 1.00 \mathrm{E}+0 \\ \pm 0.00 \mathrm{E}+0 \end{gathered}$	$\begin{gathered} 1.00 \mathrm{E}+0 \\ 0 \% \end{gathered}$	same	$\begin{gathered} 1.00 \mathrm{E}+0 \\ \pm 0.00 \mathrm{E}+0 \end{gathered}$	$\begin{gathered} 1.00 \mathrm{E}+0 \\ 0 \% \end{gathered}$	same
PoA rel. err.	$\begin{gathered} 3.33 \mathrm{E}-1 \\ \pm 1.34 \mathrm{E}-3 \end{gathered}$	$\begin{gathered} 3.33 \mathrm{E}-1 \\ 0 \% \\ \hline \end{gathered}$	same	$\begin{gathered} 3.33 \mathrm{E}-1 \\ \pm 1.37 \mathrm{E}-3 \end{gathered}$	$\begin{gathered} 3.33 \mathrm{E}-1 \\ 0 \% \\ \hline \end{gathered}$	same	$\begin{gathered} 3.34 \mathrm{E}-1 \\ \pm 1.33 \mathrm{E}-3 \\ \hline \end{gathered}$	$\begin{gathered} 3.33 \mathrm{E}-1 \\ 0 \% \\ \hline \end{gathered}$	same
		$\theta=2$			$\theta=4$			$\theta=10$	
Perf.	Sim.	DGA	TGA	Sim.	DGA	TGA	Sim.	DGA	TGA
$\begin{aligned} & \mathrm{E}[X] \\ & \text { rel. err. } \end{aligned}$	$\begin{gathered} 1.25 \mathrm{E}+2 \\ \pm 5.05 \mathrm{E}-2 \end{gathered}$	$\begin{gathered} 1.25 \mathrm{E}+2 \\ 0 \% \end{gathered}$	same	$\begin{gathered} 1.12 \mathrm{E}+2 \\ \pm 2.64 \mathrm{E}-2 \end{gathered}$	$\begin{gathered} 1.12 \mathrm{E}+2 \\ 0 \% \end{gathered}$	same	$\begin{gathered} 1.05 \mathrm{E}+2 \\ \pm 1.36 \mathrm{E}-2 \end{gathered}$	$\begin{gathered} 1.05 \mathrm{E}+2 \\ 0 \% \\ \hline \end{gathered}$	same
$\operatorname{Var}(X)$ rel. err.	$\begin{gathered} 7.53 \mathrm{E}+1 \\ \pm 1.27 \mathrm{E}+1 \end{gathered}$	$\begin{gathered} 7.49 \mathrm{E}+1 \\ 1 \% \end{gathered}$	same	$\begin{gathered} 3.79 \mathrm{E}+1 \\ \pm 5.96 \mathrm{E}+0 \end{gathered}$	$\begin{gathered} 3.74 \mathrm{E}+1 \\ 1 \% \end{gathered}$	same	$\begin{gathered} 1.71 \mathrm{E}+1 \\ \pm 2.84 \mathrm{E}+0 \end{gathered}$	$\begin{gathered} 1.49 \mathrm{E}+1 \\ 13 \% \end{gathered}$	same
$\begin{aligned} & \mathrm{E}[Q] \\ & \text { rel. err. } \end{aligned}$	$\begin{gathered} 2.50 \mathrm{E}+1 \\ \pm 5.05 \mathrm{E}-2 \end{gathered}$	$\begin{gathered} 2.49 \mathrm{E}+1 \\ 0 \% \end{gathered}$	$\begin{gathered} 2.49 \mathrm{E}+1 \\ 0 \% \end{gathered}$	$\begin{gathered} 1.25 \mathrm{E}+1 \\ \pm 2.60 \mathrm{E}-2 \end{gathered}$	$\begin{gathered} 1.23 \mathrm{E}+1 \\ 2 \% \end{gathered}$	$\begin{gathered} \hline 1.24 \mathrm{E}+1 \\ 1 \% \\ \hline \end{gathered}$	$\begin{aligned} & 5.03 \mathrm{E}+0 \\ & \pm 1.17 \mathrm{E}-2 \end{aligned}$	$\begin{gathered} \hline 4.90 \mathrm{E}+0 \\ 3 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.08 \mathrm{E}+0 \\ 1 \% \\ \hline \end{gathered}$
$\begin{aligned} & \operatorname{Var}(Q) \\ & \text { rel. err. } \end{aligned}$	$\begin{gathered} 7.52 \mathrm{E}+1 \\ \pm 2.63 \mathrm{E}+0 \end{gathered}$	$\begin{gathered} 7.49 \mathrm{E}+1 \\ 0 \% \end{gathered}$	$\begin{gathered} 7.46 \mathrm{E}+1 \\ 1 \% \end{gathered}$	$\begin{aligned} & 3.68 \mathrm{E}+1 \\ & \pm 7.08 \mathrm{E}-1 \end{aligned}$	$\begin{gathered} \hline 3.74 \mathrm{E}+1 \\ 2 \% \end{gathered}$	$\begin{gathered} 3.59 \mathrm{E}+1 \\ 2 \% \end{gathered}$	$\begin{aligned} & 1.35 \mathrm{E}+1 \\ & \pm 1.49 \mathrm{E}-1 \end{aligned}$	$\begin{gathered} 1.49 \mathrm{E}+1 \\ 10 \% \end{gathered}$	$\begin{gathered} 1.24 \mathrm{E}+1 \\ 9 \% \end{gathered}$
$\begin{aligned} & \mathrm{E}[W] \\ & \text { rel. err. } \end{aligned}$	$\begin{gathered} 2.08 \mathrm{E}-1 \\ \pm 4.13 \mathrm{E}-4 \end{gathered}$	$\begin{gathered} \hline 2.03 \mathrm{E}-1 \\ 2 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.03 \mathrm{E}-1 \\ 2 \% \\ \hline \end{gathered}$	$\begin{gathered} 1.06 \mathrm{E}-1 \\ \pm 2.14 \mathrm{E}-4 \end{gathered}$	$\begin{gathered} 1.01 \mathrm{E}-1 \\ 5 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.01 \mathrm{E}-1 \\ 5 \% \\ \hline \end{gathered}$	$\begin{gathered} 4.55 \mathrm{E}-2 \\ \pm 1.01 \mathrm{E}-4 \end{gathered}$	$\begin{gathered} \hline 4.10 \mathrm{E}-2 \\ 10 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.25 \mathrm{E}-2 \\ 7 \% \\ \hline \end{gathered}$
$\begin{aligned} & \operatorname{Var}(W) \\ & \text { rel. err. } \end{aligned}$	$\begin{gathered} 5.07 \mathrm{E}-3 \\ \pm 4.13 \mathrm{E}-4 \\ \hline \end{gathered}$	$\begin{gathered} 5.00 \mathrm{E}-3 \\ 1 \% \end{gathered}$	$\begin{gathered} 4.98 \mathrm{E}-3 \\ 2 \% \end{gathered}$	$\begin{gathered} 2.52 \mathrm{E}-3 \\ \pm 2.14 \mathrm{E}-4 \end{gathered}$	$\begin{gathered} 2.50 \mathrm{E}-3 \\ 1 \% \end{gathered}$	$\begin{gathered} 2.40 \mathrm{E}-3 \\ 5 \% \end{gathered}$	$\begin{gathered} 9.87 \mathrm{E}-4 \\ \pm 1.01 \mathrm{E}-4 \end{gathered}$	$\begin{gathered} 1.00 \mathrm{E}-3 \\ 2 \% \end{gathered}$	$\begin{gathered} 8.44 \mathrm{E}-4 \\ 14 \% \end{gathered}$
PoD rel. err.	$\begin{gathered} 9.98 \mathrm{E}-1 \\ \pm 1.27 \mathrm{E}-4 \end{gathered}$	$\begin{gathered} 9.98 \mathrm{E}-1 \\ 0 \% \end{gathered}$	same	$\begin{gathered} 9.79 \mathrm{E}-1 \\ \pm 4.53 \mathrm{E}-4 \end{gathered}$	$\begin{gathered} 9.78 \mathrm{E}-1 \\ 0 \% \\ \hline \end{gathered}$	same	$\begin{gathered} 8.62 \mathrm{E}-1 \\ \pm 1.03 \mathrm{E}-3 \end{gathered}$	$\begin{gathered} \hline 9.02 \mathrm{E}-1 \\ 5 \% \\ \hline \end{gathered}$	same
PoA rel. err.	$\begin{gathered} 3.32 \mathrm{E}-1 \\ \pm 1.35 \mathrm{E}-3 \end{gathered}$	$\begin{gathered} 3.34 \mathrm{E}-1 \\ 0 \% \end{gathered}$	same	$\begin{gathered} 3.34 \mathrm{E}-1 \\ \pm 1.34 \mathrm{E}-3 \end{gathered}$	$\begin{gathered} 3.32 \mathrm{E}-1 \\ 0 \% \end{gathered}$	same	$\begin{gathered} 3.35 \mathrm{E}-1 \\ \pm 1.31 \mathrm{E}-3 \end{gathered}$	$\begin{gathered} 3.36 \mathrm{E}-1 \\ 0 \% \end{gathered}$	same

B. 2 Low Abandonment Rates

We next consider the Markovian $M / M / n+M$ queueing system, with the arrival rate, number of servers and service rate fixed at $(\lambda, n, \mu)=(105,100,1)$, but decreasing abandonment rate. As studied in [40], the queueing system tends to heavily overloaded when abandonment rates decrease. The Theorem 4 in [40] states that in an $M / M / n / r+M$ model, a scaled process of number in system converges to a OU process as $s / \theta \rightarrow 0$. To reshow the results, we give the Markovian $M / M / n+M$ queueing system, with the arrival rate, number of servers and service rate fixed at $(\lambda, n, \mu)=(105,100,1)$ but decreasing abandonment rate θ from $0.05,0.02$ to 0.01 . Table 19
shows that our TGAs continue to work effectively for smaller abandonment rates. Notice that little difference between DGAs and TGAs are presented; it is because when $\theta \rightarrow 0$, improvements brought about by truncation become less effective as the queue tends to ED regime.

Table 19: A comparison of the TGA and DGA approximations to exact numerical values in the $M\left(\lambda^{-1}\right) / M(1) / 100+M\left(\theta^{-1}\right)$ model with $\lambda=100 \rho$ and $\rho=1.2$ for three low abandonment rates $\theta<0.1$.

Perf.	$\theta=0.05$			$\theta=0.02$			$\theta=0.01$		
	Exact	DGA	TGA	Exact	DGA	TGA	Exact	DGA	TGA
$\mathrm{E}[X]$ rel. err.	$2.01 \mathrm{E}+2$	$\begin{gathered} 2.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	same	$3.50 \mathrm{E}+2$	$\begin{gathered} 3.50 \mathrm{E}+2 \\ 0 \% \end{gathered}$	same	$5.99 \mathrm{E}+2$	$\begin{gathered} 6.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	same
$\operatorname{Var}(X)$ rel. err.	$2.00 \mathrm{E}+3$	$\begin{gathered} 2.10 \mathrm{E}+3 \\ 5 \% \end{gathered}$	same	$5.22 \mathrm{E}+3$	$\begin{gathered} 5.25 \mathrm{E}+3 \\ 1 \% \end{gathered}$	same	$1.03 \mathrm{E}+4$	$\begin{gathered} 1.05 \mathrm{E}+4 \\ 2 \% \end{gathered}$	same
$\mathrm{E}[Q]$ rel. err.	$1.01 \mathrm{E}+2$	$\begin{gathered} 1.00 \mathrm{E}+2 \\ 1 \% \end{gathered}$	$\begin{gathered} 1.00 \mathrm{E}+2 \\ 1 \% \end{gathered}$	$2.50 \mathrm{E}+2$	$\begin{gathered} 2.50 \mathrm{E}+2 \\ 0 \% \end{gathered}$	$\begin{gathered} 2.50 \mathrm{E}+2 \\ 0 \% \end{gathered}$	$4.99 \mathrm{E}+2$	$\begin{gathered} 5.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$	$\begin{gathered} 5.00 \mathrm{E}+2 \\ 0 \% \end{gathered}$
$\begin{aligned} & \operatorname{Var}(Q) \\ & \text { rel. err. } \end{aligned}$	$1.99 \mathrm{E}+3$	$\begin{gathered} 2.10 \mathrm{E}+3 \\ 5 \% \end{gathered}$	$\begin{gathered} 2.05 \mathrm{E}+3 \\ 3 \% \end{gathered}$	$5.22 \mathrm{E}+3$	$\begin{gathered} 5.25 \mathrm{E}+3 \\ 1 \% \end{gathered}$	$\begin{gathered} 5.25 \mathrm{E}+3 \\ 1 \% \end{gathered}$	$1.03 \mathrm{E}+4$	$\begin{gathered} 1.05 \mathrm{E}+4 \\ 2 \% \end{gathered}$	$\begin{gathered} 1.05 \mathrm{E}+4 \\ 2 \% \end{gathered}$
$\mathrm{E}[W]$ rel. err.	$9.90 \mathrm{E}-1$	$\begin{gathered} 9.76 \mathrm{E}-1 \\ 1 \% \end{gathered}$	$\begin{gathered} 9.78 \mathrm{E}-1 \\ 1 \% \end{gathered}$	$2.44 \mathrm{E}+0$	$\begin{gathered} 2.44 \mathrm{E}+0 \\ 0 \% \end{gathered}$	$\begin{gathered} 2.44 \mathrm{E}+0 \\ 0 \% \end{gathered}$	$4.88 \mathrm{E}+0$	$\begin{gathered} 4.88 \mathrm{E}+0 \\ 0 \% \end{gathered}$	$\begin{gathered} 4.88 \mathrm{E}+0 \\ 0 \% \end{gathered}$
$\operatorname{Var}(W)$ rel. err.	$1.90 \mathrm{E}-1$	$\begin{gathered} 2.00 \mathrm{E}-1 \\ 5 \% \end{gathered}$	$\begin{gathered} 1.95 \mathrm{E}-1 \\ 3 \% \end{gathered}$	$4.97 \mathrm{E}-1$	$\begin{gathered} \hline 5.00 \mathrm{E}-1 \\ 1 \% \end{gathered}$	$\begin{gathered} 5.00 \mathrm{E}-1 \\ 0 \% \end{gathered}$	$9.85 \mathrm{E}-1$	$\begin{gathered} 1.00 \mathrm{E}+0 \\ 2 \% \end{gathered}$	$\begin{gathered} 1.00 \mathrm{E}+0 \\ 2 \% \end{gathered}$
PoD rel. err.	$9.93 \mathrm{E}-1$	$\begin{gathered} 9.85 \mathrm{E}-1 \\ 1 \% \end{gathered}$	same	$1.00 \mathrm{E}+0$	$\begin{gathered} 1.00 \mathrm{E}+0 \\ 0 \% \end{gathered}$	same	$1.00 \mathrm{E}+0$	$\begin{gathered} 1.00 \mathrm{E}+0 \\ 0 \% \end{gathered}$	same
PoA rel. err.	$4.81 \mathrm{E}-2$	$\begin{gathered} 4.75 \mathrm{E}-2 \\ 1 \% \end{gathered}$	same	$4.76 \mathrm{E}-2$	$\begin{gathered} \hline 4.75 \mathrm{E}-2 \\ 0 \% \end{gathered}$	same	$4.76 \mathrm{E}-2$	$\begin{gathered} 4.76 \mathrm{E}-2 \\ 0 \% \end{gathered}$	same

B. 3 More Examples of $G I / G I / n+G I$ Models

We now consider examples with various combinations of high and low variabilities for the interarrival, service and patience times. We use simply phase-type (PH) distributions to achieve both high and low variabilities: Erlang- $n\left(E_{n}\right)$ for low variabilities (with SCV $1 / n$) and H_{2} for high variabilities (with SCV greater than 1). Other parameters remain the same as those in Table 2. Table 20 shows that TGA-G works well except when the SCV of service time is high (e.g. $c_{s}^{2}=4$).

Table 20: A comparison of the TGA-G approximations to simulation estimates in the $P H / P H / n+$ PH models model with $\lambda=100 \rho$ and $\rho=1.0 .5$ for for values of the service scv $c_{s}^{2}, 0.25 \leq \theta \leq 4.00$.

Perf. Meas.	SCV		c_{s}^{2}					
			0.25			0.5		
	c_{λ}^{2}	$c_{a b}^{2}$	Sim	CI	TGA-GA	Sim	CI	TGA-GA
$\mathrm{E}[Q]$	0.5	0.5	$3.40 \mathrm{E}+1$	$\pm 2.15 \mathrm{E}-1$	$3.57 \mathrm{E}+1$	$3.34 \mathrm{E}+1$	$\pm 2.50 \mathrm{E}-1$	$3.57 \mathrm{E}+1$
		2	$8.67 \mathrm{E}+0$	$\pm 6.46 \mathrm{E}-2$	$8.42 \mathrm{E}+0$	$9.00 \mathrm{E}+0$	$\pm 7.46 \mathrm{E}-2$	$8.67 \mathrm{E}+0$
	2	0.5	$3.37 \mathrm{E}+1$	$\pm 3.14 \mathrm{E}-1$	$3.63 \mathrm{E}+1$	$3.37 \mathrm{E}+1$	$\pm 3.23 \mathrm{E}-1$	$3.64 \mathrm{E}+1$
		2	$1.07 \mathrm{E}+1$	$\pm 9.32 \mathrm{E}-2$	$1.01 \mathrm{E}+1$	$1.09 \mathrm{E}+1$	$\pm 1.02 \mathrm{E}-1$	$1.03 \mathrm{E}+1$
$\operatorname{Var}(Q)$	0.5	0.5	$1.84 \mathrm{E}+2$	$\pm 1.44 \mathrm{E}+1$	$2.14 \mathrm{E}+2$	$2.30 \mathrm{E}+2$	$\pm 1.66 \mathrm{E}+1$	$2.51 \mathrm{E}+2$
		2	$5.14 \mathrm{E}+1$	$\pm 1.48 \mathrm{E}+0$	$5.55 \mathrm{E}+1$	$6.10 \mathrm{E}+1$	$\pm 1.84 \mathrm{E}+0$	$6.36 \mathrm{E}+1$
	2	0.5	$4.30 \mathrm{E}+2$	$\pm 2.29 \mathrm{E}+1$	$4.89 \mathrm{E}+2$	$4.55 \mathrm{E}+2$	$\pm 2.38 \mathrm{E}+1$	$5.18 \mathrm{E}+2$
		2	$1.12 \mathrm{E}+2$	$\pm 3.01 \mathrm{E}+0$	$1.12 \mathrm{E}+2$	$1.21 \mathrm{E}+2$	$\pm 3.44 \mathrm{E}+0$	$1.19 \mathrm{E}+2$
$\mathrm{E}[W]$	0.5	0.5	$3.33 \mathrm{E}-1$	$\pm 2.04 \mathrm{E}-3$	$3.46 \mathrm{E}-1$	$3.28 \mathrm{E}-1$	$\pm 2.40 \mathrm{E}-3$	$3.47 \mathrm{E}-1$
		2	$8.86 \mathrm{E}-2$	$\pm 6.32 \mathrm{E}-4$	$8.30 \mathrm{E}-2$	$9.21 \mathrm{E}-2$	$\pm 7.41 \mathrm{E}-4$	$8.55 \mathrm{E}-2$
	2	0.5	$3.26 \mathrm{E}-1$	$\pm 2.90 \mathrm{E}-3$	$3.51 \mathrm{E}-1$	$3.26 \mathrm{E}-1$	$\pm 3.00 \mathrm{E}-3$	$3.52 \mathrm{E}-1$
		2	$1.06 \mathrm{E}-1$	$\pm 8.77 \mathrm{E}-4$	$9.84 \mathrm{E}-2$	$1.07 \mathrm{E}-1$	$\pm 9.71 \mathrm{E}-4$	$1.00 \mathrm{E}-1$
$\operatorname{Var}(W)$	0.5	0.5	$1.66 \mathrm{E}-2$	$\pm 2.04 \mathrm{E}-3$	$1.97 \mathrm{E}-2$	$2.13 \mathrm{E}-2$	$\pm 2.40 \mathrm{E}-3$	$2.34 \mathrm{E}-2$
		2	$4.96 \mathrm{E}-3$	$\pm 6.32 \mathrm{E}-4$	$5.32 \mathrm{E}-3$	$6.01 \mathrm{E}-3$	$\pm 7.41 \mathrm{E}-4$	$6.13 \mathrm{E}-3$
	2	0.5	$3.68 \mathrm{E}-2$	$\pm 2.90 \mathrm{E}-3$	$4.32 \mathrm{E}-2$	$3.94 \mathrm{E}-2$	$\pm 3.00 \mathrm{E}-3$	$4.62 \mathrm{E}-2$
		2	$1.00 \mathrm{E}-2$	$\pm 8.77 \mathrm{E}-4$	$1.05 \mathrm{E}-2$	$1.10 \mathrm{E}-2$	$\pm 9.71 \mathrm{E}-4$	$1.12 \mathrm{E}-2$
PoD	0.5	0.5	$9.90 \mathrm{E}-1$	$\pm 8.51 \mathrm{E}-4$	$9.93 \mathrm{E}-1$	$9.79 \mathrm{E}-1$	$\pm 1.37 \mathrm{E}-3$	$9.87 \mathrm{E}-1$
		2	$8.18 \mathrm{E}-1$	$\pm 2.62 \mathrm{E}-3$	$7.97 \mathrm{E}-1$	$7.96 \mathrm{E}-1$	$\pm 2.89 \mathrm{E}-3$	$7.76 \mathrm{E}-1$
	2	0.5	$9.30 \mathrm{E}-1$	$\pm 2.49 \mathrm{E}-3$	$9.43 \mathrm{E}-1$	$9.22 \mathrm{E}-1$	$\pm 2.66 \mathrm{E}-3$	$9.36 \mathrm{E}-1$
		2	$7.28 \mathrm{E}-1$	$\pm 3.18 \mathrm{E}-3$	$7.04 \mathrm{E}-1$	$7.19 \mathrm{E}-1$	$\pm 3.31 \mathrm{E}-3$	$6.97 \mathrm{E}-1$
PoA	0.5	0.5	$4.82 \mathrm{E}-2$	$\pm 7.19 \mathrm{E}-4$	$4.78 \mathrm{E}-2$	$4.81 \mathrm{E}-2$	$\pm 7.62 \mathrm{E}-4$	$4.79 \mathrm{E}-2$
		2	$5.54 \mathrm{E}-2$	$\pm 7.12 \mathrm{E}-4$	$5.36 \mathrm{E}-2$	$5.84 \mathrm{E}-2$	$\pm 7.76 \mathrm{E}-4$	$5.52 \mathrm{E}-2$
	2	0.5	$5.16 \mathrm{E}-2$	$\pm 8.66 \mathrm{E}-4$	$4.90 \mathrm{E}-2$	$5.26 \mathrm{E}-2$	$\pm 8.83 \mathrm{E}-4$	$4.93 \mathrm{E}-2$
		2	$6.54 \mathrm{E}-2$	$\pm 8.09 \mathrm{E}-4$	$6.32 \mathrm{E}-2$	$6.66 \mathrm{E}-2$	$\pm 8.67 \mathrm{E}-4$	$6.44 \mathrm{E}-2$
Perf. Meas.	SCV		c_{s}^{2}					
				2			4	
	c_{λ}^{2}	$c_{a b}^{2}$	Sim	CI	TGA-GA	Sim	CI	TGA-GA
$\mathrm{E}[Q]$	0.5							
		2	$9.73 \mathrm{E}+0$	$\pm 1.03 \mathrm{E}-1$	$9.44 \mathrm{E}+0$	$1.03 \mathrm{E}+1$	$\pm 1.36 \mathrm{E}-1$	$1.00 \mathrm{E}+1$
	2	0.5	$3.35 \mathrm{E}+1$	$\pm 3.76 \mathrm{E}-1$	$3.68 \mathrm{E}+1$	$3.39 \mathrm{E}+1$	$\pm 4.38 \mathrm{E}-1$	$3.71 \mathrm{E}+1$
		2	$1.13 \mathrm{E}+1$	$\pm 1.29 \mathrm{E}-1$	$1.09 \mathrm{E}+1$	$1.13 \mathrm{E}+1$	$\pm 1.52 \mathrm{E}-1$	$1.14 \mathrm{E}+1$
$\operatorname{Var}(Q)$	0.5	0.5	$4.03 \mathrm{E}+2$	$\pm 2.31 \mathrm{E}+1$	$3.70 \mathrm{E}+2$	$5.13 \mathrm{E}+2$	$\pm 2.97 \mathrm{E}+1$	$4.60 \mathrm{E}+2$
		2	$9.28 \mathrm{E}+1$	$\pm 3.04 \mathrm{E}+0$	$8.96 \mathrm{E}+1$	$1.14 \mathrm{E}+2$	$\pm 4.38 \mathrm{E}+0$	$1.10 \mathrm{E}+2$
	2	0.5	$5.84 \mathrm{E}+2$	$\pm 2.91 \mathrm{E}+1$	$6.15 \mathrm{E}+2$	$6.74 \mathrm{E}+2$	$\pm 3.50 \mathrm{E}+1$	$6.91 \mathrm{E}+2$
		2	$1.47 \mathrm{E}+2$	$\pm 4.69 \mathrm{E}+0$	$1.43 \mathrm{E}+2$	$1.61 \mathrm{E}+2$	$\pm 5.75 \mathrm{E}+0$	$1.62 \mathrm{E}+2$
$\mathrm{E}[W]$	0.5	0.5	$3.23 \mathrm{E}-1$	$\pm 3.34 \mathrm{E}-3$	$3.49 \mathrm{E}-1$	$3.25 \mathrm{E}-1$	$\pm 4.14 \mathrm{E}-3$	$3.52 \mathrm{E}-1$
		2	$1.01 \mathrm{E}-1$	$\pm 1.06 \mathrm{E}-3$	$9.33 \mathrm{E}-2$	$1.07 \mathrm{E}-1$	$\pm 1.43 \mathrm{E}-3$	$9.91 \mathrm{E}-2$
	2	0.5	$3.26 \mathrm{E}-1$	$\pm 3.61 \mathrm{E}-3$	$3.56 \mathrm{E}-1$	$3.31 \mathrm{E}-1$	$\pm 4.28 \mathrm{E}-3$	$3.60 \mathrm{E}-1$
		2	$1.13 \mathrm{E}-1$	$\pm 1.28 \mathrm{E}-3$	$1.07 \mathrm{E}-1$	$1.14 \mathrm{E}-1$	$\pm 1.54 \mathrm{E}-3$	$1.11 \mathrm{E}-1$
$\operatorname{Var}(W)$	0.5	0.5	$3.91 \mathrm{E}-2$	$\pm 3.34 \mathrm{E}-3$	$3.53 \mathrm{E}-2$	$5.10 \mathrm{E}-2$	$\pm 4.14 \mathrm{E}-3$	$4.42 \mathrm{E}-2$
		2	$9.72 \mathrm{E}-3$	$\pm 1.06 \mathrm{E}-3$	$8.74 \mathrm{E}-3$	$1.22 \mathrm{E}-2$	$\pm 1.43 \mathrm{E}-3$	$1.08 \mathrm{E}-2$
	2	0.5	$5.31 \mathrm{E}-2$	$\pm 3.61 \mathrm{E}-3$	$5.60 \mathrm{E}-2$	$6.30 \mathrm{E}-2$	$\pm 4.28 \mathrm{E}-3$	$6.37 \mathrm{E}-2$
		2	$1.42 \mathrm{E}-2$	$\pm 1.28 \mathrm{E}-3$	$1.36 \mathrm{E}-2$	$1.60 \mathrm{E}-2$	$\pm 1.54 \mathrm{E}-3$	$1.55 \mathrm{E}-2$
PoD	0.5	0.5	$9.25 \mathrm{E}-1$	$\pm 3.13 \mathrm{E}-3$	$9.63 \mathrm{E}-1$	$8.89 \mathrm{E}-1$	$\pm 4.13 \mathrm{E}-3$	$9.41 \mathrm{E}-1$
		2	$7.32 \mathrm{E}-1$	$\pm 3.74 \mathrm{E}-3$	$7.27 \mathrm{E}-1$	$7.13 \mathrm{E}-1$	$\pm 4.75 \mathrm{E}-3$	$7.02 \mathrm{E}-1$
	2	0.5	$8.80 \mathrm{E}-1$	$\pm 3.66 \mathrm{E}-3$	$9.12 \mathrm{E}-1$	$8.57 \mathrm{E}-1$	$\pm 4.36 \mathrm{E}-3$	$8.94 \mathrm{E}-1$
		2	$6.87 \mathrm{E}-1$	$\pm 4.03 \mathrm{E}-3$	$6.77 \mathrm{E}-1$	$6.69 \mathrm{E}-1$	$\pm 4.64 \mathrm{E}-3$	$6.64 \mathrm{E}-1$
PoA	0.5	0.5	$5.17 \mathrm{E}-2$	$\pm 9.27 \mathrm{E}-4$	$4.84 \mathrm{E}-2$	$5.46 \mathrm{E}-2$	$\pm 1.11 \mathrm{E}-3$	$4.91 \mathrm{E}-2$
		2	$6.28 \mathrm{E}-2$	$\pm 8.88 \mathrm{E}-4$	$6.01 \mathrm{E}-2$	$6.58 \mathrm{E}-2$	$\pm 1.03 \mathrm{E}-3$	$6.37 \mathrm{E}-2$
	2	0.5	$5.49 \mathrm{E}-2$	$\pm 1.03 \mathrm{E}-3$	$5.03 \mathrm{E}-2$	$5.81 \mathrm{E}-2$	$\pm 1.13 \mathrm{E}-3$	$5.12 \mathrm{E}-2$
		2	$6.80 \mathrm{E}-2$	$\pm 9.75 \mathrm{E}-4$	$6.83 \mathrm{E}-2$	$6.92 \mathrm{E}-2$	$\pm 1.10 \mathrm{E}-3$	$7.13 \mathrm{E}-2$

C More Examples Revealing Limitations of the Approximations

C. 1 High Abandonment Rates

In the most simple $M / M / n+M$ model, both DGA and TGA can not correctly estimate the key performances when abandonment rate $\theta=4,10$. Moreover, the estimate of means (and probabilities) deteriorate faster than that of variances, see Table 21 for details.

Table 21: A comparison of the TGA and DGA approximations to exact values for the Markovian $M\left(\lambda^{-1}\right) / M(1) / 100+M\left(\theta^{-1}\right)$ model with $n=100, \rho=1.05$ and $\theta=4,10$

	$\theta=4$			$\theta=10$		
Perf.	Exact	DGA	TGA	Exact	DGA	TGA
$\begin{gathered} \mathrm{E}[\mathrm{X}] \\ \text { rel. err } \end{gathered}$	96.6	$\begin{aligned} & 100 \\ & 4 \% \end{aligned}$	-	95.0	$\begin{aligned} & 100 \\ & 5 \% \end{aligned}$	-
$\begin{aligned} & \operatorname{Var}(\mathrm{X}) \\ & \text { rel. err } \end{aligned}$	56.1	$\begin{aligned} & 25.1 \\ & 55 \% \end{aligned}$	-	44.9	$\begin{aligned} & 10.0 \\ & 78 \% \end{aligned}$	-
$\begin{gathered} \mathrm{E}[\mathrm{Q}] \\ \text { rel. err } \end{gathered}$	1.47	$\begin{gathered} 0.100 \\ 83 \% \end{gathered}$	$\begin{aligned} & 2.05 \\ & 39 \% \end{aligned}$	0.665	$\begin{gathered} 0 \\ 100 \% \end{gathered}$	$\begin{aligned} & 1.26 \\ & 90 \% \end{aligned}$
$\begin{aligned} & \operatorname{Var}(\mathrm{Q}) \\ & \text { rel. err } \end{aligned}$	7.77	$\begin{gathered} 25.1 \\ 223 \% \end{gathered}$	$\begin{aligned} & 8.76 \\ & 13 \% \end{aligned}$	2.47	$\begin{gathered} 10.0 \\ 303 \% \end{gathered}$	$\begin{aligned} & 3.41 \\ & 38 \% \end{aligned}$
$\begin{gathered} \mathrm{E}[\mathrm{~W}] \\ \text { rel. err } \end{gathered}$	$1.66 \mathrm{E}-2$	$\begin{gathered} 2.40 \mathrm{E}-3 \\ 86 \% \end{gathered}$	$\begin{gathered} 2.11 \mathrm{E}-2 \\ 27 \% \end{gathered}$	$8.20 \mathrm{E}-3$	$\begin{gathered} 1.00 \mathrm{E}-3 \\ 88 \% \end{gathered}$	$\begin{gathered} 1.31 \mathrm{E}-2 \\ 61 \% \end{gathered}$
$\begin{aligned} & \text { Var(W) } \\ & \text { rel. err } \end{aligned}$	$8.80 \mathrm{E}-4$	$\begin{gathered} 2.50 \mathrm{E}-3 \\ 182 \% \end{gathered}$	$\begin{gathered} 9.00 \mathrm{E}-4 \\ 2 \% \end{gathered}$	$3.10 \mathrm{E}-4$	$\begin{gathered} 1.00 \mathrm{E}-3 \\ 219 \% \end{gathered}$	$\begin{gathered} 3.50 \mathrm{E}-4 \\ 13 \% \end{gathered}$
$\begin{aligned} & \text { PoD } \\ & \text { rel. err } \end{aligned}$	0.379	-	$\begin{gathered} \hline 0.508 \\ 34 \% \end{gathered}$	0.282	-	$\begin{gathered} 0.500 \\ 77 \% \end{gathered}$
$\begin{aligned} & \text { PoA } \\ & \text { rel. err } \end{aligned}$	$5.83 \mathrm{E}-2$	$\begin{gathered} 9.50 \mathrm{E}-3 \\ 84 \% \end{gathered}$	$\begin{gathered} 8.12 \mathrm{E}-2 \\ 39 \% \end{gathered}$	$6.58 \mathrm{E}-2$	$\begin{gathered} 9.95 \mathrm{E}-2 \\ 85 \% \end{gathered}$	$\begin{gathered} 1.23 \mathrm{E}-1 \\ 87 \% \end{gathered}$

C. 2 Smaller UL Systems

To suppplement the UL results shown in $\S 8.3$, we now show the experimental results for smaller UL systems. We consider systems with smaller arrival rates and numbers of servers $n=20,10,5,3$ and 1. For different n, we choose different values for the traffic intensity, following (25), with the QoS factor fixed at $\beta=0.5$. Just as in Table 16, Table 22 shows good performance for X_{n} and B_{n} for $0.5 \leq \theta \leq 2.0$, but poor performance otherwise.

C. 3 Critically Loaded Systems with $\rho>1$

So far, we have concentrated on $G / G I / n+G I$ models with $(\rho, n)=(1.05,100)$, or models with smaller scale n but the same QoS factor $\beta=\sqrt{n}(1-\rho)=-0.5$. We now consider systems with lighter loading, closer to the critical loading at $\rho=1.000$. These include systems with $n=100$ but $1.00<\rho<1.05$ and systems with smaller n but $-0.5<\beta<0.0$.

Table 23 provides results for $M\left(\lambda^{-1}\right) / M / n+M\left(\theta^{-1}\right)$ (Erlang-A) models with parameter triples $(\lambda, \theta, n)=(n \rho, 0.5,100)$ and traffic intensity ρ ranges among $\{1.01,1.005,1.001\}$. Table 23 shows

Table 22: A comparison of the TGA and DGA approximations to exact numerical values in the $M\left(\lambda^{-1}\right) / M(1) / n+M(2)$ with $n=50,20,10,5,3$ and $1, \rho=1-\beta / \sqrt{n}, \lambda=n \rho$ and $\theta=0.5$.

Perf.	$n=50, \rho=0.93$			$n=20, \rho=0.88$			$n=10, \rho=0.84$		
	Exact	DGA	TGA	Exact	DGA	TGA	Exact	DGA	TGA
$\mathrm{E}[X]$ rel. err.	$4.75 \mathrm{E}+1$	$\begin{gathered} 4.65 \mathrm{E}+1 \\ 2 \% \end{gathered}$	same	$1.84 \mathrm{E}+1$	$\begin{gathered} 1.78 \mathrm{E}+1 \\ 3 \% \end{gathered}$	same	$8.84 \mathrm{E}+0$	$\begin{gathered} 8.42 \mathrm{E}+0 \\ 5 \% \end{gathered}$	same
$\begin{aligned} & \operatorname{Var}(X) \\ & \text { rel. err. } \end{aligned}$	$5.90 \mathrm{E}+1$	$\begin{gathered} 4.65 \mathrm{E}+1 \\ 21 \% \end{gathered}$	same	$2.26 \mathrm{E}+1$	$\begin{gathered} 1.78 \mathrm{E}+1 \\ 22 \% \end{gathered}$	same	$1.08 \mathrm{E}+1$	$\begin{gathered} 8.42 \mathrm{E}+0 \\ 22 \% \end{gathered}$	same
$\begin{aligned} & \mathrm{E}[B] \\ & \text { rel. err. } \end{aligned}$	$4.55 \mathrm{E}+1$	$\begin{gathered} 4.65 \mathrm{E}+1 \\ 2 \% \end{gathered}$	$\begin{gathered} 4.52 \mathrm{E}+1 \\ 1 \% \end{gathered}$	$1.72 \mathrm{E}+1$	$\begin{gathered} 1.78 \mathrm{E}+1 \\ 4 \% \end{gathered}$	$\begin{gathered} 1.70 \mathrm{E}+1 \\ 1 \% \end{gathered}$	$8.00 \mathrm{E}+0$	$\begin{gathered} 8.42 \mathrm{E}+0 \\ 5 \% \end{gathered}$	$\begin{gathered} 7.89 \mathrm{E}+0 \\ 1 \% \end{gathered}$
$\begin{aligned} & \operatorname{Var}(B) \\ & \text { rel. err. } \end{aligned}$	$2.48 \mathrm{E}+1$	$\begin{gathered} 4.65 \mathrm{E}+1 \\ 87 \% \end{gathered}$	$\begin{gathered} 2.61 \mathrm{E}+1 \\ 5 \% \end{gathered}$	$9.39 \mathrm{E}+0$	$\begin{gathered} 1.78 \mathrm{E}+1 \\ 89 \% \end{gathered}$	$\begin{gathered} 1.01 \mathrm{E}+1 \\ 7 \% \end{gathered}$	$4.39 \mathrm{E}+0$	$\begin{gathered} 8.42 \mathrm{E}+0 \\ 92 \% \end{gathered}$	$\begin{gathered} 4.79 \mathrm{E}+0 \\ 9 \% \end{gathered}$
$\begin{aligned} & \mathrm{E}[Q] \\ & \text { rel. err. } \end{aligned}$	$2.00 \mathrm{E}+0$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 1.31 \mathrm{E}+0 \\ 35 \% \end{gathered}$	$1.23 \mathrm{E}+0$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 7.95 \mathrm{E}-1 \\ 35 \% \end{gathered}$	$8.34 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 5.35 \mathrm{E}-1 \\ 36 \% \end{gathered}$
$\begin{aligned} & \operatorname{Var}(Q) \\ & \text { rel. err. } \end{aligned}$	$1.60 \mathrm{E}+1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 7.69 \mathrm{E}+0 \\ 52 \% \end{gathered}$	$6.27 \mathrm{E}+0$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 2.88 \mathrm{E}+0 \\ 54 \% \end{gathered}$	$3.06 \mathrm{E}+0$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 1.33 \mathrm{E}+0 \\ 56 \% \end{gathered}$
$\begin{aligned} & \mathrm{E}[V] \\ & \text { rel. err. } \end{aligned}$	$4.54 \mathrm{E}-2$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 2.62 \mathrm{E}-2 \\ 42 \% \end{gathered}$	$7.51 \mathrm{E}-2$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 3.97 \mathrm{E}-2 \\ 47 \% \end{gathered}$	$1.12 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 5.35 \mathrm{E}-2 \\ 52 \% \end{gathered}$
$\operatorname{Var}(V)$ rel. err.	$7.48 \mathrm{E}-3$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 3.60 \mathrm{E}-3 \\ 52 \% \end{gathered}$	$2.02 \mathrm{E}-2$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 9.19 \mathrm{E}-3 \\ 54 \% \end{gathered}$	$4.42 \mathrm{E}-2$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 1.87 \mathrm{E}-2 \\ 58 \% \end{gathered}$
PoD rel. err.	$3.67 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} \hline 6.69 \mathrm{E}-1 \\ 82 \% \end{gathered}$	$3.73 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 6.61 \mathrm{E}-1 \\ 77 \% \end{gathered}$	$3.80 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 6.52 \mathrm{E}-1 \\ 72 \% \end{gathered}$
PoA rel. err.	$2.16 \mathrm{E}-2$	NaN NaN	$\begin{gathered} 1.30 \mathrm{E}-2 \\ 40 \% \end{gathered}$	$3.45 \mathrm{E}-2$	NaN NaN	$\begin{gathered} 1.97 \mathrm{E}-2 \\ 43 \% \end{gathered}$	$4.95 \mathrm{E}-2$	NaN NaN	$\begin{gathered} 2.64 \mathrm{E}-2 \\ 47 \% \end{gathered}$
	$n=5, \rho=0.78$			$n=3, \rho=0.71$			$n=1, \rho=0.5$		
Perf.	Exact	DGA	TGA	Exact	DGA	TGA	Exact	DGA	TGA
$\mathrm{E}[X]$ rel. err.	$4.16 \mathrm{E}+0$	$\begin{gathered} 3.88 \mathrm{E}+0 \\ 7 \% \end{gathered}$	same	$2.33 \mathrm{E}+0$	$\begin{gathered} 2.13 \mathrm{E}+0 \\ 9 \% \end{gathered}$	same	$5.82 \mathrm{E}-1$	$\begin{gathered} 5.00 \mathrm{E}-1 \\ 14 \% \end{gathered}$	same
$\operatorname{Var}(X)$ rel. err.	$5.00 \mathrm{E}+0$	$\begin{gathered} 3.88 \mathrm{E}+0 \\ 22 \% \end{gathered}$	same	$2.77 \mathrm{E}+0$	$\begin{gathered} 2.13 \mathrm{E}+0 \\ 23 \% \end{gathered}$	same	$6.61 \mathrm{E}-1$	$\begin{gathered} 5.00 \mathrm{E}-1 \\ 24 \% \end{gathered}$	same
$\begin{aligned} & \mathrm{E}[B] \\ & \text { rel. err. } \end{aligned}$	$3.61 \mathrm{E}+0$	$\begin{gathered} 3.88 \mathrm{E}+0 \\ 8 \% \end{gathered}$	$\begin{gathered} 3.55 \mathrm{E}+0 \\ 2 \% \end{gathered}$	$1.94 \mathrm{E}+0$	$\begin{gathered} 2.13 \mathrm{E}+0 \\ 10 \% \end{gathered}$	$\begin{gathered} 1.93 \mathrm{E}+0 \\ 0 \% \end{gathered}$	$4.18 \mathrm{E}-1$	$\begin{gathered} 5.00 \mathrm{E}-1 \\ 20 \% \end{gathered}$	$\begin{gathered} 5.00 \mathrm{E}-1 \\ 20 \% \end{gathered}$
$\begin{aligned} & \operatorname{Var}(B) \\ & \text { rel. err. } \end{aligned}$	$1.99 \mathrm{E}+0$	$\begin{gathered} 3.88 \mathrm{E}+0 \\ 95 \% \end{gathered}$	$\begin{gathered} 2.11 \mathrm{E}+0 \\ 6 \% \end{gathered}$	$1.08 \mathrm{E}+0$	$\begin{gathered} 2.13 \mathrm{E}+0 \\ 98 \% \end{gathered}$	$\begin{gathered} 1.03 \mathrm{E}+0 \\ 4 \% \end{gathered}$	$2.43 \mathrm{E}-1$	$\begin{gathered} 5.00 \mathrm{E}-1 \\ 106 \% \end{gathered}$	$\begin{gathered} 1.60 \mathrm{E}-1 \\ 34 \% \end{gathered}$
$\mathrm{E}[Q]$ rel. err.	$5.53 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 3.50 \mathrm{E}-1 \\ 37 \% \end{gathered}$	$3.97 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 2.49 \mathrm{E}-1 \\ 37 \% \end{gathered}$	$1.64 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 9.98 \mathrm{E}-2 \\ 39 \% \end{gathered}$
$\begin{aligned} & \text { Var }(Q) \\ & \text { rel. err. } \end{aligned}$	$1.47 \mathrm{E}+0$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 5.93 \mathrm{E}-1 \\ 60 \% \end{gathered}$	$8.45 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 3.12 \mathrm{E}-1 \\ 63 \% \end{gathered}$	$2.27 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 6.00 \mathrm{E}-2 \\ 74 \% \end{gathered}$
$\begin{aligned} & \mathrm{E}[V] \\ & \text { rel. err. } \end{aligned}$	$1.70 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 7.01 \mathrm{E}-2 \\ 59 \% \end{gathered}$	$2.36 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 8.31 \mathrm{E}-2 \\ 65 \% \end{gathered}$	$5.20 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 9.98 \mathrm{E}-2 \\ 81 \% \end{gathered}$
$\operatorname{Var}(V)$ rel. err.	$1.01 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 3.77 \mathrm{E}-2 \\ 63 \% \end{gathered}$	$1.93 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 6.24 \mathrm{E}-2 \\ 68 \% \end{gathered}$	$9.27 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 1.60 \mathrm{E}-1 \\ 83 \% \end{gathered}$
PoD rel. err.	$3.88 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 6.41 \mathrm{E}-1 \\ 65 \% \end{gathered}$	$3.96 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 6.30 \mathrm{E}-1 \\ 59 \% \end{gathered}$	$4.18 \mathrm{E}-1$	$\begin{gathered} 0.00 \mathrm{E}+0 \\ 100 \% \end{gathered}$	$\begin{gathered} 5.99 \mathrm{E}-1 \\ 43 \% \end{gathered}$
PoA rel. err.	$7.12 \mathrm{E}-2$	NaN NaN	$\begin{gathered} 3.44 \mathrm{E}-2 \\ 52 \% \end{gathered}$	$9.31 \mathrm{E}-2$	NaN NaN	$\begin{gathered} 4.07 \mathrm{E}-2 \\ 56 \% \end{gathered}$	$1.64 \mathrm{E}-1$	NaN NaN	$\begin{gathered} 4.87 \mathrm{E}-2 \\ 70 \% \end{gathered}$

Table 23: A comparison of the TGA and DGA approximations to exact numerical values in the $M\left(\lambda^{-1}\right) / M(1) / n+M\left(\theta^{-1}\right)$ model with $(n, \theta, \lambda)=(100,0.5,100 \rho)$ and $\rho \rightarrow 1$

	$\rho=1.01$			$\rho=1.005$			$\rho=1.001$		
Perf.	Exact	DGA	TGA	Exact	DGA	TGA	Exact	DGA	TGA
$\mathrm{E}[X]$ rel. err.	$1.05 \mathrm{E}+2$	$\begin{gathered} 1.02 \mathrm{E}+2 \\ 3 \% \end{gathered}$	same	$1.04 \mathrm{E}+2$	$\begin{gathered} 1.01 \mathrm{E}+2 \\ 3 \% \end{gathered}$	same	$1.03 \mathrm{E}+2$	$\begin{gathered} 1.00 \mathrm{E}+2 \\ 3 \% \end{gathered}$	same
$\begin{aligned} & \operatorname{Var}(X) \\ & \text { rel. err. } \end{aligned}$	$1.55 \mathrm{E}+2$	$\begin{gathered} 2.02 \mathrm{E}+2 \\ 30 \% \end{gathered}$	same	$1.52 \mathrm{E}+2$	$\begin{gathered} 2.01 \mathrm{E}+2 \\ 32 \% \end{gathered}$	same	$1.49 \mathrm{E}+2$	$\begin{gathered} 2.00 \mathrm{E}+2 \\ 34 \% \end{gathered}$	same
$\begin{aligned} & \mathrm{E}[Q] \\ & \text { rel. err. } \end{aligned}$	$7.63 \mathrm{E}+0$	$\begin{gathered} 1.91 \mathrm{E}+0 \\ 75 \% \end{gathered}$	$\begin{gathered} 6.67 \mathrm{E}+0 \\ 13 \% \end{gathered}$	7.11E+0	$\begin{gathered} 9.02 \mathrm{E}-1 \\ 87 \% \end{gathered}$	$\begin{gathered} 6.12 \mathrm{E}+0 \\ 14 \% \end{gathered}$	$6.70 \mathrm{E}+0$	$\begin{gathered} 1.00 \mathrm{E}-1 \\ 99 \% \end{gathered}$	$\begin{gathered} 5.69 \mathrm{E}+0 \\ 15 \% \end{gathered}$
$\operatorname{Var}(Q)$ rel. err.	$8.68 \mathrm{E}+1$	$\begin{gathered} 2.02 \mathrm{E}+2 \\ 133 \% \end{gathered}$	$\begin{gathered} 7.99 \mathrm{E}+1 \\ 8 \% \end{gathered}$	$8.12 \mathrm{E}+1$	$\begin{gathered} 2.01 \mathrm{E}+2 \\ 147 \% \end{gathered}$	$\begin{gathered} 7.36 \mathrm{E}+1 \\ 9 \% \end{gathered}$	$7.68 \mathrm{E}+1$	$\begin{gathered} 2.00 \mathrm{E}+2 \\ 161 \% \end{gathered}$	$\begin{gathered} 6.88 \mathrm{E}+1 \\ 10 \% \end{gathered}$
$\mathrm{E}[V]$ rel. err.	$7.92 \mathrm{E}-2$	$\begin{gathered} 2.00 \mathrm{E}-2 \\ 75 \% \end{gathered}$	$\begin{gathered} 6.70 \mathrm{E}-2 \\ 15 \% \end{gathered}$	$7.40 \mathrm{E}-2$	$\begin{gathered} 1.00 \mathrm{E}-2 \\ 86 \% \end{gathered}$	$\begin{gathered} 6.16 \mathrm{E}-2 \\ 17 \% \end{gathered}$	$7.01 \mathrm{E}-2$	$\begin{gathered} 2.00 \mathrm{E}-3 \\ 97 \% \end{gathered}$	$\begin{gathered} 5.74 \mathrm{E}-2 \\ 18 \% \end{gathered}$
$\begin{aligned} & \operatorname{Var}(V) \\ & \text { rel. err. } \end{aligned}$	$8.90 \mathrm{E}-3$	$\begin{gathered} 2.00 \mathrm{E}-2 \\ 125 \% \end{gathered}$	$\begin{gathered} 7.98 \mathrm{E}-3 \\ 10 \% \end{gathered}$	$8.38 \mathrm{E}-3$	$\begin{gathered} 2.00 \mathrm{E}-2 \\ 139 \% \end{gathered}$	$\begin{gathered} 7.39 \mathrm{E}-3 \\ 12 \% \end{gathered}$	$7.97 \mathrm{E}-3$	$\begin{gathered} 2.00 \mathrm{E}-2 \\ 151 \% \end{gathered}$	$\begin{gathered} 6.93 \mathrm{E}-3 \\ 13 \% \end{gathered}$
PoD rel. err.	$6.42 \mathrm{E}-1$	$\begin{gathered} 5.56 \mathrm{E}-1 \\ 13 \% \end{gathered}$	same same	$6.20 \mathrm{E}-1$	$\begin{gathered} 5.28 \mathrm{E}-1 \\ 15 \% \end{gathered}$	same same	$6.01 \mathrm{E}-1$	$\begin{gathered} 5.06 \mathrm{E}-1 \\ 16 \% \end{gathered}$	same same
PoA rel. err.	$3.78 \mathrm{E}-2$	$\begin{gathered} 3.20 \mathrm{E}-2 \\ 15 \% \end{gathered}$	same same	$3.54 \mathrm{E}-2$	$\begin{gathered} 2.94 \mathrm{E}-2 \\ 17 \% \end{gathered}$	same same	$3.35 \mathrm{E}-2$	$\begin{gathered} 2.75 \mathrm{E}-2 \\ 18 \% \end{gathered}$	same same

that the TGA performs well in the extreme cases ($\rho=1.001$) and surprisingly does not degenerate even the system become (critically) underloaded, when the abandonment rate $\theta=0.5$. However, as θ decreases in light traffic models, the performance of DGA and TGA degenerates, see results of $\theta \leq 0.25$ in Tables 27 and 28 . More experiments for ligher loading models with different queues are presented in Tables $24-28$ showing performance of TGA for the $M / M / n+M$ model with abandonment rate $0.1 \leq \theta \leq 4$ and different traffic intensity $1.1,1.03,1.02,1.01$ and 1.001 . As we have observed before, the performance of TGA is very good if θ is sufficiently close to 1 , because in the case $\theta=1$, the number in system coincides with the number of busy servers in the infinite-server $M / M / \infty$ model, which has exactly a Poisson distribution.

Table 24: A comparison of the TGA approximations to exact numerical values in the $M\left(\lambda^{-1}\right) / M(1) / 100+M\left(\theta^{-1}\right)$ model with $(\lambda, \rho)=(110,1.10)$ and $0.1 \leq \theta \leq 4$

Perf.	$\theta=0.1$			$\theta=0.25$			$\theta=0.5$		
	Exact	TGA	rel. err.	Exact	TGA	rel. err.	Exact	TGA	rel. err.
$\mathrm{E}[X]$	$2.00 \mathrm{E}+2$	$2.00 \mathrm{E}+2$	0\%	$1.40 \mathrm{E}+2$	$1.40 \mathrm{E}+2$	0\%	$1.20 \mathrm{E}+2$	$1.20 \mathrm{E}+2$	0\%
$\operatorname{Var}(X)$	$1.10 \mathrm{E}+3$	$1.10 \mathrm{E}+3$	0\%	$4.23 \mathrm{E}+2$	$4.40 \mathrm{E}+2$	4%	$2.08 \mathrm{E}+2$	$2.20 \mathrm{E}+2$	6\%
$\mathrm{E}[Q]$	$1.00 \mathrm{E}+2$	$1.00 \mathrm{E}+2$	0\%	$4.04 \mathrm{E}+1$	$4.02 \mathrm{E}+1$	1\%	$2.08 \mathrm{E}+1$	$2.06 \mathrm{E}+1$	1\%
$\operatorname{Var}(Q)$	$1.09 \mathrm{E}+3$	$1.10 \mathrm{E}+3$	0\%	$4.13 \mathrm{E}+2$	$4.18 \mathrm{E}+2$	1%	$1.87 \mathrm{E}+2$	$1.88 \mathrm{E}+2$	0\%
$\mathrm{E}[V]$	$9.58 \mathrm{E}-1$	$9.53 \mathrm{E}-1$	1\%	$3.90 \mathrm{E}-1$	$3.83 \mathrm{E}-1$	2%	$2.03 \mathrm{E}-1$	$1.96 \mathrm{E}-1$	3%
$\operatorname{Var}(V)$	$9.96 \mathrm{E}-2$	$9.98 \mathrm{E}-2$	0\%	$3.77 \mathrm{E}-2$	$3.80 \mathrm{E}-2$	1\%	$1.72 \mathrm{E}-2$	$1.71 \mathrm{E}-2$	1\%
PoD	$9.99 \mathrm{E}-1$	$9.99 \mathrm{E}-1$	0\%	$9.80 \mathrm{E}-1$	$9.72 \mathrm{E}-1$	1\%	$9.29 \mathrm{E}-1$	$9.11 \mathrm{E}-1$	2%
PoA	$9.09 \mathrm{E}-2$	$9.05 \mathrm{E}-2$	1\%	$9.19 \mathrm{E}-2$	$9.03 \mathrm{E}-2$	2%	$9.46 \mathrm{E}-2$	$9.16 \mathrm{E}-2$	3%
Perf.	$\theta=1$			$\theta=2$			$\theta=4$		
	Exact	TGA	rel. err.	Exact	TGA	rel. err.	Exact	TGA	rel. err.
$\mathrm{E}[X]$	$1.10 \mathrm{E}+2$	$1.10 \mathrm{E}+2$	0\%	$1.04 \mathrm{E}+2$	$1.05 \mathrm{E}+2$	1\%	$1.01 \mathrm{E}+2$	$1.02 \mathrm{E}+2$	2%
$\operatorname{Var}(X)$	$1.10 \mathrm{E}+2$	$1.10 \mathrm{E}+2$	0\%	$6.53 \mathrm{E}+1$	$5.50 \mathrm{E}+1$	16\%	$4.41 \mathrm{E}+1$	$2.75 \mathrm{E}+1$	38\%
$\mathrm{E}[Q]$	$1.09 \mathrm{E}+1$	$1.09 \mathrm{E}+1$	0\%	$5.77 \mathrm{E}+0$	$6.10 \mathrm{E}+0$	6%	$3.06 \mathrm{E}+0$	$3.57 \mathrm{E}+0$	17\%
$\operatorname{Var}(Q)$	$8.26 \mathrm{E}+1$	$8.08 \mathrm{E}+1$	2\%	$3.57 \mathrm{E}+1$	$3.45 \mathrm{E}+1$	4%	$1.51 \mathrm{E}+1$	$1.49 \mathrm{E}+1$	1\%
$\mathrm{E}[V]$	$1.08 \mathrm{E}-1$	$1.04 \mathrm{E}-1$	4%	$5.88 \mathrm{E}-2$	$5.82 \mathrm{E}-2$	1\%	$3.23 \mathrm{E}-2$	$3.41 \mathrm{E}-2$	5\%
$\operatorname{Var}(V)$	$7.72 \mathrm{E}-3$	$7.35 \mathrm{E}-3$	5\%	$3.43 \mathrm{E}-3$	$3.14 \mathrm{E}-3$	9\%	$1.52 \mathrm{E}-3$	$1.36 \mathrm{E}-3$	11\%
PoD	$8.42 \mathrm{E}-1$	$8.30 \mathrm{E}-1$	1\%	$7.31 \mathrm{E}-1$	$7.50 \mathrm{E}-1$	3%	$6.12 \mathrm{E}-1$	$6.83 \mathrm{E}-1$	12\%
PoA	$9.92 \mathrm{E}-2$	$9.59 \mathrm{E}-2$	3%	$1.05 \mathrm{E}-1$	$1.05 \mathrm{E}-1$	0\%	$1.11 \mathrm{E}-1$	$1.18 \mathrm{E}-1$	6%

Table 25: A comparison of the TGA approximations to exact numerical values in the $M\left(\lambda^{-1}\right) / M(1) / 100+M\left(\theta^{-1}\right)$ model with $(\lambda, \rho)=(103,1.03)$ and $0.1 \leq \theta \leq 4$

Perf.	$\theta=0.1$			$\theta=0.25$			$\theta=0.5$		
	Exact	TGA	rel. err.	Exact	TGA	rel. err.	Exact	TGA	rel. err.
$\mathrm{E}[X]$	$1.36 \mathrm{E}+2$	$1.30 \mathrm{E}+2$	4%	$1.16 \mathrm{E}+2$	$1.12 \mathrm{E}+2$	3%	$1.08 \mathrm{E}+2$	$1.06 \mathrm{E}+2$	2%
$\operatorname{Var}(X)$	$7.63 \mathrm{E}+2$	$1.03 \mathrm{E}+3$	35%	$3.04 \mathrm{E}+2$	$4.12 \mathrm{E}+2$	36%	$1.68 \mathrm{E}+2$	$2.06 \mathrm{E}+2$	23%
$\mathrm{E}[Q]$	$3.63 \mathrm{E}+1$	$3.30 \mathrm{E}+1$	9\%	$1.73 \mathrm{E}+1$	$1.55 \mathrm{E}+1$	11\%	$9.97 \mathrm{E}+0$	$9.21 \mathrm{E}+0$	8\%
$\operatorname{Var}(Q)$	$7.10 \mathrm{E}+2$	$7.50 \mathrm{E}+2$	6\%	$2.45 \mathrm{E}+2$	$2.44 \mathrm{E}+2$	0\%	$1.10 \mathrm{E}+2$	$1.07 \mathrm{E}+2$	3%
$\mathrm{E}[V]$	$3.63 \mathrm{E}-1$	$3.25 \mathrm{E}-1$	10\%	$1.75 \mathrm{E}-1$	$1.52 \mathrm{E}-1$	13%	$1.02 \mathrm{E}-1$	$9.08 \mathrm{E}-2$	11\%
$\operatorname{Var}(V)$	$6.93 \mathrm{E}-2$	$7.28 \mathrm{E}-2$	5\%	$2.41 \mathrm{E}-2$	$2.37 \mathrm{E}-2$	2%	$1.10 \mathrm{E}-2$	$1.04 \mathrm{E}-2$	6%
PoD	$9.13 \mathrm{E}-1$	$8.25 \mathrm{E}-1$	10\%	$8.18 \mathrm{E}-1$	$7.23 \mathrm{E}-1$	12\%	$7.28 \mathrm{E}-1$	$6.62 \mathrm{E}-1$	9\%
PoA	$3.53 \mathrm{E}-2$	$3.17 \mathrm{E}-2$	10\%	$4.20 \mathrm{E}-2$	$3.67 \mathrm{E}-2$	13%	$4.84 \mathrm{E}-2$	$4.32 \mathrm{E}-2$	11\%
Perf.	$\theta=1$			$\theta=2$			$\theta=4$		
	Exact	TGA	rel. err.	Exact	TGA	rel. err.	Exact	TGA	rel. err.
$\mathrm{E}[X]$	$1.03 \mathrm{E}+2$	$1.03 \mathrm{E}+2$	0\%	$9.98 \mathrm{E}+1$	$1.01 \mathrm{E}+2$	2%	$9.77 \mathrm{E}+1$	$1.01 \mathrm{E}+2$	3%
$\operatorname{Var}(X)$	$1.03 \mathrm{E}+2$	$1.03 \mathrm{E}+2$	0\%	$7.02 \mathrm{E}+1$	$5.15 \mathrm{E}+1$	27\%	$5.29 \mathrm{E}+1$	$2.57 \mathrm{E}+1$	51%
$\mathrm{E}[Q]$	$5.70 \mathrm{E}+0$	$5.72 \mathrm{E}+0$	0\%	$3.22 \mathrm{E}+0$	$3.67 \mathrm{E}+0$	14\%	$1.78 \mathrm{E}+0$	$2.42 \mathrm{E}+0$	36%
$\operatorname{Var}(Q)$	$4.94 \mathrm{E}+1$	$4.78 \mathrm{E}+1$	3%	$2.17 \mathrm{E}+1$	$2.20 \mathrm{E}+1$	1\%	$9.33 \mathrm{E}+0$	$1.03 \mathrm{E}+1$	11\%
$\mathrm{E}[V]$	$5.94 \mathrm{E}-2$	$5.64 \mathrm{E}-2$	5\%	$3.44 \mathrm{E}-2$	$3.62 \mathrm{E}-2$	5\%	$1.98 \mathrm{E}-2$	$2.39 \mathrm{E}-2$	20\%
$\operatorname{Var}(V)$	$5.04 \mathrm{E}-3$	$4.65 \mathrm{E}-3$	8\%	$2.29 \mathrm{E}-3$	$2.14 \mathrm{E}-3$	7\%	$1.03 \mathrm{E}-3$	$1.00 \mathrm{E}-3$	3%
PoD	$6.29 \mathrm{E}-1$	$6.16 \mathrm{E}-1$	2\%	$5.29 \mathrm{E}-1$	$5.83 \mathrm{E}-1$	10\%	$4.34 \mathrm{E}-1$	$5.59 \mathrm{E}-1$	29\%
PoA	$5.54 \mathrm{E}-2$	$5.27 \mathrm{E}-2$	5\%	$6.25 \mathrm{E}-2$	$6.61 \mathrm{E}-2$	6\%	$6.92 \mathrm{E}-2$	$8.41 \mathrm{E}-2$	22\%

Table 26: A comparison of the TGA approximations to exact numerical values in the $M\left(\lambda^{-1}\right) / M(1) / 100+M\left(\theta^{-1}\right)$ model with $(\lambda, \rho)=(102,1.02)$ and $0.1 \leq \theta \leq 4$

Perf.	$\theta=0.1$			$\theta=0.25$			$\theta=0.5$		
	Exact	TGA	rel. err.	Exact	TGA	rel. err.	Exact	TGA	rel. err.
$\mathrm{E}[X]$	$1.29 \mathrm{E}+2$	$1.20 \mathrm{E}+2$	7\%	$1.13 \mathrm{E}+2$	$1.08 \mathrm{E}+2$	5\%	$1.06 \mathrm{E}+2$	$1.04 \mathrm{E}+2$	2%
$\operatorname{Var}(X)$	$6.70 \mathrm{E}+2$	$1.02 \mathrm{E}+3$	52\%	$2.82 \mathrm{E}+2$	$4.08 \mathrm{E}+2$	45\%	$1.62 \mathrm{E}+2$	$2.04 \mathrm{E}+2$	26\%
$\mathrm{E}[Q]$	$2.97 \mathrm{E}+1$	$2.52 \mathrm{E}+1$	15\%	$1.48 \mathrm{E}+1$	$1.27 \mathrm{E}+1$	15\%	$8.75 \mathrm{E}+0$	$7.91 \mathrm{E}+0$	10\%
$\operatorname{Var}(Q)$	$6.03 \mathrm{E}+2$	$6.19 \mathrm{E}+2$	3%	$2.14 \mathrm{E}+2$	$2.07 \mathrm{E}+2$	3%	$9.84 \mathrm{E}+1$	$9.34 \mathrm{E}+1$	5\%
$\mathrm{E}[V]$	$2.98 \mathrm{E}-1$	$2.49 \mathrm{E}-1$	16\%	$1.51 \mathrm{E}-1$	$1.26 \mathrm{E}-1$	17\%	$9.01 \mathrm{E}-2$	$7.84 \mathrm{E}-2$	13\%
$\operatorname{Var}(V)$	$5.95 \mathrm{E}-2$	$6.07 \mathrm{E}-2$	2\%	$2.14 \mathrm{E}-2$	$2.03 \mathrm{E}-2$	5\%	$9.96 \mathrm{E}-3$	$9.16 \mathrm{E}-3$	8\%
PoD	$8.72 \mathrm{E}-1$	$7.34 \mathrm{E}-1$	16\%	$7.74 \mathrm{E}-1$	$6.54 \mathrm{E}-1$	16\%	$6.86 \mathrm{E}-1$	$6.10 \mathrm{E}-1$	11\%
PoA	$2.91 \mathrm{E}-2$	$2.43 \mathrm{E}-2$	16\%	$3.64 \mathrm{E}-2$	$3.03 \mathrm{E}-2$	17\%	$4.29 \mathrm{E}-2$	$3.74 \mathrm{E}-2$	13\%
		$\theta=1$			$\theta=2$			$\theta=4$	
Perf.	Exact	TGA	rel. err.	Exact	TGA	rel. err.	Exact	TGA	rel. err.
$\mathrm{E}[X]$	$1.02 \mathrm{E}+2$	$1.02 \mathrm{E}+2$	0\%	$9.91 \mathrm{E}+1$	$1.01 \mathrm{E}+2$	2%	$9.71 \mathrm{E}+1$	$1.00 \mathrm{E}+2$	3%
$\operatorname{Var}(X)$	$1.02 \mathrm{E}+2$	$1.02 \mathrm{E}+2$	0\%	$7.11 \mathrm{E}+1$	$5.10 \mathrm{E}+1$	28\%	$5.45 \mathrm{E}+1$	$2.55 \mathrm{E}+1$	53%
$\mathrm{E}[Q]$	$5.09 \mathrm{E}+0$	$5.10 \mathrm{E}+0$	0\%	$2.91 \mathrm{E}+0$	$3.37 \mathrm{E}+0$	16\%	$1.62 \mathrm{E}+0$	$2.27 \mathrm{E}+0$	40\%
$\operatorname{Var}(Q)$	$4.46 \mathrm{E}+1$	$4.31 \mathrm{E}+1$	3%	$1.98 \mathrm{E}+1$	$2.03 \mathrm{E}+1$	3%	$8.54 \mathrm{E}+0$	$9.71 \mathrm{E}+0$	14\%
$\mathrm{E}[V]$	$5.34 \mathrm{E}-2$	$5.06 \mathrm{E}-2$	5\%	$3.13 \mathrm{E}-2$	$3.34 \mathrm{E}-2$	7\%	$1.82 \mathrm{E}-2$	$2.25 \mathrm{E}-2$	24%
$\operatorname{Var}(V)$	$4.61 \mathrm{E}-3$	$4.23 \mathrm{E}-3$	8\%	$2.11 \mathrm{E}-3$	$1.99 \mathrm{E}-3$	6\%	$9.58 \mathrm{E}-4$	$9.54 \mathrm{E}-4$	0\%
PoD	$5.92 \mathrm{E}-1$	$5.78 \mathrm{E}-1$	2\%	$4.96 \mathrm{E}-1$	$5.56 \mathrm{E}-1$	12\%	$4.06 \mathrm{E}-1$	$5.40 \mathrm{E}-1$	33%
PoA	$4.99 \mathrm{E}-2$	$4.74 \mathrm{E}-2$	5\%	$5.70 \mathrm{E}-2$	$6.11 \mathrm{E}-2$	7\%	$6.37 \mathrm{E}-2$	$7.97 \mathrm{E}-2$	25\%

Table 27: A comparison of the TGA approximations to exact numerical values in the $M\left(\lambda^{-1}\right) / M(1) / 100+M\left(\theta^{-1}\right)$ model with $(\lambda, \rho)=(101,1.01)$ and $0.1 \leq \theta \leq 4$

Perf.	$\theta=0.1$			$\theta=0.25$			$\theta=0.5$		
	Exact	TGA	rel. err.	Exact	TGA	rel. err.	Exact	TGA	rel. err.
$\mathrm{E}[X]$	$1.23 \mathrm{E}+2$	$1.10 \mathrm{E}+2$	10\%	$1.10 \mathrm{E}+2$	$1.04 \mathrm{E}+2$	6%	$1.05 \mathrm{E}+2$	$1.02 \mathrm{E}+2$	3%
$\operatorname{Var}(X)$	$5.78 \mathrm{E}+2$	$1.01 \mathrm{E}+3$	75\%	$2.60 \mathrm{E}+2$	$4.04 \mathrm{E}+2$	55\%	$1.55 \mathrm{E}+2$	$2.02 \mathrm{E}+2$	30\%
$\mathrm{E}[Q]$	$2.40 \mathrm{E}+1$	$1.83 \mathrm{E}+1$	24\%	$1.26 \mathrm{E}+1$	$1.02 \mathrm{E}+1$	19\%	$7.63 \mathrm{E}+0$	$6.72 \mathrm{E}+0$	12\%
$\operatorname{Var}(Q)$	$4.96 \mathrm{E}+2$	$4.78 \mathrm{E}+2$	4%	$1.85 \mathrm{E}+2$	$1.71 \mathrm{E}+2$	8\%	$8.68 \mathrm{E}+1$	$8.05 \mathrm{E}+1$	7\%
$\mathrm{E}[V]$	$2.43 \mathrm{E}-1$	$1.82 \mathrm{E}-1$	25\%	$1.29 \mathrm{E}-1$	$1.01 \mathrm{E}-1$	22\%	$7.92 \mathrm{E}-2$	$6.69 \mathrm{E}-2$	15\%
$\operatorname{Var}(V)$	$4.96 \mathrm{E}-2$	$4.73 \mathrm{E}-2$	5\%	$1.87 \mathrm{E}-2$	$1.69 \mathrm{E}-2$	9\%	$8.90 \mathrm{E}-3$	$7.97 \mathrm{E}-3$	10\%
PoD	$8.23 \mathrm{E}-1$	$6.23 \mathrm{E}-1$	24\%	$7.27 \mathrm{E}-1$	$5.79 \mathrm{E}-1$	20\%	$6.42 \mathrm{E}-1$	$5.56 \mathrm{E}-1$	13\%
PoA	$2.37 \mathrm{E}-2$	$1.78 \mathrm{E}-2$	25\%	$3.12 \mathrm{E}-2$	$2.45 \mathrm{E}-2$	22\%	$3.78 \mathrm{E}-2$	$3.20 \mathrm{E}-2$	15\%
Perf.	$\theta=1$			$\theta=2$			$\theta=4$		
	Exact	TGA	rel. err.	Exact	TGA	rel. err.	Exact	TGA	rel. err.
$\mathrm{E}[X]$	$1.01 \mathrm{E}+2$	$1.01 \mathrm{E}+2$	0\%	$9.84 \mathrm{E}+1$	$1.00 \mathrm{E}+2$	2%	$9.66 \mathrm{E}+1$	$1.00 \mathrm{E}+2$	4%
$\operatorname{Var}(X)$	$1.01 \mathrm{E}+2$	$1.01 \mathrm{E}+2$	0\%	$7.21 \mathrm{E}+1$	$5.05 \mathrm{E}+1$	30\%	$5.61 \mathrm{E}+1$	$2.52 \mathrm{E}+1$	55\%
$\mathrm{E}[Q]$	$4.52 \mathrm{E}+0$	$4.53 \mathrm{E}+0$	0\%	$2.61 \mathrm{E}+0$	$3.09 \mathrm{E}+0$	18\%	$1.47 \mathrm{E}+0$	$2.13 \mathrm{E}+0$	45\%
$\operatorname{Var}(Q)$	$3.99 \mathrm{E}+1$	$3.85 \mathrm{E}+1$	4\%	$1.79 \mathrm{E}+1$	$1.86 \mathrm{E}+1$	4%	$7.77 \mathrm{E}+0$	$9.09 \mathrm{E}+0$	17\%
$\mathrm{E}[V]$	$4.78 \mathrm{E}-2$	$4.51 \mathrm{E}-2$	6\%	$2.84 \mathrm{E}-2$	$3.08 \mathrm{E}-2$	8\%	$1.66 \mathrm{E}-2$	$2.12 \mathrm{E}-2$	27\%
$\operatorname{Var}(V)$	$4.18 \mathrm{E}-3$	$3.82 \mathrm{E}-3$	9\%	$1.94 \mathrm{E}-3$	$1.85 \mathrm{E}-3$	5\%	$8.85 \mathrm{E}-4$	$9.03 \mathrm{E}-4$	2%
PoD	$5.53 \mathrm{E}-1$	$5.40 \mathrm{E}-1$	2\%	$4.63 \mathrm{E}-1$	$5.28 \mathrm{E}-1$	14\%	$3.79 \mathrm{E}-1$	$5.20 \mathrm{E}-1$	37%
PoA	$4.47 \mathrm{E}-2$	$4.23 \mathrm{E}-2$	5\%	$5.17 \mathrm{E}-2$	$5.64 \mathrm{E}-2$	9\%	$5.83 \mathrm{E}-2$	$7.51 \mathrm{E}-2$	29\%

Table 28: A comparison of the TGA approximations to exact numerical values in the $M\left(\lambda^{-1}\right) / M(1) / 100+M\left(\theta^{-1}\right)$ model with $(\lambda, \rho)=(100.1,1.001)$ and $0.1 \leq \theta \leq 4$

Perf.	$\theta=0.1$			$\theta=0.25$			$\theta=0.5$		
	Exact	TGA	rel. err.	Exact	TGA	rel. err.	Exact	TGA	rel. err.
$\mathrm{E}[X]$	$1.18 \mathrm{E}+2$	$1.01 \mathrm{E}+2$	14%	$1.08 \mathrm{E}+2$	$1.00 \mathrm{E}+2$	7\%	$1.03 \mathrm{E}+2$	$1.00 \mathrm{E}+2$	3%
$\operatorname{Var}(X)$	$5.00 \mathrm{E}+2$	$1.00 \mathrm{E}+3$	100\%	$2.41 \mathrm{E}+2$	$4.00 \mathrm{E}+2$	66%	$1.49 \mathrm{E}+2$	$2.00 \mathrm{E}+2$	34%
$\mathrm{E}[Q]$	$1.96 \mathrm{E}+1$	$1.31 \mathrm{E}+1$	33%	$1.08 \mathrm{E}+1$	$8.18 \mathrm{E}+0$	24\%	$6.70 \mathrm{E}+0$	$5.74 \mathrm{E}+0$	14\%
$\operatorname{Var}(Q)$	$4.08 \mathrm{E}+2$	$3.54 \mathrm{E}+2$	13\%	$1.60 \mathrm{E}+2$	$1.40 \mathrm{E}+2$	13\%	$7.68 \mathrm{E}+1$	$6.93 \mathrm{E}+1$	10\%
$\mathrm{E}[V]$	$2.00 \mathrm{E}-1$	$1.31 \mathrm{E}-1$	34%	$1.12 \mathrm{E}-1$	$8.18 \mathrm{E}-2$	27\%	$7.01 \mathrm{E}-2$	$5.74 \mathrm{E}-2$	18\%
$\operatorname{Var}(V)$	$4.12 \mathrm{E}-2$	$3.54 \mathrm{E}-2$	14\%	$1.63 \mathrm{E}-2$	$1.40 \mathrm{E}-2$	15\%	$7.97 \mathrm{E}-3$	$6.93 \mathrm{E}-3$	13\%
PoD	$7.72 \mathrm{E}-1$	$5.13 \mathrm{E}-1$	34%	$6.81 \mathrm{E}-1$	$5.08 \mathrm{E}-1$	25%	$6.01 \mathrm{E}-1$	$5.06 \mathrm{E}-1$	16%
PoA	$1.96 \mathrm{E}-2$	$1.29 \mathrm{E}-2$	34%	$2.70 \mathrm{E}-2$	$1.98 \mathrm{E}-2$	27\%	$3.35 \mathrm{E}-2$	$2.75 \mathrm{E}-2$	18\%
Perf.	$\theta=1$			$\theta=2$			$\theta=4$		
	Exact	TGA	rel. err.	Exact	TGA	rel. err.	Exact	TGA	rel. err.
$\mathrm{E}[X]$	$1.00 \mathrm{E}+2$	$1.00 \mathrm{E}+2$	0\%	$9.77 \mathrm{E}+1$	$1.00 \mathrm{E}+2$	2%	$9.61 \mathrm{E}+1$	$1.00 \mathrm{E}+2$	4\%
$\operatorname{Var}(X)$	$1.00 \mathrm{E}+2$	$1.00 \mathrm{E}+2$	0\%	$7.30 \mathrm{E}+1$	$5.00 \mathrm{E}+1$	31%	$5.76 \mathrm{E}+1$	$2.50 \mathrm{E}+1$	57%
$\mathrm{E}[Q]$	$4.04 \mathrm{E}+0$	$4.04 \mathrm{E}+0$	0\%	$2.36 \mathrm{E}+0$	$2.84 \mathrm{E}+0$	20\%	$1.34 \mathrm{E}+0$	$2.00 \mathrm{E}+0$	49\%
$\operatorname{Var}(Q)$	$3.59 \mathrm{E}+1$	$3.45 \mathrm{E}+1$	4\%	$1.62 \mathrm{E}+1$	$1.72 \mathrm{E}+1$	6%	$7.10 \mathrm{E}+0$	$8.55 \mathrm{E}+0$	20\%
$\mathrm{E}[V]$	$4.30 \mathrm{E}-2$	$4.04 \mathrm{E}-2$	6%	$2.59 \mathrm{E}-2$	$2.85 \mathrm{E}-2$	10\%	$1.53 \mathrm{E}-2$	$2.00 \mathrm{E}-2$	31%
$\operatorname{Var}(V)$	$3.81 \mathrm{E}-3$	$3.45 \mathrm{E}-3$	9\%	$1.78 \mathrm{E}-3$	$1.72 \mathrm{E}-3$	4%	$8.19 \mathrm{E}-4$	$8.56 \mathrm{E}-4$	5\%
PoD	$5.17 \mathrm{E}-1$	$5.04 \mathrm{E}-1$	3%	$4.33 \mathrm{E}-1$	$5.03 \mathrm{E}-1$	16\%	$3.54 \mathrm{E}-1$	$5.02 \mathrm{E}-1$	42\%
PoA	$4.03 \mathrm{E}-2$	$3.80 \mathrm{E}-2$	6%	$4.72 \mathrm{E}-2$	$5.22 \mathrm{E}-2$	11\%	$5.36 \mathrm{E}-2$	$7.11 \mathrm{E}-2$	33%

