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A. Introduction

We present additional material in this e-companion. First, in §B we present additional exper-

imental results; we present many more in an online supplement available on the authors’ web

pages. Next, in §C we establish steady-state heavy-traffic limits for these estimators. At the

end of the section, we show that the bad performance of the LCS estimator for large s can be

explained in part by its behavior in the QED many-server heavy-traffic limiting regime. Un-

like the LES, HOL and RCS delay estimators, the LCS delay estimator is not asymptotically

consistent in this limiting regime. Finally, in §D we present a cautionary example showing the

possible pitfalls of the LES and HOL delay estimators.

B. Additional Tables and Figures

Paralleling Table 1 in §3, which displays the ASE’s for seven different estimators in the

GI/M/100 model for the M , D and H2 arrival processes, we display the corresponding es-

timated ASE’s for the same estimators for the GI/M/s models with s = 10 and s = 1 in

Tables 6 and 7 below. The estimator LCS fares better as s decreases. The ASE’s of LCS and

RCS do not differ greatly for s = 10 and are identical for s = 1.

Paralleling Figure 1 in §3, where we display plots of the relative average squared errors

(RASE’s) for several of the estimators in the D/M/100 model, we display the RASE’s for

the M/M/100 and H2/M/100 models in Figures 2 and 3. Again we see linear or near-linear

performance as a function of ρ. The advantage of QL over LES increases as c2
a increases. Again

the HOL and LES values fall on top of each other, so we only show LES.

Paralleling Table 3 in §4, where we compare the approximations for the MSE’s of the three

estimators θd
HOL, θar

HOL and θsr
HOL in the H2/M/s model with s = 100 and s = 1, we show
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Estimated ASE in units of 10−1

M/M/s model with s = 10
ρ QL LES HOL RCS RCS-

√
s LCS NI

0.98 4.95 10.1 10.1 10.8 10.9 11.9 257.2
±0.23 ±0.42 ±0.41 ±0.41 ±0.42 ±0.41 ±48.1

0.95 1.98 4.16 4.17 4.83 4.94 5.87 39.61
±0.025 ±0.040 ±0.042 ±0.039 ±0.041 ±0.041 ±2.3

0.93 1.42 3.03 3.05 3.67 3.77 4.62 20.01
±0.013 ±0.032 ±0.037 ±0.036 ±0.033 ±0.036 ±0.66

0.9 1.00 2.19 2.20 2.79 2.88 3.63 10.10
±0.017 ±0.033 ±0.042 ±0.036 ±0.035 ±0.036 ±0.49

0.85 0.661 1.50 1.53 2.04 2.11 2.69 4.41
±0.0032 ±0.0076 ±0.012 ±0.0092 ±0.0085 ±0.0097 ±0.083

D/M/s model with s = 10
ρ QL LES HOL RCS RCS-

√
s LCS NI

0.98 2.49 2.63 2.63 2.99 3.05 3.57 59.3
±0.084 ±0.083 ±0.086 ±0.085 ±0.086 ±0.086 ±10.2

0.95 1.01 1.16 1.16 1.50 1.55 2.00 10.1
±0.018 ±0.018 ±0.020 ±0.019 ±0.019 ±0.019 ±0.83

0.93 0.730 0.876 0.877 1.21 1.26 1.66 5.24
±0.010 ±0.011 ±0.013 ±0.012 ±0.011 ±0.012 ±0.29

0.9 0.518 0.663 0.663 0.977 1.02 1.37 2.66
±0.0058 ±0.0057 ±0.0091 ±0.0077 ±0.0066 ±0.0078 ±0.12

0.85 0.352 0.494 0.494 0.779 0.814 1.06 1.24
±0.0025 ±0.0026 ±0.0057 ±0.0047 ±0.0028 ±0.0047 ±0.0053

H2/M/s model with s = 10
ρ QL LES HOL RCS RCS-

√
s LCS NI

0.98 12.8 62.6 62.6 64.4 65.1 67.3 1594
±0.69 ±4.0 ±4.1 ±4.1 ±4.1 ±5.6 ±258

0.95 4.81 22.3 22.3 23.9 24.6 26.5 229
±0.081 ±0.47 ±0.48 ±0.47 ±0.47 ±0.81 ±9.1

0.93 3.42 15.4 15.4 17.0 17.5 19.4 115
±0.069 ±0.35 ±0.37 ±0.35 ±0.35 ±0.35 6.8

0.9 2.34 10.1 10.1 11.6 11.8 13.7 54.4
±0.036 ±0.18 ±0.20 ±0.19 ±0.18 ±0.18 ±2.9

0.85 1.50 6.00 6.02 7.25 7.50 8.97 22.8
±0.022 ±0.12 ±0.13 ±0.12 ±0.13 ±0.076 ±1.37

Table 6: A comparison of the efficiency of different real-time delay estimators for the GI/M/10
queue as a function of the traffic intensity ρ and the interarrival-time distribution (M , D and
H2). Only the direct estimators are considered. Estimates of the average squared error ASE
are shown together with the half width of the 95% confidence interval. The units are 10−1

throughout.
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Estimated ASE
M/M/s model with s = 1

ρ QL LES HOL RCS RCS-
√

s LCS NI
0.95 20.1 42.2 42.4 44.1 44.1 44.1 405.0

±0.42 ±0.77 ±0.79 ±0.78 ±0.78 ±0.78 ±23.4
0.93 14.4 30.6 30.7 32.4 32.4 32.4 207.5

±0.19 ±0.37 ±0.39 ±0.37 ±0.37 ±0.37 ±10.4
0.9 9.99 21.8 22.0 23.5 23.5 23.5 100.6

±0.084 ±0.19 ±0.21 ±0.19 ±0.19 ±0.19 ±3.4
0.85 6.68 15.1 15.4 16.6 16.6 16.6 44.9

±0.043 ±0.093 ±0.095 ±0.010 ±0.010 ±0.010 ±0.88
D/M/s model with s = 1

ρ QL LES HOL RCS RCS-
√

s LCS NI
0.95 10.1 11.6 11.6 12.6 12.6 12.6 101.1

±0.15 ±0.15 ±0.16 ±0.15 ±0.15 ±0.15 ±7.2
0.93 7.32 8.79 8.79 9.73 9.73 9.73 52.7

±0.081 ±0.078 ±0.086 ±0.080 ±0.080 ±0.080 ±2.4
0.9 5.19 6.64 6.65 7.56 7.56 7.56 26.8

±0.038 ±0.037 ±0.041 ±0.040 ±0.040 ±0.040 ±0.94
0.85 3.53 4.96 4.95 5.82 5.82 5.82 12.4

±0.018 ±0.018 ±0.020 ±0.020 ±0.021 ±0.020 ±0.36
H2/M/s model with s = 1

ρ QL LES HOL RCS RCS-
√

s LCS NI
0.95 48.7 226.4 226.5 231.1 231.1 231.1 2339

±1.13 ±5.14 ±5.23 ±5.15 ±5.15 ±5.15 ±425
0.93 34.3 154.4 154.4 158.9 158.9 158.9 1151

±0.63 ±2.9 ±2.9 ±3.0 ±3.0 ±3.0 ±181
0.9 23.48 101.3 101.4 105.5 105.5 105.5 552.9

±0.37 ±2.3 ±2.4 ±2.4 ±2.4 ±2.4 ±103
0.85 14.95 60.0 60.2 63.9 63.9 63.9 224.4

±0.104 ±0.52 ±0.53 ±0.51 ±0.51 ±0.51 ±6.2

Table 7: A comparison of the efficiency of different real-time delay estimators for the GI/M/1
queue as a function of the traffic intensity ρ and the interarrival-time distribution (M , D and
H2). Only the direct estimators are considered. Estimates of the average squared error ASE
are shown together with the half width of the 95% confidence interval.
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Figure 2: The relative average squared error (RASE) for the M/M/100 model.

corresponding results for the M/M/s model with s = 100 and s = 1 in Table 8. We have used

simulation to estimate all quantities here, even though we could compute them analytically.

This case thus provides a crosscheck on both our analytic formulas and the simulations.

Finally, we present one table illustrating our study of the number of past customers we

need to consider for RCS, as discussed at the end of §2. Table 9 present simulation results for

the H2/M/100 model as a function of ρ. These results support the conclusion that RCS−c
√

s

is virtually identical to RCS itself when c = 4, and that small errors are observed when c = 2

and s = 1. These conclusions held uniformly over all interarrival-time distributions and all

s ≥ 100.
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Evaluating the alternative HOL estimators
Approximations in the M/M/s model for s = 100 and s = 1

ρ 0.85 0.90 0.93 0.95 0.98 0.99
E[W |W > 0] 0.0666 0.0993 0.1435 0.2012 0.500 0.901

conf. int. ±0.0018 ±0.0027 ±0.0018 ±0.0019 ±0.037 ±0.059
E[W 2|W > 0] 0.0089 0.0196 0.0414 0.0811 0.500 1.53

conf. int. ±0.0006 ±0.0012 ±0.0016 ±0.0026 ±0.097 ±0.24
MSE(θd) 0.00153 0.00219 0.00307 0.00422 0.01020 0.01823

term 1 0.00020 0.00020 0.00020 0.00020 0.00020 0.00015
term 2 0.00073 0.00139 0.00227 0.00342 0.00940 0.01748
term 3 0.00060 0.00060 0.00060 0.00060 0.00060 0.00060

MSE(θsr) 0.00173 0.00239 0.00327 0.00442 0.01040 0.01844
term 1 0.00113 0.00179 0.00267 0.00382 0.00980 0.01784
term 2 0.00060 0.00060 0.00060 0.00060 0.00060 0.00060

MSE(θar) 0.00133 0.00199 0.00287 0.00402 0.01000 0.01804
term 1 0.00113 0.00179 0.00267 0.00382 0.00980 0.01784
term 2 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020

Approximations in the M/M/1 model
ρ 0.80 0.85 0.90 0.95 0.96 0.98

E[W |W > 0] 5.01 6.68 9.98 20.04 24.80 50.70
conf. int. ±0.03 ±0.04 ±0.08 ±0.36 ±0.33 ±2.4

E[W 2|W > 0] 50.3 89.6 200.3 806.6 1211 5290
conf. int. ±0.69 ±1.36 ±5.1 ±37.4 ±45 640
MSE(θd) 12.02 15.36 21.98 42.08 51.58 103.4

term 1 2.01 2.01 2.00 2.02 1.94 2.11
term 2 4.01 7.35 13.98 34.07 43.64 95.25
term 3 6.00 6.00 6.00 6.00 6.00 6.00

MSE(θsr) 14.02 17.35 23.97 44.07 53.61 105.31
term 1 8.02 11.35 17.97 38.07 47.61 99.31
term 2 6.00 6.00 6.00 6.00 6.00 6.00

MSE(θar) 10.02 13.35 19.97 40.07 49.61 101.31
term 1 8.02 11.35 19.97 38.07 47.61 99.31
term 2 2.00 2.00 2.00 2.00 2.00 2.00

Table 8: Evaluation of the MSE approximations for the estimators θd
HOL, θsr

HOL, and θar
HOL

in steady-state using (4.11), (4.9) and (4.10) together with simulation estimates of the first
two moments of the conditional delay E[W∞|W∞ > 0]. The M/M/s model is considered as a
function of the traffic intensity ρ for s = 100 and s = 1.
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Figure 3: The relative average squared error (RASE) for the H2/M/100 model.
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C. Heavy-Traffic Limits

In this section we present additional heavy-traffic limits, extending the discussion in §6. We

start by establishing heavy-traffic limits for the steady-state random variables. We see what

happens “on average” to the random variable WHOL,s,ρ(w). We consider both the classical

heavy-traffic regime in which ρ ↑ 1 for fixed s and the QED (many-server heavy-traffic limiting)

regime in which both ρ ↑ 1 and s → ∞ with ((1− ρ)
√

s → β for 0 < β < ∞; see Chapters 5,

9 and 10 of Whitt (2002) for background. For more on the QED regime for GI/G/s queues,

see Halfin and Whitt (1981), Puhalskii and Reiman (2000), Jelenkovic et al. (2004) and Whitt

(2004b, 2005).

The Classical Heavy-Traffic Regime. We start with the classic heavy-traffic (HT) regime

in which ρ ↑ 1 with fixed s. We look at the distribution of WHOL,s(w), assuming that the

observed waiting time w experienced by the customer at the head of the line is a random

variable W h∞,s,ρ, assumed to be the steady-state delay in model (s, ρ) experienced by a customer

at the head of the line at an arrival epoch, conditional on there being at least one customer in

the queue. Thus let WHOL,s,ρ(W h∞,s,ρ) denote a random variable with the distribution

P (WHOL,s,ρ(W h
∞,s,ρ) ≤ x) ≡

∫ ∞

0
P (WHOL,s,ρ(w) ≤ x) dP (W h

∞,s,ρ ≤ w) , (3.1)

in model (s, ρ), where in this subsection s is held fixed. This means that E[WHOL,s,ρ(W h∞,s,ρ)] ≡
E[E[WHOL,s,ρ(W h∞,s,ρ)|W h∞,s,ρ]]. The random variable W h∞,s,ρ is not quite distributed as the

steady-state waiting time at the arrival epoch, W∞,s,ρ, or the conditional steady-state waiting

time, (W∞,s,ρ|W∞,s,ρ > 0), but it is asymptotically equivalent to both of these in the heavy-

traffic limit.

In order to relate the HOL and QL estimators, it is important to exploit the joint conver-

gence of the steady-state queue length and waiting time. Such joint convergence is discussed

extensively for the single-server queue in Chapter 9 of Whitt (2002); it was also used in Igle-

hart and Whitt (1970), which treated more general models. Let (Q∞,s,ρ,W∞,s,ρ) be a random

vector with the limiting steady-state distribution of (Qk,s,ρ,Wk,s,ρ), where Qk,s,ρ is the queue

length and Wk,s,ρ is the delay just before Ak,s,ρ, where Ak,s,ρ is the kth arrival epoch, all in

model (s, ρ).

Here we will use the following established steady-state heavy-traffic limit:

(1− ρ)(Q∞,s,ρ,W∞,s,ρ) ⇒ (L,L/s) as ρ ↑ 1 , (3.2)

8



where L
d= Exp(c2

a + 1)/2 with Exp(m) denoting a random variable having an exponential

distribution with mean m. We give a detailed proof in a subsection below starting from the

known steady-state distribution for Q∞,s,ρ. The joint convergence follows from the limit for

Q∞,s,ρ and the law of large numbers, using the representation

(Q∞,s,ρ,W∞,s,ρ) =


Q∞,s,ρ, (Q∞,s,ρ + 1)







Q∞,s,ρ+1∑

i=1

(Vi/s)


 /(Q∞,s,ρ + 1)





 . (3.3)

We can apply (3.2) and previous results to get the following limits for our estimators.

Let RMSE ≡ MSE/Mean2 be the relative mean squared error. Let c2
WQ,s,ρ

(Q∞,s,ρ) be the

random variable assuming the value c2
WQ,s,ρ

(n) with probability P (Q∞,s,ρ = n) for n ≥ 0. Let

other random variables involving c2 and RMSE be defined analogously. We prove the following

theorem in a subsection below.

Theorem C.1. (classical heavy-traffic limit) If ρ ↑ 1 in the family of GI/M/s models indexed

by (s, ρ) with fixed s, then

WQ,s,ρ(Q∞,s,ρ)
E[WQ,s,ρ(Q∞,s,ρ)|Q∞,s,ρ]

=
WQ,s,ρ(Q∞,s,ρ)
(Q∞,s,ρ + 1)/s

⇒ 1 , (3.4)

W∞,s,ρ

W h∞,s,ρ

⇒ 1 and
WHOL,s,ρ(W h∞,s,ρ)

W h∞,s,ρ

⇒ 1 , (3.5)

from which we can deduce that

(1− ρ)(Q∞,s,ρ,W∞,s,ρ,W
h
∞,s,ρ, WQ,s,ρ(Q∞,s,ρ), WHOL,s,ρ(W h

∞,s,ρ)) ⇒ (L,L/s, L/s, L/s, L/s)

(3.6)

and

(1− ρ)−1(c2
WQ,s,ρ(Q∞,s,ρ), c

2
WHOL,s,ρ(W h∞,s,ρ), RMSE(W h

∞,s,ρ)) ⇒ (1/L, (c2
a + 1)/L, (c2

a + 1)/L)

(3.7)

where L
d= Exp((c2

a + 1)/2) as above, so that

WHOL,s,ρ(W h∞,s,ρ)
WQ,s,ρ(Q∞,s,ρ)

⇒ 1,
c2
WHOL,s,ρ(W h∞,s,ρ)

c2
WQ,s,ρ(Q∞,s,ρ)

⇒ c2
a + 1 , (3.8)

RMSE(W h∞,s,ρ)
c2
WHOL,s,ρ(W h∞,s,ρ)

⇒ 1 and
RMSE(W h∞,s,ρ)
c2
WQ,s,ρ(Q∞,s,ρ)

⇒ c2
a + 1 . (3.9)

The limits in (3.4) and (3.5) show that the direct QL and HOL estimators are (weakly)

relatively consistent in the classical heavy-traffic limit, while the limits in (3.7)–(3.9) compare

9



the asymptotic efficiency of the different estimators. In this heavy traffic limit, the direct and

refined HOL estimators have asymptotically the same efficiency, while the QL estimator is

asymptotically more efficient by the constant factor c2
a + 1.

We conjecture (but have not yet proved) that there is appropriate uniform integrability,

so that the moments of these random variables converge as well as distributions, see p. 31 of

Billingsley (1999). Then from (3.7) and (3.8) we obtain associated convergence of the moments:

E

[
c2
WHOL,s,ρ(W h∞,s,ρ)

c2
WQ,s,ρ(Q∞,s,ρ)

]
→ c2

a + 1 and
E[c2

WHOL,s,ρ(W h∞,s,ρ)
]

E[c2
WQ,s,ρ(Q∞,s,ρ)]

→ c2
a + 1 , (3.10)

and similarly for the direct estimator. These limits supplement the previous limits, implying

that the QL delay estimator is asymptotically more efficient than the HOL and LES delay

estimators by the constant factor c2
a + 1 in the classical heavy-traffic limit.

The QED Many-Server Heavy-Traffic Regime. We now consider the QED HT regime,

in which both ρ ↑ 1 and s ↑ ∞ with (1− ρ)
√

s → β for some positive constant β.

This alternative QED regime is appealing because, unlike the classical HT regime, the

probability that a customer is delayed approaches a nondegenerate limit, strictly between 0

and 1:

P (W∞,s,ρ > 0) → α and P (Q∞,s,ρ > 0) → α, 0 < α < 1 , (3.11)

where α ≡ α(β/
√

c2
a + 1) for α(x) ≡ [1 + xΦ(x)/φ(x)]−1, where φ is the cdf and φ is the

probability density function (pdf) of the standard normal N(0, 1); see (1.1) of Whitt (2004b).

With minor modifications, the story is the same as for the classical HT regime, so we will

be brief. A major difference is that the queue length is of order O(
√

s) = O(1/(1− ρ)), while

the waiting time is of order O(1/
√

s) = O((1 − ρ)). As before, the ratio W∞,s,ρ/Q∞,s,ρ is of

order O(1/s), but now s →∞.

Paralleling (3.2), we have the joint limit

(Q∞,s,ρ/
√

s, (1− ρ)Q∞,s,ρ,
√

sW∞,s,ρ,W∞,s,ρ/(1− ρ)) ⇒ (Z, βZ, Z, Z/β) , (3.12)

where P (Z > 0) = α for the same α ≡ α(β/
√

c2
a + 1) defined above and (Z|Z > 0) d= L

d=

Exp((c2
a + 1)/2). The limit for Q∞,s,ρ was established by Halfin and Whitt (1981), but Whitt

(2004b) corrects an error in the expression for α when the arrival process is non-Poisson. The

joint limit with W∞,s,ρ can be established as in (3.3). Paralleling (3.39), here we have

((1− ρ)(Q∞,s,ρ|Q∞,s,ρ > 0), (W∞,s,ρ|W∞,s,ρ > 0)/(1− ρ),W h
∞,s,ρ/(1− ρ), (1− ρ)A(W h

∞,s,ρ))

⇒ (βL,L/β, L/β, βL) , (3.13)

10



where again L
d= (Z|Z > 0) d= Exp(c2

a + 1)/2; as before, the important point is that the same

random variable L appears in all four components on the right.

We now state the theorem, omitting the proof.

Theorem C.2. (QED heavy-traffic limit) If ρ ↑ 1 and s ↑ ∞ so that (1 − ρ)
√

s → β for

0 < β < ∞ in the family of GI/M/s models indexed by ρ and s, then

WQ,s,ρ(Q∞,s,ρ)
(Q∞,s,ρ + 1)/s

⇒ 1 and
WHOL,s,ρ(W h∞,s,ρ)

W h∞,s,ρ

⇒ 1 . (3.14)

(1− ρ)−1(WQ,s,ρ(Q∞,s,ρ),WHOL,s,ρ(W h
∞,s,ρ)) ⇒ (L/β, L/β) (3.15)

and

(1−ρ)−1(c2
WQ,s,ρ(Q∞,s,ρ), c

2
WHOL,s,ρ(W h∞,s,ρ), RMSE(W h

∞,ρ,s)) ⇒ (1/βL, (c2
a +1)/βL, (c2

a +1)/βL)

(3.16)

where L
d= Exp((c2

a + 1)/2) as above, so that

WHOL,s,ρ(W h∞,s,ρ)
WQ,s,ρ(Q∞,s,ρ)

⇒ 1,
c2
WHOL,s,ρ(W h∞,s,ρ)

c2
WQ,s,ρ(Q∞,s,ρ)

⇒ c2
a + 1 . (3.17)

RMSE(W h∞,s,ρ)
c2
WHOL,s,ρ(W h∞,s,ρ)

⇒ 1 and
RMSE(W h∞,s,ρ)
c2
WQ,s,ρ(Q∞,s,ρ)

⇒ c2
a + 1 . (3.18)

Just as in the classical HT regime, we conjecture that there is appropriate uniform integra-

bility, so that the moments converge as well as distributions. Then we will obtain associated

convergence of the moments, just as in (3.10).

Heavy-Traffic Detail: Proof of (3.2). In this section we prove the classical heavy-traffic

limit for the steady-state joint distribution of the queue length and waiting time at arrival

epochs stated in (3.2):

(1− ρ)(Q∞,ρ,W∞,ρ) ⇒ (L,L/s) as ρ ↑ 1 , (3.19)

where L
d= Exp(c2

a + 1)/2 with Exp(m) denoting a random variable that is exponentially

distributed with mean m. We consider this a known result, but we cannot point to a place

where a proof is given.

We draw on well-known properties of the steady-state distribution of the GI/M/s queue.

The key initial result is the fact that the conditional distribution of the queue length at an

arrival epoch, given that the arrival must wait, is a geometric distribution, i.e.,

P (Q∞,ρ = j|W∞,ρ > 0) = (1− ω)ωj , j ≥ 0 , (3.20)
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where the single parameter ω in (3.20) is the unique root of the equation

ω =
∫ ∞

0
e−(1−ω)sx dF (x) ≡ f̂((1− ω)s) , (3.21)

where f̂ is the Laplace-Stieltjes transform of the cdf F , i.e.,

f̂(z) ≡
∫ ∞

0
e−zx dF (x) ; (3.22)

see (14.10), (14.11), (14.12) and (14.19) of Cooper (1982). This property was used in the proof

of Theorem 4.3.

The key then is the way that the root ω ≡ ω(ρ) depends on the traffic intensity ρ as

ρ ↑ 1. Anticipating that we should have ω(ρ) ↑ 1 as ρ ↑ 1, we see that the argument of the

Laplace-Stieltjes transform should approach 0 in the limit. It should thus come as no surprise

that we can rigorously establish the desired result by expanding the Laplace transform f̂(z)

in a Taylor series about z = 0; see p. 435 of Feller (1971) for supporting theory. As was first

observed by Smith (1953, p. 461), it follows that

1− ω(ρ)
1− ρ

→ 2
c2
a + 1

as ρ ↑ 1 . (3.23)

The expansion appears in a more general context in formula (17) of Abate and Whitt (1994).

In the special case of the GI/M/s queue, equation (7) there reduces to equation (3.21) here.

An alternative approach involving upper and lower bounds is given in Whitt (1984); that

focuses on the more elementary GI/M/1 model, but the key root has the same structure. The

equation differs only by the constant factor s appearing in the equation (3.21). Additional

theoretical results about characterizing roots for queues appears in Neuts (1986), Choudhury

and Whitt (1994) and Glynn and Whitt (1994).

It is well known – see pages 1-2 of Feller (1971) – that if Xm is a random variable with a

geometric distribution having mean m, then

Xm

cm
⇒ Exp(1/c) as m →∞ . (3.24)

By (3.20), (Q∞,ρ|W∞,ρ > 0) has a geometric distribution with mean 1/(1 − ω(ρ)). Thus

we can combine (3.20), (3.23) and (3.24) to obtain

(1− ρ)(Q∞,ρ|W∞,ρ > 0) ⇒ Exp((c2
a + 1)/2) as ρ ↑ 1 . (3.25)

It is also known that

P (W∞,ρ > 0) =
A

1− ω
where A =

[
1

1− ω
+ X

]−1

, (3.26)
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with X ≡ X(ρ) → X(1), 0 < X(1) < ∞, as ρ ↑ 1; see (14.14)–(14.17) of Cooper (1982). Hence

P (W∞,ρ > 0) = [1 + (1− ω(ρ))X(ρ)]−1 → 1 as ρ ↑ 1 . (3.27)

Combining (3.25) and (3.27), we obtain the first part of (3.19):

(1− ρ)Q∞,ρ ⇒ L
d= Exp((c2

a + 1)/2) as ρ ↑ 1 . (3.28)

Given that

W∞,ρ
d=

Q∞,ρ+1∑

i=1

(Vi/s) , (3.29)

we have
W∞,ρ

Q∞,ρ + 1
⇒ 1

s
as ρ ↑ 1 (3.30)

by the weak law of large numbers, since Q∞,ρ ⇒∞ as a consequence of (3.28). We then apply

Theorem 11.4.5 of Whitt (2002) to write the joint limit

((1− ρ)Q∞,ρ,W∞,ρ/(Q∞,ρ + 1)) ⇒ (L, (1/s)) . (3.31)

We then can apply the continuous mapping theorem with the function h : R2 → R2 defined by

h(x, y) = (x, xy) to get

h(((1− ρ)Q∞,ρ,W∞,ρ/(Q∞,ρ + 1)) ⇒ h(L, (1/s)) = (L,L/s) , (3.32)

but

h(((1− ρ)Q∞,ρ,W∞,ρ/(Q∞,ρ + 1)) =
(

(1− ρ)Q∞,ρ, (1− ρ)W∞,ρ
Q∞,ρ

Q∞,ρ + 1

)
. (3.33)

Since Q∞,ρ ⇒∞,
Q∞,ρ

Q∞,ρ + 1
⇒ 1 as ρ ↑ 1 . (3.34)

Hence,

|h(((1− ρ)Q∞,ρ, W∞,ρ/(Q∞,ρ + 1))− (1− ρ)(Q∞,ρ,W∞,ρ)| ⇒ 0 as ρ ↑ 1 . (3.35)

Thus we can combine (3.32), (3.35) and the convergence-together theorem, Theorem 11.4.7 of

Whitt (2002), to complete the proof of (3.19).
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Proof of Theorem C.1. First we show that W h∞,s,ρ ⇒∞ as ρ ↑ 1. As a consequence of the

limit in (3.2), we must have W∞,s,ρ ⇒∞ as ρ ↑ 1. Suppose that we do not have W h∞,s,ρ ⇒∞.

Then there must exist a subsequence {ρk} with ρk ↑ 1 as k →∞, a constant K and a positive

constant ε > 0 such that P (W h∞,s,ρk
> K) > ε for all k. Since

W∞,s,ρ
d=

A(W h∞,s,ρ)+2∑

i=1

(Vi/s) , (3.36)

conditional on W∞,s,ρ > 0, which holds with probability 1 in the limit, there must exist a

new constant K ′ such that P (W∞,s,ρk
> K ′) > ε/2 for all k as well, but that contradicts the

established limit W∞,s,ρ ⇒∞ as ρ ↑ 1. Hence we must have W h∞,s,ρ ⇒∞ as ρ ↑ 1, as claimed

above.

Given that ρ ↑ 1 and W h∞,s,ρ ⇒∞, we get A(W h∞,s,ρ)/W h∞,s,ρ ⇒ s and

WHOL,s,ρ(W h∞,s,ρ)
W h∞,s,ρ

=




∑A(W h∞,s,ρ)+2

i=1 (Vi/s)
A(W h∞,s,ρ) + 2




(
A(W h∞,s,ρ) + 2

W h∞,s,ρ

)
⇒ (1/s)× s = 1 , (3.37)

by the law of large numbers for partial sums and renewal processes. Similarly, by (3.2), we

also have Q∞,s,ρ ⇒∞, so that

WQ,s,ρ(Q∞,s,ρ)
Q∞,s,ρ + 1

=
∑Q∞,s,ρ+1

i=1 (Vi/s)
Q∞,s,ρ + 1

⇒ 1/s . (3.38)

The limits (3.37) and (3.38) imply (3.4) and (3.5).

Since the limits in (3.37) and (3.38) are deterministic, we can apply Theorem 11.4.5 of

Whitt (2002) to obtain joint convergence of all these with the limits in (3.2):
(

(1− ρ)Q∞,s,ρ, (1− ρ)W∞,s,ρ, (1− ρ)W h
∞,s,ρ,

WQ,s,ρ(Q∞,s,ρ)
Q∞,s,ρ + 1

,
WHOL,s,ρ(W h∞,s,ρ)

W h∞,s,ρ

)

⇒
(

L,
L

s
,
L

s
,
1
s
, 1

)
. (3.39)

We next apply the continuous mapping theorem, see Section 3.4 of Whitt (2002), with the

function h : R5 → R5 defined by h(v, w, x, y, z) = (v, w, x, vy, xz) to get (3.6) from (3.39).

To continue, we next consider the random variable c2
WHOL,s,ρ(W h∞,s,ρ)

. Starting from the limit

in (3.6), we can apply the Skorohod representation theorem, Theorem 3.2.2 on p. 78 of Whitt

(2002), to get random variables W̃ h∞,s,ρ with the same probability law as W h∞,s,ρ but for which

we have the convergence (1− ρ)W̃ h∞,s,ρ → L̃/s as ρ ↑ 1 w.p.1, where L̃
d= L

d= Exp((c2
a + 1)/2).

Next note that c2
WHOL,s,ρ(w)/c2

WHOL,s,1(w) → 1 w.p.1 as ρ ↑ 1 and w → ∞ in any order. Then,
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by (4.13),

c2
WHOL,s,ρ(W̃ h∞,s,ρ)

1− ρ
=




c2
WHOL,s,ρ(W̃ h∞,s,ρ)

c2
WHOL,s,1(W̃ h∞,s,ρ)







W̃ h∞,s,ρc
2
WHOL,s,1(W̃ h∞,s,ρ)

(1− ρ)W̃ h∞,s,ρ


 → (c2

a + 1)/s

L̃/s
(3.40)

as ρ ↑ 1 w.p.1. Essentially the same reasoning applies to the random variable RMSE (W h∞,s,ρ),

giving the same limit. The equality in distribution then implies the associated convergence in

distribution for the last two components of the original random vector in (3.7). We now treat

the first component. Since (Q∞,s,ρ + 1)c2
WQ,s,ρ(Q∞,s,ρ) = 1, a deterministic quantity, by (2.2),

we can apply (4.13) to get

c2
WHOL,s,ρ(W h∞,s,ρ)

c2
WQ,s,ρ(Q∞,s,ρ)

=
(

Q∞,s,ρ + 1
W h∞,s,ρ

) 


W h∞,s,ρc
2
WHOL,s,ρ(W h∞,s,ρ)

(Q∞,s,ρ + 1)c2
WQ,s,ρ(Q∞,s,ρ)




=
(

Q∞,s,ρ + 1
W h∞,s,ρ

)
W h
∞,s,ρc

2
WHOL,s,ρ(W h∞,s,ρ) ⇒ s× c2

a + 1
s

= c2
a + 1 .(3.41)

We then reason as before in establishing (3.39), first to express this limit jointly with the last

two components of (3.7) and then to apply the continuous mapping theorem to complete the

proof of (3.7) itself. Finally, (3.8) and (3.9) follow from the previous results.

Customers Who Have Completed Service. In this final subsection, supplementing the

application of the snapshot principle in §6, we consider the estimators based on the delays

experienced by previous customers to complete service. Unlike for the LES and HOL estimators,

we find that the LCS estimator behaves very differently in the classical and QED HT regimes.

The way to see this is to observe that the LCS customer completed service a full service time

in the past. That LCS customer arrived a waiting time plus a service time in the past.

In both heavy-traffic regimes, the service time is an exponential random variable with mean

1. In the classical HT regime, the waiting times are exploding in heavy traffic, so that a service

time is negligible compared to the waiting time. Thus we see that LCS will be asymptotically

equivalent to LES and HOL in the classical HT regime, for any fixed number of servers. The

LCS estimator will be consistent as well in the classical heavy-traffic regime.

However, the story is very different in the QED HT regime. The service times remain

unchanged, but now the waiting times become smaller, being of order O(1/
√

s). Now the

service time is the same order as the time scaling. The stochastic-process limit in (6.2) describes

the waiting time experience of each customer, but for the last customer to complete service at

time t, we have a different limit. Let AL
s,ρ(t) denote the arrival time of the last customer to
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complete service at time t in model (s, ρ). The relevant limit now will be

√
sWs,ρ(AL

s,ρ(t)) ⇒ Y (t− V ) as ρ ↑ 1 , (3.42)

where Y (t) is the limit process in (6.2) and V is a service time, an exponential random vari-

able with mean 1. In other words, the waiting time at time t is approximately Y (t)/
√

s, while

the waiting time of the last customer to complete service immediately prior to time t is ap-

proximately Y (t − V )/
√

s. Thus, in the QED HT limit the LCS estimator is not consistent.

The effectiveness of the LCS estimator depends on the difference between Y (t− V ) and Y (t).

However, we do not attempt to do further analysis; here we are content to observe that the

LCS estimator has inferior asymptotic performance in the QED HT regime. That is consistent

with our simulation results, which show that the LCS estimator performs poorly for large s.

Fortunately, there is better information that we can obtain from customers who have al-

ready completed service in the QED HT regime. Other customers who have completed service

are very likely to have arrived much more recently than the last customer to complete service.

The minimum service time among the last m customers to complete service is 1/m. Since

the waiting times are of order 1/
√

s, it is natural to consider m = O(
√

s); then the minimum

service time among these customers also will be of order O(1/
√

s).

As a bound, first consider the customer among the last c
√

s customers to complete service

with the minimum service time. That customer’s service time is exponentially distributed

with mean 1/c
√

s = O(1/
√

s). By (6.2), the customer’s waiting time is also of order O(1/
√

s).

Since the times between successive service completions are i.i.d. exponential random variables

with mean 1/s, the last c
√

s service completions occur over a time interval having mean

c/
√

s = O(1/
√

s). Hence this customer arrived O(1/
√

s) in the past. Hence we deduce that if

we consider the customer among the last c
√

s customers to complete service with the minimum

service time, then that delay estimator is consistent in the QED HT regime.

Even better will be the RCS and RCS-c
√

s estimators, because those customers necessarily

arrive at least as recently. We summarize these conclusions in the following theorem. To state

the theorem, let WRCS∞,s,ρ and W
RCS−c

√
s

∞,s,ρ be the steady-state RCS and RCS-c
√

s delays in model

(s, ρ); and let WRCS,s,ρ(w) and WRCS−c
√

s,s,ρ(w) be the associated random variables having

the conditional distribution of the delay to be estimated given the observed RCS and RCS-c
√

s

delays.

Theorem C.3. (performance of LCS, RCS and RCS-c
√

s in the QED HT regime) If ρ ↑ 1

and s ↑ ∞ so that (1− ρ)
√

s → β for 0 < β < ∞ in the family of GI/M/s models indexed by
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s and ρ, then the RCS and RCS-c
√

s estimators are relatively consistent, i.e.,

WRCS,s,ρ(WRCS∞,s,ρ)
WRCS∞,s,ρ

⇒ 1 and
WRCS−c

√
s,s,ρ(W

RCS−c
√

s
∞,s,ρ )

W
RCS−c

√
s

∞,s,ρ

⇒ 1 , (3.43)

but the LCS estimator is not relatively consistent.

In this relatively crude sense, the estimators LES, HOL, RCS and RCS-c
√

s are all asymp-

totically equivalent in the QED regime, but LCS is not. However, it remains to describe the

asymptotic efficiency of RCS and RCS-c
√

s, paralleling the results for the HOL (and LES)

estimator SCV’s in (3.16) and (3.17).

D. A Pathological Example for LES

We have drawn very positive conclusions about the LES delay estimator WLES(w) in the

GI/M/s queue. To provide some balancing perspective, in this section we demonstrate poten-

tial weaknesses of the estimator WLES(w) for other service-time distributions. To illustrate

the possible deficiencies of the LES estimator, we consider a specific stable D/G/1 queueing

model with non-exponential service-time distribution in light traffic. Let the arrival process

be deterministic with interarrival times 1.

We deliberately choose a difficult service-time distribution: let the service-time distribu-

tion be a two-point probability distribution, which usually assumes a very small value ε, but

occasionally takes a very large value M ; specifically, let

P (V = M >> 1) = δ = 1− P (V = ε << 1) , (4.1)

where the traffic intensity

ρ ≡ E[V ]/E[U ] = E[V ] = δM + (1− δ)ε . (4.2)

We suppose that δ is very small, so that ρ itself is very small and the service time is only equal

to the large value M very rarely. If δ is sufficiently small, relatively few customers will have

to wait in queue before starting service, but occasionally a customer will have one of the very

long service times.

To see the deficiencies of the LES estimator, we will consider an epoch at which a customer

with service time M arrives at an empty system. If δ is small enough, then with high probability

the customer with the large service time M will not have to wait before starting service, but

he will remain in service for a long time, precisely M . Thus the following M customers will
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all have to wait before starting service. For each of them, however, the last served customer

to have entered service – the customer with service time M – will have not had to wait at all.

To quantify the effect, let us call the customer with service time M customer 0. Then,

assuming that these following M customers themselves all have ε service times (which has high

probability), customer k will have to wait precisely M − k + (k − 1)ε before starting service.

Customer number M will have to wait only (M − 1)ε. But, for all M customers with positive

waiting times, the last served customer will have waited 0 before starting service.

To go further, suppose that ε is very small, so that (M − 1)ε is itself less than 1. Then

customer M will have to wait less than 1 before starting service, so that M + 1 will not have

to wait at all before starting service. We thus have the strange estimation phenomenon: The

delay of the last served customer is 0 for all customers that themselves experience positive

delays. Thus, whenever an estimation needs to be made (because the customer must wait in

queue), the estimated delay will be 0. Moreover, the actual delays of these customers who

have to wait may be quite large: as large as M − 1 and averaging about M/2 for all customers

forced to wait. This example allows arbitrarily large M , but after choosing M , we must choose

ε and δ suitably small.

We have only described one possible scenario. The story we have described breaks down

when two or more customers with large service time M interact, but by choosing δ sufficiently

small, this deviation from the story can be made to occur relatively rarely. Thus the phe-

nomenon we have described will hold for the vast majority of the customers that are delayed.

We can make the situation described above apply w.p.1 if we abandon the condition of i.i.d.

service times. If we instead assume that customers 2kM have service times M , while all other

customers have service time ε with ε < 1/M (e.g., ε = 0), then we obtain the scenario above

w.p.1. In addition, the average delay is approximately M/4, so the average delay can be made

arbitrarily large by choosing M large. Thus this scenario does not only apply in very light

traffic. Nevertheless, we regard this example as pathological. We are thinking of situations in

which the delay of a new arrival should not be too different from the delay of the last customer

to enter service.

For this example, the HOL estimator would fare somewhat better, but it would not do so

great either. Given the scenario described above, when the customer at the head of the line

has waited w = k, the random variable WHOL(w) depicting the delay of this new arrival is

very likely to take the value M − k + (k − 1)ε instead of w.
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