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a b s t r a c t 

Analytical offered-load and modified-offered-load (MOL) approximations are developed to determine 

staffing levels that stabilize performance at designated targets in a non-Markovian many-server queueing 

model with time-varying arrival rates, customer abandonment from queue and random feedback with 

additional feedback delay in an infinite-server or finite-server queue. To provide a flexible model that can 

be readily fit to system data, the model has Bernoulli routing, where the feedback probabilities, service- 

time, patience-time and feedback-delay distributions all are general and may depend on the visit number. 

Simulation experiments confirm that the new MOL approximations are effective. A many-server heavy- 

traffic FWLLN shows that the performance targets are achieved asymptotically as the scale increases. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

This paper is part of an ongoing effort to develop effective

ethods to set staffing levels (the time-dependent number of

ervers) in service systems with time-varying arrival rates in or-

er to stabilize performance at designated targets; see Green,

olesar, and Whitt (2007) for a review and Stolletz (2008) ,

efraeye and van Nieuwenhuyse (2013) , Liu and Whitt (2014) ,

om-Tov and Mandelbaum (2014) and He, Liu, and Whitt (2016) for

ecent related work. We continue to focus on service systems that

an be modeled as many-server queues with customer abandon-

ent from queue and non-exponential distributions, but here in

ddition we consider Bernoulli feedback with additional delay af-

er completing service. 

A queue with delayed feedback after completing service is a

pecial queueing network, about which there is an enormous lit-

rature, but our concern is with the time-dependent performance

f a non-stationary non-Markov model, which is well beyond exact

nalysis. We do assume that the arrival process is a nonhomoge-

eous Poisson process (NHPP), but the service-time, patience-time

nd delay-before-return distributions all can be non-exponential

nd can change upon successive feedbacks. At first glance, it would

eem that previous methods do not apply to the generalization

ith multiple delayed feedbacks having changing parameters. Our
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ain innovation is to propose an approximation involving a series

f infinite-server models. Instead of the natural two-queue model

or a single delayed feedback shown on the left in Fig. 1 , with an

rbit queue for the customers experiencing extra delay in addition

o the usual queue, we propose the five-queue series model on the

ight, which also has separate queues for the customers waiting

nd in service upon first visit and upon second visit, as well as

or those customers being delayed in between the two visits; we

laborate on the model below. 

Previous work has shown that a time-varying arrival-rate func-

ion and a non-exponential service-time distribution can have a

ignificant impact on performance; see Eick, Massey, and Whitt

1993) for discussion of the basic M t / GI / ∞ infinite-server special

ase. Figs. 1 and 2 of Jennings, Mandelbaum, Massey, and Whitt

1996) dramatically show the poor performance that can occur if

e use stationary methods to set staffing levels, either using the

verall average arrival rate or using the pointwise-stationary ap-

roximation (PSA), which uses a stationary model in a nonstation-

ry way, letting the arrival rate in the stationary model at time t

e the actual arrival rate λ( t ) at time t . As reviewed in Green et al.

2007) , the PSA can be effective with relative short service times,

ut tends to fail badly with longer service times. The additional

elayed feedback adds to the challenge because it can significantly

lter the time-varying demand, not only in magnitude but also in

iming. For example, the delayed feedback can amplify or damp the

eak demand and shift it in time. 

The literature exposes two common reasons for feedback

fter completing service: First, de Vericourt and Zhou (2005)
service system with time-varying arrivals and customer feedback, 
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Fig. 1. The (M t / { GI , GI } /s t + { GI , GI } ) + (GI/ ∞ ) model with delayed customer feedback and its Delayed Infinite-Server (DIS) approximation. The approximating offered load 

is m (t) = m 1 (t) + m 2 (t) ≡ E[ B 1 (t)] + E[ B 2 (t)] . 
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{  
focus on call center customers that may return later because

the initial service was unsatisfactory. Second, Yom-Tov and

Mandelbaum (2014) focus on the treatment of patients by a doc-

tor in a hospital that may naturally occur in stages, starting with

an initial screening and continuing later after tests have been or-

dered and completed. Our paper is closely related to Yom-Tov and

Mandelbaum (2014) , where a modified-offered-load (MOL) approx-

imation was proposed to help set staffing levels at a queue with

time-varying arrival rates and Markovian feedback after a delay in

an infinite-server (IS) queue. They showed that the MOL approxi-

mation has great potential for improved performance analysis in

healthcare, where the service times tend to be relatively long, so

that PSA does not apply. 

Motivated by these applications, we consider a feedback model

that has appealing flexibility. In particular, instead of the Marko-

vian routing with fixed feedback probability p and one fixed

service-time distribution considered in Yom-Tov and Mandelbaum

(2014) , we consider history-dependent Bernoulli routing, where

there may be any number of visits and the feedback probability

p and the service-time distribution and the subsequent delay dis-

tribution (before returning for a new service) all may vary with

the visit number. We focus on the common important case of at

most one feedback, which seems to be a more realistic model than

Markovian routing, which produces a geometric random number

of feedbacks. It is significant that the approach here also extends

directly to any finite number of feedbacks; we demonstrate by also

considering examples with two feedback opportunities. Our meth-

ods also extend directly to time-dependent feedback probabilities,

but we do not examine that here. (The justification is that a time-

dependent independent thinning of an NHPP is again an NHPP; see

Sections 2.3 and 2.4 of Ross (1996) .) 

We also allow customer abandonment, which often tends to be

more realistic for many service systems, as observed by Garnett,

Mandelbaum, and Reiman (2002) . The patience-time distributions

are also allowed to be non-exponential and depend on the visit

number. Just as in Yom-Tov and Mandelbaum (2014) , we use the

general offered-load (OL) method with the MOL refinement, as

reviewed in Jennings et al. (1996) , Green et al. (2007) , Liu and

Whitt (2012c) and Whitt (2013) . There are difference between the

MOL methods designed to stabilize the delay probability and the

abandonment probability, as discussed in Liu and Whitt (2012c) ,

but the main contribution here beyond Yom-Tov and Mandelbaum

(2014) is the new method for computing the time-varying of-

fered load. Because the offered load is the primary determinant of
Please cite this article as: Y. Liu, W. Whitt, Stabilizing performance in a 
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erformance, the performance impact from more faithfully repre-

enting the service and feedback process in a time-varying setting

an be great. 

To analyze this new feedback model with customer abandon-

ent, we draw on Liu and Whitt (2012c) in which we developed a

elayed-infinite-server (DIS) offered-load approximation and a new

IS-MOL ( DIS-modified-offered-load ) algorithm to determine time-

ependent staffing levels in order to stabilize expected delays and

bandonment probabilities at specified quality of service (QoS) tar-

ets in a many-server queue with time-varying arrival rates. The

odel in Liu and Whitt (2012c) was M t /GI /s t + GI model, having

rrivals according to an NHPP with arrival rate function λ( t ), in-

ependent and identically distributed (i.i.d.) service times with a

eneral distribution (the first GI ), a time-varying number of servers

the s t , to be determined), i.i.d. patience times with a general dis-

ribution (times to abandon from queue, the final + GI), unlimited

aiting space and the first-come first-served (FCFS) service disci-

line. We included non-exponential service and patience distribu-

ions as well as time-varying arrivals because they commonly oc-

ur; e.g. see Armony et al. (2015) and Brown et al. (2005) . 

We refer to the base model with a single feedback considered

ere as (M t / { GI , GI } /s t + { GI , GI } ) + (GI/ ∞ ) . The main queue has

he two service-time cdf’s G i and patience cdf’s F i , depending on

he visit number, while the orbit queue has a single service-time

df H , with all waiting customers entering service in a FCFS order.

e develop approximations for the number of customers waiting

efore service and in service upon each visit and the number of

ustomers in orbit. When we refer to the number of customers in

he system or the waiting time, we do not include the orbit queue.

We also consider the associated (M t / { GI , GI } /s t + { GI , GI } ) +
(GI /s t + GI ) model in which the orbit queue has finite capacity; in

hat case, it also has a staffing function and a patience distribution.

he goal is to stabilize expected potential waiting times (the vir-

ual waiting time before starting service on any visit of an arrival

ith infinite patience) at a fixed value w for all time and i = 1 , 2 .

ince these models are special kinds of two-class queueing models,

e also consider the more elementary 
∑ 2 

i =1 (M t /GI + GI) /s t two-

lass queue, in which the two classes arrive according to two in-

ependent NHPPs with arrival rate functions λ( i ) ( t ) and their own

ervice-time cdf’s G i and patience cdf’s F i , i = 1 , 2 , but there is a

ingle service facility with a time-varying number of servers s ( t ),

gain to be determined. 

The approximating DIS model for the (M t / { GI , GI } /s t +
 GI , GI } ) + (GI/ ∞ ) feedback queue has five IS queues in
service system with time-varying arrivals and customer feedback, 
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eries, as shown in Fig. 1 . (If there are k possible feedbacks, then

he DIS model has 2 + 3 k IS queues in series; see Section 6.1 for

he case k = 2 .) We show that the simple DIS algorithm (staffing

irectly to the DIS offered load) is effective for all three models

ith low QoS targets. To provide theoretical support, we prove a

ew functional weak law of large numbers (FWLLN) showing that

ny positive waiting-time target w is achieved asymptotically as

he scale (arrival rate and number of servers) increases. 

However, as in Liu and Whitt (2012c) , the DIS algorithm is in-

ffective for high-QoS (low waiting-time) targets. We develop a

ew DIS-MOL approximation for that case and conduct simula-

ion experiments to show that it is effective. (The DIS-MOL ap-

roximation is also asymptotically correct as the scale increases.)

iven previous MOL approximations, ideally the MOL approxima-

ion for the main case would involve a stationary (M/ { GI , GI } /s +
 GI , GI } ) + (GI/ ∞ ) feedback queue to apply at each time t . Since

o steady-state performance results exist for such a complex sta-

ionary model, we develop an aggregate single-class stationary

/GI/s + GI model. With this new aggregate approximating sta-

ionary model, we are able to apply the algorithm for the steady-

tate performance from Whitt (2005) just as in Liu and Whitt

2012c) . Fortunately, simulation experiments confirm that this ag-

regation approach is effective. 

The rest of this paper is organized as follows: We start in

ection 2 by giving explicit expressions for all the key perfor-

ance functions of the new (M t / { GI , GI } /s t + { GI , GI } ) + (GI/ ∞ )

ueue with Bernoulli feedback and an IS orbit queue, with fixed

elay target w . In the online appendix we also give explicit formu-

as in structured special cases when the arrival-rate function is si-

usoidal. In Section 3 we state the supporting many-server heavy-

raffic FWLLN showing that the DIS approximation asymptotically

tabilizes the expected delay as the scale increases. We defer the

roof to the online appendix. In Section 4 we develop the new DIS-

OL approximation. In Section 5 we show the results of simula-

ion experiments to support the approximations. In Section 6 we

how that the good results also hold for (i) the more elemen-

ary 
∑ 2 

i =1 (M t /GI + GI) /s t two-class queue, (ii) the more compli-

ated (M t / { GI , GI } /s t + { GI , GI } ) + (GI/s t + GI) queue with Bernoulli

eedback and a (GI /s t + GI ) finite-capacity orbit queue and (iii) the

eneralization of the base model allowing two feedback opportuni-

ies. Finally, in Section 7 we draw conclusions. Additional support-

ng material appears in the online appendix ( Liu & Whitt, 2015 ). 

. The delayed-infinite-server (DIS) approximation 

We now develop the DIS approximation for the

(M t / { GI , GI } /s t + { GI , GI } ) + (GI/ ∞ ) model with FCFS service,

hich has Bernoulli feedback with probability p for each new

ustomer completing service; otherwise the customer departs.

ustomers arrive according to an external NHPP arrival process

ith arrival rate function λ. The original (feedback) arrivals have

.i.d. service times and patience times distributed as generic

andom variables S 1 with cdf G 1 and A 1 with cdf F 1 ( S 2 with cdf

 2 and A 2 with cdf F 2 ), respectively. Customers that are fed back

ncounter i.i.d. delays distributed as the generic random variable

 with cdf H . The arrival-rate function of the fed-back customers

s λF . This feedback model is depicted on the left in Fig. 1 . 

.1. The approximating five-queue DIS model 

The approximating DIS model, depicted on the right in Fig. 1 ,

as five IS queues in series, the first two for the external arrivals,

n queue and in service, the third for the IS orbit queue (which is

irectly an IS queue) and the last two for the fed-back customers,

n queue and in service. Since all arrivals to a queue are forced to
Please cite this article as: Y. Liu, W. Whitt, Stabilizing performance in a 
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emain in the waiting room a constant time w unless they aban-

on in this approximating model, the service times in the first and

ourth IS queues (representing the waiting room) are distributed

s T 1 ≡ A 1 ∧ w and T 2 ≡ A 2 ∧ w, respectively. The service times in

he second and fifth IS queues (representing the service facility)

re distributed as S 1 and S 2 , and the service times in the third IS

ueue (representing the orbit queue) are distributed as U . The per-

ormance functions for the five IS queues are then calculated recur-

ively using Eick et al. (1993) . Theorem 1 of Eick et al. (1993) im-

lies that the departure process from the M t / GI / ∞ IS queue is itself

n NHPP with an explicitly specified rate function. It is also well

now that an independent thinning of an NHPP is again an NHPP.

hus all five IS queues are M t / GI / ∞ models. 

In the DIS approximation for the (M t / { GI , GI } /s t + { GI , GI } ) +
(GI/ ∞ ) model, we let Q i ( t ) and B i ( t ) be the number of customers

n waiting room i and in service facility i at time t , i = 1 , 2 . We

et O ( t ) be the number of customers in the orbit room at time t .

he approximating offered load (OL) function, which of course is a

unction of the waiting time target w, is 

 (t) ≡ m 1 (t) + m 2 (t) ≡ E[ B 1 (t)] + E[ B 2 (t)] . (1)

s before, all flows are Poisson processes, with rate functions as
epicted in Fig. 1 . The abandonment rates from the two waiting

ooms (IS queues 1 and 4) are ξ i ( t ); The rates into service from

he waiting rooms (IS queues 2 and 5) are β i ( t ); the departure rate

f original customers from the service facility (both fed-back and

ot) is σ 1 ( t ); the departure rates from the system of original cus-

omers and fed-back customers are (1 − p) σ1 (t) and σ 2 ( t ); and the

eedback rate (leaving the service facility and entering the orbit IS

ueue) is p σ 1 ( t ). 

.2. The DIS performance functions 

In this section we display the performance functions for

he DIS approximation of the (M t / { GI , GI } /s t + { GI , GI } ) + (GI/ ∞ )

odel. All these performance functions are crucial in provid-

ng time-varying staffing functions and predicting system perfor-

ance under these staffing policies. The next theorem generalizes

heorem 1 in Liu and Whitt (2012c) and follows directly from Eick

t al. (1993) . (Also see Massey and Whitt (1993) .) 

For a non-negative random variable X with finite mean E [ X ]

nd cdf F X , let X e denote a random variable with the associated

tationary-excess cdf (or residual-lifetime cdf) F e 
X 
, defined by 

 

e 
X (x ) ≡ P (X e ≤ x ) ≡ 1 

E[ X ] 

∫ x 

0 

F̄ X (y ) dy, x ≥ 0 , 

here F̄ X (y ) ≡ 1 − F X (y ) . The moments of X e can be easily ex-

ressed in terms of the moments of X via 

 [ X 

k 
e ] = 

E [ X 

k +1 ] 

(k + 1) E[ X ] 
, k ≥ 1 . 

et 1 C be the indicator variable, which is equal to 1 if event C oc-

urs and is equal to 0 otherwise. 

heorem 1 (performance functions starting from the infinite

ast) . Consider the DIS approximation for the (M t / { GI , GI } /s t +
 GI , GI } ) + (GI/ ∞ ) model specified in Section 2 , starting empty in the

istant past with specified delay target ( parameter ) w ≥ 0 . The total

umbers of customers in the waiting rooms, service facilities, and in

he orbit at time t , Q i ( t ), B i ( t ) and O ( t ) are independent Poisson ran-

om variables with means 

[ Q 1 (t)] = E 

[∫ t 

t−T 1 

λ(x ) dx 

]
= E [ λ(t − T 1 ,e )] E [ T 1 ] , 

E[ B 1 (t)] = F̄ 1 (w ) E 

[∫ t−w 

t−w −S 1 

λ(x ) dx 

]

= F̄ 1 (w ) E[ λ(t − w − S 1 ,e )] E[ S 1 ] , 
service system with time-varying arrivals and customer feedback, 
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f  

f  

t  
E[ O (t)] = p E 

[∫ t 

t−U 

σ1 (x ) dx 

]
= p E [ σ1 (t − U e )] E [ U] , 

E[ Q 2 (t)] = E 

[∫ t 

t−T 2 

λF (x ) dx 

]
= E [ λF (t − T 2 ,e )] E [ T 2 ] , 

E[ B 2 (t)] = F̄ 2 (w ) E 

[∫ t−w 

t−w −S 2 

λF (x ) dx 

]

= F̄ 2 (w ) E[ λF (t − w − S 2 ,e )] E[ S 2 ] , 

where T i ≡ A i ∧ w . Thus, X ( t ), the total number of customers in the

system at time t is a Poisson random variable with a mean E[ Q 1 (t)] +
E[ Q 2 (t)] + E[ B 1 (t)] + E[ B 2 (t)] . The processes counting the numbers of

customers abandoning from waiting room 1 and 2 are independent

Poisson processes with rate functions ξ i ( t ), where 

ξ1 (t) = 

∫ w 

0 

λ(t − x ) dF 1 (x ) = E[ λ(t − T 1 )1 { T 1 <w } ] , 

ξ2 (t) = 

∫ w 

0 

λF (t − x ) dF 2 (x ) = E[ λF (t − T 2 )1 { T 2 <w } ] . 

The processes counting the numbers of customers entering service fa-

cility 1 and 2 are independent Poisson processes with rate functions

β1 ( t ) and β2 ( t ), where 

β1 (t) = λ(t − w ) ̄F 1 (w ) and β2 (t) = λF (t − w ) ̄F 2 (w ) . 

The departure processes ( counting the number of customers complet-

ing service ) from service facility 1 and 2 are independent Poisson pro-

cesses with rate (1 − p) σ1 (t) and σ 2 ( t ), where 

σ1 (t) = F̄ 1 (w ) 

∫ ∞ 

0 

λ(t − w − x ) dG 1 (x ) = F̄ 1 (w ) E[ λ(t − w − S 1 )] , 

σ2 (t) = F̄ 2 (w ) 

∫ ∞ 

0 

λF (t −w−x ) dG 2 (x ) = F̄ 2 (w ) E[ λF (t −w −S 2 )] . 

The process counting the numbers of customers entering the second

waiting room is a Poisson process with rate function λF , where 

λF (t) = p 

∫ ∞ 

0 

σ1 (t − x ) dH(x ) = (1 − p) E[ σ1 (t − U)] . 

When the arrival rate is constant, i.e., λ(t) = λ, the steady-state

performance functions can be easily obtained using simple calcu-

lations for a five-queue IS network, which in particular simplifies

to five IS queues in series; see the online appendix ( Liu & Whitt,

2015 ). As discussed in Eick et al. (1993) , Massey and Whitt (1993) ,

Liu and Whitt (2012c) , simple linear and quadratic approximations

derived from Taylor series for general arrival-rate functions can

be convenient. These approximations show simple time lags and

space shifts; see the online appendix. 

In applications, a typical objective is to design a staffing func-

tion for a specified planning period [0, T ] (e.g., T = 24 for a day). To

treat that case, we let λ(t) = 0 for t < 0 into Theorem 1 and obtain

the following concrete formulas for the performance measures. We

let x + ≡ max (x, 0) . 

Corollary 1 (performance functions of the initially empty DIS

model) . Consider the initially empty DIS approximation for the

(M t / { GI , GI } /s t + { GI , GI } ) + (GI/ ∞ ) model with delay target w > 0 .

All results in Theorem 1 hold with rate functions 

ξ1 (t) = 

∫ t∧ w 

0 

λ(t − x ) dF 1 (x ) , β1 (t) = λ(t − w ) · F̄ 1 (w ) · 1 { t≥w } , 

σ1 (t) = F̄ 1 (w ) 

∫ (t−w ) + 

0 

λ(t − w − x ) dG 1 (x ) , 

λF (t) = 

∫ (t−w ) + 

0 

pσ1 (t − y ) dH(y ) 

= p ̄F 1 (w ) 

∫ (t−w ) + ∫ t−w −y 

λ(t − w − x − y ) d G 1 (x ) d H(y ) , 

0 0 

Please cite this article as: Y. Liu, W. Whitt, Stabilizing performance in a 
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ξ2 (t) = 

∫ (t−w ) + ∧ w 

0 

λF (t − z) dF 2 (z) 

= (1 − p) ̄F 1 (w ) 

∫ (t−w ) + ∧ w 

0 

∫ t−w −z 

0 

∫ t−w −y −z 

0 

λ

× (t − w − x − y − w ) d G 1 (x ) d H(y ) d F 2 (z) , 

2 (t) = λF 1 (t − w ) ̄F 2 (w ) · 1 { t≥2 w } 

= p ̄F 1 (w ) ̄F 2 (w ) 

∫ (t−2 w ) + 

0 

∫ t−2 w −y 

0 

λ(t −2 w−x−y ) d G 1 (x ) d H(y ) ,

σ2 (t) = 

∫ (t−2 w ) + 

0 

β2 (t − z) dG 2 (z) 

= p ̄F 1 (w ) ̄F 2 (w ) 

∫ (t−2 w ) + 

0 

∫ t−2 w −z 

0 

∫ t−2 w −y −z 

0 

λ

× (t − 2 w − x − y − z) d G 1 (x ) d H(y ) d G 2 (z) , 

nd mean number of customers in these five IS queues 

[ Q 1 (t)] = 

∫ t∧ w 

0 

λ(t − x ) ̄F 1 (x ) dx, E[ B 1 (t)] = F̄ 1 (w ) 

∫ (t−w ) + 

0 

λ

× (t − w − x ) ̄G 1 (x ) dx, 

E[ O (t)] = 

∫ (t−w ) + 

0 

pσ1 (t − x ) ̄H (x ) dx 

= p ̄F 1 (w ) 

∫ (t−w ) + 

0 

∫ t−w −y 

0 

λ(t − w − x − y ) dG 1 (x ) ̄H (y ) dy, 

[ Q 2 (t)] = 

∫ (t−w ) + ∧ w 

0 

λF (t − z) ̄F 2 (z) dz, 

= p ̄F 1 (w ) 

∫ (t−w ) + ∧ w 

0 

∫ t−w −z 

0 

∫ t−w −y −z 

0 

λ

× (t − w − x − y − z) d G 1 (x ) d H(y ) ̄F 2 (z) d z, 

E[ B 2 (t)] = F̄ 2 (w ) 

∫ (t−2 w ) + 

0 

λF (t − w − z) ̄G 2 (z) dz 

= p ̄F 1 (w ) ̄F 2 (w ) 

∫ (t−2 w ) + 

0 

∫ t−2 w −z 

0 

∫ t−2 w −y −z 

0 

λ

× (t − 2 w − x − y − z) d G 1 (x ) d H(y ) ̄G 2 (z) d z. 

The total number of busy servers (or number of customers

n service) at time t is B (t) ≡ B 1 (t) + B 2 (t) . As in Liu and Whitt

2012c) , we let m (t) ≡ E[ B (t)] = E[ B 1 (t)] + E[ B 2 (t)] be the DIS OL

unction. 

In the appendix we give explicit formulas for the case of sinu-

oidal arrival rate functions, which are often used to create stylized

odels. In the longer online appendix we also consider a slightly

eneralized scheme. Suppose the system is not empty at the be-

inning of the day (at time 0) and the initial number of waiting

ustomers in the system along with their elapsed waiting times

re observed (not random). For instance, there are n customers

aiting in a single line at time 0 and their elapsed waiting times

re 0 ≤ w 1 ≤ w 2 ≤ · · · ≤ w n . The goal is to design an appropriate

taffing function s ( t ) for 0 ≤ t ≤ T such that the average cus-

omer waiting times can be stabilized during [0, T ] (e.g., T = 8 or

 = 24 ). A typical example is the Manhattan DMV office. On a reg-

lar morning, by the opening of the office (8:00 am), which may

ave a line of waiting customers outside the door. This variant is

lso analyzed in the appendix. 

. Asymptotic effectiveness as the scale increases 

In this section we state the many-server heavy-traffic FWLLN

or the (G t / { GI , GI } /s t + { GI , GI } ) + (GI/ ∞ ) model with Bernoulli

eedback after a random delay in an IS orbit queue, implying that

he DIS staffing algorithm is effective in stabilizing the expected
service system with time-varying arrivals and customer feedback, 
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d  

t  

u  

d  

D  

M  
aiting times for all customers at a fixed positive value w asymp-

otically as the scale increases. (In the rest of this paper we restrict

ttention to M t arrivals. The greater generality provides a basis for

xtensions. See He et al. (2016) for a discussion of G t arrivals.) The

ssociated abandonment probability targets αi = F i (w ) for i = 1 , 2 ,

here i = 1 corresponds to external arrivals and i = 2 corresponds

o feedback after completing service, are then achieved asymptoti-

ally as well. 

Paralleling Liu and Whitt (2012b, 2012c) , the FWLLN involves a

equence of (G t / { GI , GI } /s t + { GI , GI } ) + (GI/ ∞ ) models indexed by

 and the limit corresponds to the associated fluid model studied

irectly in Liu and Whitt (2012a) . As before, we let the service and

atience distributions G i , F i , H be independent of n . The cdf’s G i ,

 i and H are differentiable, with positive finite probability density

unctions (pdf’s) g i , f i and h . 

In Liu and Whitt (2012c) we assumed that the arrival pro-

ess N n ( t ) was NHPP, but greater generality is allowed by Liu and

hitt (2012a, 2012b) . In order to simplify the proof, we make the

IS staffing simply be proportional to the scale parameter n . We

chieve that by letting the arrival rate in model n be a scaled ver-

ion of a fixed arrival rate function. As in Liu and Whitt (2012c) ,

hat works directly if we assume that the external arrival process

s an NHPP, but to allow greater generality we assume a specific

rocess representation. 

We now assume that the queue has a base external arrival

ounting process that can be expressed as 

 

(e ) (t) = N 

(b) (�(t)) , t ≥ 0 , (2)

here �( t ) is a differentiable cumulative rate function with 

(t) ≡
∫ t 

0 

λ(s ) ds (3) 

here λ( t ) is specified as part of the model data. and N 

( b ) ≡
 N 

( b ) ( t ): t ≥ 0} is a rate-1 stationary point process satisfying a

WLLN, i.e., 

 

−1 N 

(b) (nt) ⇒ t in D as n → ∞ , (4)

here ⇒ denotes convergence in distribution in the function space

 with the topology of uniform convergence over bounded subin-

ervals of the domain [0, ∞ ) as in Whitt (2002) . 

In that framework, we then define the external arrival process

n model n by letting 

 

(e ) 
n (t) ≡ N 

(b) (n �(t)) , t ≥ 0 , (5)

hich gives it cumulative arrival rate function �n (t) = n �(t) , a

imple multiple of the base arrival rate function. On account of this

onstruction and assumption (4) , we deduce that N 

(e ) 
n also obeys

he FWLLN 

¯
 

(e ) 
n (t) ≡ n 

−1 N 

(e ) (nt) ⇒ �(t) in D as n → ∞ . (6)

e remark that the limit is the cumulative external arrival rate

unction of the fluid model in Liu and Whitt (2012a) . 

Since the external arrival rate has been constructed by simple

caling, the associated DIS staffing can be constructed by simple

caling as well; see Section 4 of Liu and Whitt (2012a) . Hence,

n model n , we can use a time-varying number of servers s n ( t ) ≡
 n s ( t ) � (the least integer above ns ( t )), which we assume is set by

he DIS staffing algorithm, which is a scaled version of the staffing

n the associated fluid model with cumulative arrival rate �, al-

eady specified in Theorem 1 , in particular, 

 (t) = m (t) = m 1 (t) = m 2 (t) = E[ B 1 (t)] + E[ B 2 (t)] . (7)

e define the following performance functions for the n th model:

et N n ( t ) be the total number of (external plus internal) arrivals

n the interval [0, t ]; let Q 

(i ) 
n (t) be the number of customers of
Please cite this article as: Y. Liu, W. Whitt, Stabilizing performance in a 
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ype i waiting in queue at time t ; let W 

(i ) 
n (t) be the correspond-

ng potential waiting time, i.e., the virtual waiting time at time t if

here were an arrival at time t of type i , assuming that arrival had

nlimited patience; let A 

(i ) 
n (t) be the number of type i customers

hat have abandoned from queue in the interval [0, t ]; let A 

(i ) 
n (t, u )

e the number of type- i customers among arrivals to the queue in

0, t ] that have abandoned in the interval [0 , t + u ] ; let D 

(i ) 
n (t) be

he number of type- i customers to complete service in the interval

0, t ]; let D 

(1 , 2) 
n (t) be the number of type-1 customers to complete

ervice that have been fed back in the interval [0, t ]; let D 

(2) 
n (t) be

he number of type-2 customers to arrive back at the queue in the

nterval [0, t ]. Define associated FWLLN-scaled processes: by letting
¯
 n (t) ≡ n −1 N n (t) , and similarly for the other processes except the

rocess W 

(i ) 
n (t) is not scaled. 

heorem 2 (asymptotic effectiveness) . Consider a sequence of

(G t / { GI , GI } /s t + { GI , GI } ) + (GI/ ∞ ) models indexed by n with the ex-

ernal arrival processes in (5) and the many-server heavy-traffic scal-

ng specified above. Suppose that these systems start empty at time 0,

he regularity conditions in Liu and Whitt (2012a, 2012b) are satis-

ed ( including the finite positive densities ) and E[ S 2 
i 

] < ∞ for all i.

hen, with any expected waiting time target w > 0 and associated

bandonment-probability targets αi = F i (w ) > 0 , i = 1 , 2 , use the DIS

taffing s n ( t ) ≡ 
 n s ( t ) � , where 

 (t) = m (t) = m 1 (t) + m 2 (t) = E[ B 1 (t)] + E[ B 2 (t)] , (8)

s given in Theorem 1 . Then the expected delays and abandonment

robabilities are stabilized at their targets w and αi for i = 1 , 2

symptotically as n → ∞ . Moreover, for any time b with w < b < ∞ , 

sup 

0 ≤t≤b 

{| ̄Q 

(i ) 
n (t) − E[ Q 

(i ) (t)] |} ⇒ 0 , sup 

0 ≤t≤b 

{| W 

(i ) 
n (t) − w |} ⇒ 0 , 

sup 

0 ≤t≤b 

{| ̄A 

(i ) 
n (t) − A 

(i ) (t) |} ⇒ 0 , E[ W 

(i ) 
n (t)] → w, and 

sup 

0 ≤t≤b i , w i <u<b i 

{| ̄A 

(i ) 
n (t, t + u ) − A 

(i ) (t, u ) |} ⇒ 0 , t ≥ 0 , (9) 

s n → ∞ , where ( with λ1 = λ and λ2 = λF ) 

[ Q 

(i ) (t)] = E[ Q 

(i ) (t, 0)] ≡
∫ w i 

0 

λi (t − x ) ̄F i (x ) dx, 

A 

(i ) (t) ≡
∫ t 

0 

ξi (s ) dsξi (t) ≡
∫ w i 

0 

λi (t − x ) f i (x ) dx and 

A 

(i ) (t, u ) ≡ �i (t) αi , u > w i . (10) 

We give the proof in the appendix. Essentially the same ar-

ument yields corresponding FWLLNs for the 
∑ 2 

i =1 (M t /GI + GI) /s t 
wo-class queue and the (M t / { GI , GI } /s t + { GI , GI } ) + (GI/s t + GI)

odel when the orbit queue has finite capacity. 

We remark that the DIS-MOL algorithm also can be shown to

e asymptotically correct as the scale increases in the setting of

heorem 2 , but that result is misleading, because the FWLLN in

heorem 2 expresses a MSHT limit in the ED regime, where the

aiting-time target w and abandonment probabilities αi are held

xed while the scale increases. It remains to establish a MSHT limit

n the QED regime where instead the probability of delay is held

xed as the scale increases. 

. The refined DIS-MOL approximation 

Just as in Liu and Whitt (2012c) , simulation experiments to be

iscussed in Section 5 show that the DIS approximation is effec-

ive under low-QoS (high-waiting-time) targets, but is ineffective

nder the common high-QoS (low-waiting-time) targets. Thus, we

evelop a refined DIS-MOL staffing algorithm here. Paralleling the

IS-MOL approximation in Liu and Whitt (2012c) , we let the DIS-

OL staffing be the time-varying number of servers needed in the
service system with time-varying arrivals and customer feedback, 
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stationary M/GI/s + GI model with time-varying total arrival rate

λmol ( t ), regarded as constant at each time t , depending on the of-

fered loads m i ( t ), and associated parameters according to 

λmol (t) ≡
2 ∑ 

i =1 

λmol,i (t) and λmol,i (t ) ≡ m i (t ) 

(1 − αi ) E[ S i ] 
, (11)

where m i (t) = E[ B i (t)] for each i . We enforce the additivity in

(11) and the additivity m (t) = m 1 (t) + m 2 (t) . 

We now elaborate on our reasoning. As in Liu and Whitt

(2012c) , the idea behind (11) is to exploit the basic offered load

relation for the stationary model, which corresponds to Little’s

law applied to the service facility, i.e., m = λE[ S] . However, the

arrival rate should be adjusted for abandonment. Hence, if λ is

the external arrival rate, not adjusted for abandonment, then m =
λ(1 − α) E[ S] and λ = m/ (1 − α) E[ S] . However, now we have two

classes of customers with different parameters, so we have m i =
λi (1 − αi ) E[ S i ] for each i , which leads to λi = m i / (1 − αi ) E[ S i ] for

each i . The total arrival rate is the sum of these two arrival rates.

When we substitute m i ( t ) for m i , we obtain our DIS-MOL arrival

rates (11) to use in the stationary M/GI/s + GI model. 

The MOL arrival rate in (11) generalizes the relatively simple

formula λMOL (t) = m α(t) / (1 − α) E[ S] for a single queue in Liu and

Whitt (2012c) . Formula (11) reduces to that when F i = F for all i ,

so that αi = α, and G i = G for all i , so that E[ S i ] = E[ S] for all i .

Given the MOL arrival rate function in (11) , we apply the approx-

imations for the performance in the stationary M/GI/s + GI model

from Whitt (2005) , just as in Liu and Whitt (2012c) , except we use

w as the target for the expected waiting time. 

4.1. Constructing the aggregate stationary model 

We have just constructed the aggregate DIS-MOL arrival rate in

(11) . In order to produce a stationary M/GI/s + GI model for each

time t , it now remains to define appropriate aggregate service-time

and patience cdf’s G mol and F mol to be used in the stationary model

at time t . We let these be defined as appropriate averages. In par-

ticular, we let 

F mol (t) = 

λmol, 1 (t) F 1 + λmol, 2 (t) F 2 
λmol (t) 

(12)

so that 

1 − αmol (t) = 

λmol, 1 (t)(1 − α1 ) + λmol, 2 (t)(1 − α2 ) 

λmol (t) 
(13)

and 

G mol (t) = 

(1 − α1 ) λmol, 1 (t) G 1 + (1 − α2 ) λmol, 2 (t) G 2 

(1 − αmol (t)) λmol (t) 
. (14)

Let S mol ( t ) and A mol ( t ) be generic random variables with the cdf’s

G mol and F mol at time t . From (14) , we have 

E[ S mol (t)] = 

(1 − α1 ) λmol, 1 (t) E[ S 1 ] + (1 − α2 ) λmol, 2 (t) E[ S 2 ] 

( 1 − αmol (t)) λmol (t) 
(15)

Since these definitions are averages, we meet the obvious consis-

tency condition that G mol (t) = G if G 1 = G 2 = G and F mol (t) = F if

F 1 = F 2 = F . 

Proposition 1 (additivity) . With these definitions, we maintain the

important MOL additivity assuming that 

m mol (t) ≡ (1 − αmol (t)) λmol (t) E[ S mol (t)] . (16)

Then 

m mol (t) ≡ (1 − αmol (t)) λmol (t) E[ S mol (t)] 

= (1 − α1 ) λmol, 1 (t) E[ S 1 ] + (1 − α2 ) λmol, 2 (t) E[ S 2 ] = m (t) . (17)

Proof. We start with (16) and then apply the definition of
E [ S mol ( t )] in (15) to get the second line. We then apply (11) . � m  
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.2. Computing the DIS-MOL staffing function 

For each time t , we apply the constant arrival rate in (11) , aban-

onment cdf in (12) and service-time cdf in (14) in order to obtain

 stationary M/GI/s + GI model, which of course depends on t . We

umerically select the staffing level s mol ( t ) to be the smallest value

or which the expected steady-state potential waiting time (virtual

aiting time for a customer, if that customer had unlimited pa-

ience) is less than the target w . 

To do so, we exploit the approximating state-dependent Marko-

ian M/M/s + M(n ) model for the stationary M/GI/s + GI queue, de-

eloped in Whitt (2005) . With that model, we first compute the

teady-state distribution πi ≡ P (Q(∞ ) = i ) , i ≥ 0, for the M/M/s +
(n ) queue, as indicated in Section 7 of Whitt (2005) . We next

ompute the expected steady-state potential waiting time by con-

itioning on the total number of customers in the queue. As a

unction of the number of servers s , we write 

[ W s (∞ )] = 

∞ ∑ 

i = s 
E[ W s (∞ ) | Q(∞ ) = i ] · πi = 

∞ ∑ 

i = s 

s −i ∑ 

k =0 

1 

sμ + δk 

· πi , 

(18)

here μ is the reciprocal of the mean service time in (15) and δk 

s the state-dependent abandonment rate in (3.4) of Whitt (2005) .

he goal here is to find an s mol ( t ) such that s mol (t) = min { s >
 , E[ W s (∞ )] < w } for each stationary (M/GI/s + GI) t model. 

In closing this section, we also remark that we could also be

taffing at time t to satisfy the new abandonment target αmol ( t )

iven in (13) , i.e., we could choose the minimum number of

ervers so that the steady-state probability of abandonment is be-

ow αmol ( t ). This is so because if the potential waiting time is in-

eed w for an arrival, then the probability that this arrival will

bandon is approximately F mol (t, w ) = αmol (t) . 

. Comparison with simulations 

We now use simulation experiments to show the effectiveness

f the approximations. 

.1. The base model 

Our base model is the (M t / { GI , GI } /s t + { GI , GI } ) + (GI/ ∞ )

odel with Bernoulli feedback after a random delay in an IS orbit

ueue. (We consider other models in Section 6 and the appendix.)

ust as in Feldman, Mandelbaum, Massey, and Whitt (2008) , Liu

nd Whitt (2012c) , for our base case we let the system start empty

nd we use a sinusoidal arrival rate function with average offered

oad for new arrivals of approximately 100, so that the staffing

ould fluctuate around 100 for the external arrivals alone. (We

lso consider cases with smaller arrival rates in the appendix.) In

articular, we use the arrival rate function 

(t) = λ̄(1 + r sin (t)) = 100(1 + r sin (t)) , t ≥ 0 , (19)

or relative amplitudes r , denoted by M t ( r ); here we let r = 0 . 2 .

e let the feedback probability be p = 0 . 2 , but we let the

ean service times for the original and fed-back customers be
−1 
1 

≡ E[ S 1 ] = 1 and μ−1 
2 

≡ E[ S 2 ] = 5 , respectively, so that the

ffered loads of the two kinds of customers are roughly equal.

n the appendix we obtain similar results for the corresponding

odel with p = 0 . 5 and μ−1 
2 

≡ E[ S 2 ] = 2 , which has more similar

ean service times. 

We let the three service-time distributions be hyperexponen-

ial ( H 2 ) with squared coefficient of variation (scv, variance divided

y the square of the mean) c 2 = 4 , with balanced means, as on

. 137 of Whitt (1982) ; we thus write H 2 ( m , 4) with specified

ean m . We let the patience times of the original and fed-back
service system with time-varying arrivals and customer feedback, 
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Fig. 2. Performance functions in the (M t (0 . 2) / { H 2 (1 , 4) , H 2 (5 , 4) } /s t + { M(2) , M(1) } ) + (0 . 2 , H 2 (1 , 4) / ∞ ) model with the sinusoidal arrival rate in (19) for λ̄ = 100 and r = 

0 . 2 , Bernoulli feedback with probability p = 0 . 2 and an IS orbit queue: four cases of high waiting-time (low QoS) targets ( w = 0 . 10 , 0.20, 0.30 and 0.40) and simple DIS 

staffing. 
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i  
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t

ustomers be exponential, but with different means, denoted by

 ( m ). In particular, we consider the (M t (r) /H 2 (1 , 4) , H 2 (5 , 4) /s t +
 (2) , M (1)) + (p, H 2 (1 , 4) / ∞ ) model with r = p = 0 . 2 . All service-

ime distributions are H 2 , while all patience distributions are M ,

ut the means vary, so that the complex refined DIS-MOL formu-

as in Section 4 associated with the aggregate model are needed,

nd are tested in these experiments. We also consider correspond-

ng models with non-exponential patience cdf’s in the and larger

alues of r in the appendix. The same stable performance is seen
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or r = 0 . 5 , but some degradation in performance is seen where

he staffing decreases for r = 0 . 8 . 

.2. Results from the simulation experiment 

We simulated the model above starting empty over the time

nterval [0, 20]. We estimated the performance functions by tak-

ng averages from 20 0 0 independent replications. (Additional de-

ails are given in the online appendix.) 
service system with time-varying arrivals and customer feedback, 
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Fig. 3. Performance functions in the (M t (0 . 2) / { H 2 (1 , 4) , H 2 (5 , 4) } /s t + { M(2) , M(1) } ) + (0 . 2 , H 2 (1 , 4) / ∞ ) model with the sinusoidal arrival rate in (19) for λ̄ = 100 and r = 

0 . 2 , Bernoulli feedback with probability p = 0 . 2 and an IS orbit queue: four cases of low waiting-time (high QoS) targets ( w = 0 . 01 , 0.02, 0.03 and 0.04) and DIS-MOL 

staffing. 
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Figs. 2 and 3 show the results of the simulation experiment

for high and low waiting-time targets. In Fig. 2 the waiting-

time targets are w = 0 . 10 , 0 . 20 , 0 . 30 , 0 . 40 , so that the simple DIS

staffing is used, while in Fig. 3 the waiting-time targets are w =
0 . 01 , 0 . 02 , 0 . 03 , 0 . 04 , ten times smaller, so that the refined DIS-

MOL staffing is used. The performance functions are averages

based on 20 0 0 independent replications. 

Consistent with Liu and Whitt (2012c) and the FWLLN in

Section 3 , with the higher waiting-time targets in Fig. 2 we see

very smooth and accurate plots of the expected waiting times and
Please cite this article as: Y. Liu, W. Whitt, Stabilizing performance in a 
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bandonment probabilities, which are the performance functions

o be stabilized, but strongly fluctuating expected queue lengths

nd delay probabilities, which agree closely with the formulas in

ection 2 . With the higher waiting-time targets, there is higher

bandonment probability, so that the maximum staffing is about

60 instead of about 100 + 100 = 200 in Fig. 3 with the lower

aiting-time targets. There is greater variability with the lower

aiting-time targets. 

Fig. 3 shows that, consistent with experience in Feldman et al.

2008) and Liu and Whitt (2012c) , all performance functions tend
service system with time-varying arrivals and customer feedback, 
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Fig. 5. Performance functions in the 
∑ 2 

i =1 (M t /H 2 (m i , 4) + M(m i ) /s t two-class model with the two sinusoidal arrival-rate functions in (22) , service-time means m 1 = 1 . 0 and 

m 2 = 0 . 6 and patience means m 1 = 2 . 0 and m 2 = 1 . 0 : four cases of identical high waiting-time (low QoS) targets ( w = 0 . 10 , 0.20, 0.30 and 0.40) and simple DIS staffing at 

both queues. 

t  

g  

l  

d  

a  

1  

a
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S  

t  

s  

c  
o be stabilized simultaneously with the lower waiting-time tar-

ets, after an initial startup effect due to starting empty. The de-

ay probability starts at 1 because the stabilizing staffing algorithm

oes not start staffing until time w > 0 . That feature ensures that

ll arrivals wait exactly w in the limiting fluid model (see Section

0 of Liu & Whitt (2012a) ), but it would probably not be used in

pplications. 
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.3. Square root staffing 

We emphasize that the DIS OL m ( t ) given explicitly in

ection 2 is the key quantity being computed. The DIS OL quan-

ifies the essential demand, combining the impact of the random

ervice times with the time-varying arrival rate, both of which are

omplicated by the feedback. The relatively complicated DIS-MOL
service system with time-varying arrivals and customer feedback, 
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Fig. 6. Performance functions in the 
∑ 2 

i =1 (M t /H 2 (m i , 4) + M(m i ) /s t two-class model with the two sinusoidal arrival-rate functions in (22) , service-time means m 1 = 1 . 0 and 

m 2 = 0 . 6 and patience means m 1 = 2 . 0 and m 2 = 1 . 0 : four cases of identical low waiting-time (high QoS) targets ( w = 0 . 01 , 0.02, 0.03 and 0.04) and DIS-MOL staffing at 

both queues. 
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staffing, which requires an algorithm for computing an approxima-

tion for the steady-state performance in the stationary M/GI/s + GI

model, is of course also important in identifying the exact staffing

level required to stabilize the expected potential waiting times at

the target w . However, except for the specific QoS parameter β , the

same goal could be achieved by applying the simple square root

staffing (SRS) formula 

s (t) ≡ m (t) + β
√ 

m (t) , (20)

with this DIS OL m ( t ). Without the DIS-MOL step, we could just

search for the appropriate constant β to use in the SRS formula.

The DIS OL already succeeds in eliminating the dependence on

time. 

As in Feldman et al. (2008) , we demonstrate the importance of

the DIS OL in the present context by plotting the implied empirical

QoS, 

βDIS−MOL (t) = 

s DISMOL (t) − m (t) √ 

m ( t) 
(21)

for the example considered in Fig. 3 . Fig. 4 shows that the DIS-MOL

staffing is indeed equivalent to SRS staffing for an appropriate QoS

parameter β , which is given on the y axis on the left, as a function
Please cite this article as: Y. Liu, W. Whitt, Stabilizing performance in a 
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f the target w on the right. We present similar empirical QoS plots

or other examples in the online appendix. 

The DIS OL is appropriate for smaller models as well, but then

he actual staffing and the resulting performance are complicated

ecause the discretization becomes very important. However, the

IS OL remains an important first step to identify the effective

ime-dependent demand. 

. Other models 

In this section we discuss the other two models mentioned

n the introduction. We first discuss the 
∑ 2 

i =1 (M t /GI + GI) /s t two-

lass queue, in which the two classes arrive according to two in-

ependent NHPPs. We then discuss the (M t / { GI , GI } /s t + { GI , GI } ) +
(GI /s t + GI ) feedback model in which the orbit queue has finite ca-

acity. Afterwards, we discuss the model with two feedback oppor-

unities. More examples are discussed in the online appendix. 

.1. Two-class queue 

In this section we consider the associated 

∑ 2 
i =1 (M t /GI + GI) /s t 

wo-class queue, in particular, the 
∑ 2 

i =1 (M t /H 2 (m i , 4) + M(m i ) /s t 
service system with time-varying arrivals and customer feedback, 
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Fig. 7. Performance functions in the (M t (0 . 2) / { H 2 (1 , 4) , H 2 (10 / 6 , 4) } /s t + { M(2) , M(1) } ) + (0 . 6 , H 2 (1 , 4) /s t + M(1)) model with the sinusoidal arrival rate in (19) for λ̄ = 100 

and r = 0 . 2 , Bernoulli feedback with probability p = 0 . 6 and a finite-capacity orbit queue: four cases of identical high waiting-time (low QoS) targets ( w = 0 . 10 , 0.20, 0.30 

and 0.40) and simple DIS staffing at both queues. 
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odel with H 2 ( m , 4) service-time cdf’s for both classes with m 1 =
 . 0 and m 2 = 0 . 6 and M ( m ) patience cdf’s for both classes with

 1 = 2 . 0 and m 2 = 1 . 0 . We let the arrival processes be indepen-

ent NHPPs, but with different sinusoidal arrival-rate functions, in

articular, 

1 (t) = 100(1 + 0 . 2 sin (t)) , and 

2 (t) = 60(1 + 0 . 2 sin (0 . 8 t + 2)) . (22) 

he analysis of this model is more elementary. First, there is no

rbit queue. We get the DIS OL by simply applying the DIS ap-

roximation to the two classes separately. That yields the per-class

L’s m i (t) = E[ B i (t)] for i = 1 , 2 and then we add to get the to-

al OL: m (t) = m 1 (t) + m 2 (t) . Given this overall DIS OL, we apply

he same refined DIS-MOL approximation in Section 4 . The results

f simulation experiments for high and low waiting-time targets,

ased on 20 0 0 independent replications, are shown in Figs. 5 and

 . The results are good, just as in Section 5 . 

.2. A finite-capacity orbit queue 

In this section we consider the associated (M t / { GI , GI } /s t +
 GI , GI } ) + (GI/s t + GI) model with Bernoulli feedback after a

andom delay in a finite-capacity orbit queue. We use the
Please cite this article as: Y. Liu, W. Whitt, Stabilizing performance in a 
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ame waiting-time targets to set the staffing levels in the or-

it queue and the main queue. In particular, we consider the

(M t (r) /H 2 (1 , 4) , H 2 (10 / 6 , 4) /s t + M(2) , M(1)) + (p, H 2 (1 , 4) /s t + M(1)

odel with r = 0 . 2 and p = 0 . 6 . Just as in Section 5 , all service-

ime distributions are H 2 , while all patience distributions are M ,

ut the means vary, so that the complex refined DIS-MOL formu-

as in Section 4 associated with the aggregate model are needed.

igs. 7 and 8 show the results of the simulation experiment for

igh and low waiting-time targets, respectively, again based on

0 0 0 independent replications, each starting empty. 

.3. Two feedback opportunities 

In this section we consider a modification of the base model

n which there are two feedback opportunities. Each customer that

as been fed back once returns again with probability p 2 after an-

ther delay in an IS orbit queue with cdf H 2 . Upon return, these

ustomers have service cdf G 3 and patience cdf F 3 . The new DIS

odel has eight IS queues in series, as depicted in Fig. 9 . 

Since there are now three customer classes, characterized by

heir class-dependent service-time and patience-time distributions, 

e easily generalize results in Theorem 1 to include the formulas

or class 3. We have 
service system with time-varying arrivals and customer feedback, 
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Fig. 8. Performance functions in the (M t (0 . 2) / { H 2 (1 , 4) , H 2 (10 / 6 , 4) } /s t + { M(2) , M(1) } ) + (0 . 6 , H 2 (1 , 4) /s t + M(1)) model with the sinusoidal arrival rate in (19) for λ̄ = 100 

and r = 0 . 2 , Bernoulli feedback with probability p = 0 . 6 and an IS orbit queue: four cases of low waiting-time (high QoS) targets ( w = 0 . 01 , 0.02, 0.03 and 0.04) and DIS-MOL 

staffing. 

Fig. 9. The DIS approximation for the (M t / { GI , GI , GI } /s t + { GI , GI , GI } ) + (GI/ ∞ ) + (GI/ ∞ ) model with two delayed customer feedback opportunities. Here there are two IS 

orbit queues. The approximating offered load is m (t) = m 1 (t) + m 2 (t) + m 3 (t) ≡ E[ B 1 (t)] + E[ B 2 (t)] + E[ B 3 (t)] . 
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E[ O 2 (t)] = p 2 E 

[∫ t 

t−U 2 

σ2 (x ) dx 

]
= p 2 E [ σ2 (t −U 2 ,e )] E [ U 2 ] ,

E[ Q 3 (t)] = E 

[∫ t 

t−T 3 

λF, 2 (x ) dx 

]
= E [ λF, 2 (t − T 3 ,e )] E [ T 3 ] , 

 3 (t) ≡ E[ B 3 (t)] = F̄ 3 (w ) E 

[∫ t−w 

t−w −S 3 

λF, 2 (x ) dx 

]

= F̄ 3 (w ) E[ λF, 2 (t − w − S 3 ,e )] E[ S 3 ] , 

λF, 2 (t) = p 

∫ ∞ 

0 

σ2 (t − x ) dH 2 (x ) = (1 −p 2 ) E[ σ2 (t − U 2 )] ,

here T 3 ≡ A 3 ∧ w, and A 3 , S 3 and U 2 follow cdfs F 3 , G 3 and H 3 . 

Regarding the DIS-MOL approximation, we generalize (11) –(14)

o 

MOL (t) ≡
3 ∑ 

i =1 

λmol,i (t) , where λmol,i (t ) ≡ m i (t ) 

(1 − αi ) E[ S i ] 
, 

i = 1 , 2 , 3 , 

F mol (t) = 

∑ 3 
k=1 λmol,k (t) F k 

λmol (t) 
, (1 −αmol (t ))= 

∑ 3 
k=1 λmol,k (t)(1−αk ) 

λmol (t) 
, 

G mol (t) = 

∑ 3 
k =1 (1 − α2 ) λmol, 2 (t) G 2 

(1 − αmol (t)) λmol (t) 
. 

igures of simulation experiments in the online appendix verify

he effectiveness of our DIS and DIS-MOL approaches just as in

igs. 2 and 3 . We remark that this analysis can generalize to the

ase of any finite number of feedbacks. 

. Conclusions 

In this paper we have extended the two-queue approximating

elayed-Infinite-Server (DIS) model for the M t /GI /s t + GI model in

iu and Whitt (2012c) to the corresponding five-queue approximat-

ng DIS model depicted in Fig. 1 for the (M t / { GI , GI } /s t + { GI , GI } ) +
(GI/ ∞ ) model with Bernoulli feedback after a random delay in an

nfinite-server orbit queue and a corresponding six-queue approxi-

ating DIS model for the corresponding model with a (GI /s t + GI )

nite-capacity orbit queue. These models present attractive al-

ernatives to the Erlang-R model in Yom-Tov and Mandelbaum

2014) because the fed-back customers can have different service-

ime and patience cdf’s. The same approach extends to any finite

umber of feedbacks; the case of two feedbacks is discussed in

ection 6.3 and the online appendix. The approach applies to sys-

ems with or without customer abandonment. Without customer

bandonment, the offered load is m α( t ) for α = 0 ; then we would

se a delay-probability target, as in Feldman et al. (2008) , Jennings

t al. (1996) and Yom-Tov and Mandelbaum (2014) . 

Theorem 1 here and Theorem 1 of the online appendix give

xplicit expressions for all DIS performance functions in general

nd with sinusoidal arrival rate functions. Moreover, we have pre-

ented results of simulation experiments showing that the DIS of-

ered load (OL) itself provides staffing that successfully stabilizes

bandonment probabilities and expected waiting times with low

oS targets. Theorem 2 establishes a FWLLN showing that the DIS

taffing achieves its performance goals asymptotically as the scale

ncreases. 

In Section 4 we have also developed a new aggregate approx-

mating single-class Delayed-Infinite-Server Modified-Offered-Load 

DIS-MOL) approximation to set staffing levels with low waiting-

ime (high QoS) targets. We showed that we can use either the ag-

regate abandonment probability target or the waiting-time target,

ut the waiting-time target tends to produce a faster algorithm,

n part because the abandonment probability target F mol (w ; t) is a

ime-dependent function. We have presented results of simulation
Please cite this article as: Y. Liu, W. Whitt, Stabilizing performance in a 

European Journal of Operational Research (2016), http://dx.doi.org/10.10
xperiments in Sections 5 and 6 showing that the new DIS and

IS-MOL staffing algorithms are effective across a wide range of

oS targets. 

The queue with Bernoulli feedback after an additional delay in a

nite-capacity orbit queue is a special case of a network of many-

erver queues with feedback. Our excellent results in this case in-

icate that the methods should apply to more general networks of

ueues, including multiple queues and customer classes, with var-

ous forms of routing, including models with retrials from blocked

rrivals as in the large literature reported in Artalejo (2010) , but

uch more general models remain to be examined carefully. 
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