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Abstract We consider the maximum queue length and the maximum number of idle
servers in the classical Erlang delay model and the generalization allowing customer
abandonment—the M/M/n + M queue. We use strong approximations to show, un-
der regularity conditions, that properly scaled versions of the maximum queue length
and maximum number of idle servers over subintervals [0, t] in the delay models con-
verge jointly to independent random variables with the Gumbel extreme value distri-
bution in the quality-and-efficiency-driven (QED) and ED many-server heavy-traffic
limiting regimes as n and t increase to infinity together appropriately; we require that
tn → ∞ and tn = o(n1/2−ε) as n → ∞ for some ε > 0.
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1 Introduction

It is remarkable how persistently the multiserver Erlang B (loss) and C (delay) mod-
els have remained the workhorse models for performance analysis of multiserver
systems, ever since A.K. Erlang introduced them one hundred years ago. Over the
years, the original applications to telecommunication systems have continued, while
new applications have emerged, e.g., to new communication systems, call centers,
hospitals and other service systems; see [12] for a survey on call centers.
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In this paper, we will once again consider the basic Erlang delay model as well as
the Erlang A or Palm (M/M/n+M) model, which includes customer abandonment.
The Erlang B and C models appear as the special cases in which the abandonment
rate is infinite and zero, respectively. We will be concerned with asymptotic results
that facilitate extreme value engineering; see [7]. The idea is to judge whether staffing
is appropriate, neither inadequate nor excessive, by looking at the maximum queue
length and the maximum number of idle servers over specified time intervals, such
as a single hour. Our goal is to apply extreme value theory, as in [11], to develop a
systematic way to interpret such extreme value measurements.

However, there are two difficulties, which motivate this research. The first diffi-
culty is discreteness. It is well known that the classical extreme value theory does
not apply to integer-valued random variables. For example, with an infinite-server
M/M/∞ queue, the steady-state distribution of the number of customers in the sys-
tem is Poisson, and the maximum of i.i.d. (or weakly dependent) Poisson random
variables does not have a nondegenerate extreme value limit; see Example 1.7.14
in [20]. Another example is the M/M/n/∞ queue, which has a steady-state distrib-
ution with a geometric upper tail; see Theorem 1.3 of [24].

The second difficulty is the common occurrence of time-varying arrival rates in
service systems. The demand typically varies greatly by time of day. In response,
the staffing levels typically vary by time of day as well. Since the service times are
often short and the arrival rate tends to change relatively slowly, it is often appropri-
ate to use time-varying steady-state performance measures, the pointwise stationary
approximation reviewed in [14]. Indeed, we will assume that the subintervals over
which we consider extreme values are short enough that the queueing processes can
be regarded as approximately stationary; the intervals might be one hour long. How-
ever, different hours at different times of the day might have very different arrival
rates.

We want a systematic way to relate the extreme values over different hours with
very different arrival rates (and staffing). We also want to combine measurements
from different hours that may have very different arrival rates. There is a problem, be-
cause even with proper staffing set to achieve target service-level constraints through-
out the day, the distributions of the maximum queue length and the maximum number
of idle servers depend on the arrival rate and the staffing level n. We would like per-
formance measures that are easy to interpret directly, without having to relate to the
staffing level.

We propose addressing both difficulties for extreme values by applying extreme
value approximations (obtained as t → ∞) associated with diffusion approximations
(obtained as n → ∞). A key ingredient is appropriate scaling. The diffusion approxi-
mations follow from the many-server heavy-traffic limits (as n → ∞) established by
Halfin and Whitt [16], Garnett et al. [13] and Whitt [27]. In this limit, properly scaled
queueing processes converge to diffusion processes, which have continuous steady-
state distributions. In particular, we can then apply extreme value limits for diffusion
processes (as t → ∞) established by Davis [10], Borkovec and Klüppelberg [5] and
references therein. The scaling in the many-server heavy-traffic limits also allows
us to address the difficulty posed by time-varying demand. With the proper scaling,
the resulting approximation can be interpreted independent of the staffing level n,
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provided that the queueing processes can be considered approximately stationary for
each n.

The procedure we have described involves a two-step limit in which we first let
n → ∞, and then afterwards let t → ∞. However, in an application we have fixed
n and t . We have already observed that we cannot reverse the order of the limits. In
order to obtain good approximations for fixed n and t , here we consider the double
limit in which n → ∞ and t → ∞ jointly; i.e., we let tn → ∞ as n → ∞, imposing a
regularity condition that tn not increase too rapidly, in order to avoid the discreteness
problem. After scaling, the resulting approximation will be independent of n and t .

Our general approach for obtaining double limits for many-server queues follows
the procedure used by Glynn and Whitt [15] to treat single-server queues. As they
did, we exploit strong approximations. However, Glynn and Whitt [15] used strong
approximations for partial sums by Brownian motion, as in [8]. Since the stochastic
process representing the number in system for the M/M/n + M model can be repre-
sented in terms of random-time changed Poisson processes, here we will apply strong
approximations for Poisson processes by Brownian motion, as in [19]. We also apply
the main result from [15] as an intermediate step in our proof; see Lemma 3.2.

Although standard extreme value limits are difficult for the integer-valued queue-
length process, there is some relevant literature. Sadowsky and Szpankowski [23]
and references therein describe various bounds on the distribution of the maximum
queue length for GI/G/c queues. Algorithms have been proposed to compute the
distribution of the maximum queue length in a busy period for M/M/c retrial queues
for application to call center management by Artalejo et al. [1, 2]. Serfozo [24] and
McCormick and Park [21] have obtained extreme value limits for the maximum queue
length of M/M/c queues by allowing the birth rates and death rates to vary in a
certain manner as the time interval increases. Asmussen [3] has given a good survey
on the cycle maxima approach for extreme value limits in queues.

This paper is organized as follows. In Sect. 2, we introduce the scaled processes
and state the convergence results. In Sect. 3 we give proofs. We give all details for
the proof of Theorem 2.2 and sketch the remaining proofs, which are similar.

2 The convergence results

We consider a sequence of M/M/n + M queueing models (with unlimited waiting
space) indexed by the number of servers n and let n ↑ ∞. The arrival process is
Poisson with rate λn, service times are i.i.d. with an exponential distribution having
mean μ−1 and customers abandon independently with an exponential distribution
having mean θ−1. For each n, we assume that the arrival process, service times and
abandonment times are mutually independent. The traffic intensity is ρn ≡ λn/nμ.
Assume that λn/n → λ ∈ (0,∞) as n → ∞.

We use the conventional notation: x ∧ y ≡ min{x, y}, x ∨ y ≡ max{x, y}, x+ ≡
max{x,0} and x− ≡ max{−x,0} for x, y ∈ R; log is always the natural logarithm
(base e); Dk ≡ D([0,∞),R

k) is the space of right-continuous functions with left
limits in R

k , with Dk ≡ D for k = 1; ⇒ denotes convergence in distribution; see [4]
and [26] for background.
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2.1 The processes of interest

For each n ≥ 1 and t ≥ 0, let Xn(t), Qn(t) ≡ (Xn(t)−n)+ and In(t) ≡ (Xn(t)−n)−
represent the number of customers in the system, the queue length, and the number
of idle servers, respectively. Let Xn ≡ {Xn(t) : t ≥ 0}, Qn ≡ {Qn(t) : t ≥ 0} and
In ≡ {In(t) : t ≥ 0} be the associated stochastic processes. Assume that the initial
condition Xn(0) is independent of the arrival, service and abandonment processes.

Under those assumptions, the process Xn can be represented as

Xn(t) = Xn(0) + A(λnt) − S

(∫ t

0
μ

(
Xn(s) ∧ n

)
ds

)

− L

(∫ t

0
θ
(
Xn(s) − n

)+
ds

)
, t ≥ 0, (2.1)

where A ≡ {A(t) : t ≥ 0}, S ≡ {S(t) : t ≥ 0} and L ≡ {L(t) : t ≥ 0} are mutually
independent Poisson processes with unit rate.

Define the running maximum and minimum processes of Xn, Mn ≡ {Mn(t) : t ≥ 0}
and Nn ≡ {Nn(t) : t ≥ 0}, respectively, by

Mn(t) ≡ max
0≤s≤t

Xn(s), Nn(t) ≡ min
0≤s≤t

Xn(s), t ≥ 0. (2.2)

Define processes M
Q
n ≡ {MQ

n (t) : t ≥ 0} and MI
n ≡ {MI

n(t) : t ≥ 0} representing the
maximum queue length and the maximum number of idle servers by

MQ
n (t) ≡ max

0≤s≤t
Qn(s) = (

Mn(t) − n
)+

,

MI
n (t) ≡ max

0≤s≤t
In(s) = (

n − Nn(t)
)+

, t ≥ 0.
(2.3)

We are interested in the asymptotic behavior of Mn, Nn, M
Q
n and MI

n as n → ∞
and t → ∞ simultaneously. In the next two subsections, we will state the extreme
value limit theorems for these processes in the quality-and-efficiency-driven (QED)
and ED regimes. In subsequent subsections we will consider other special cases of
the M/M/n + M model: the Erlang C model and the infinite-server queue.

2.2 Erlang A: QED

With customer abandonment (0 < θ < ∞), in the QED regime the system is asymp-
totically critically loaded; i.e., we assume that

√
n(1 − ρn) → β, as n → ∞, β ∈ R. (2.4)

The scaling in (2.4) is consistent with the classical square-root staffing principle for
large n, provided that β > 0. However, abandonment makes it possible to have β ≤ 0
as well. By assuming (2.4), we are assuming that the system is staffed properly, where
the parameter β determines the quality of service more precisely.
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Define the scaled processes X̄n ≡ {X̄n(t) : t ≥ 0}, X̂n ≡ {X̂n(t) : t ≥ 0}, M̂n ≡
{M̂n(t) : t ≥ 0}, M̂

Q
n ≡ {M̂Q

n (t) : t ≥ 0}, M̂I
n ≡ {M̂I

n (t) : t ≥ 0}, and N̂n ≡ {N̂n(t) :
t ≥ 0}, where

X̄n(t) ≡ Xn(t)

n
, X̂n(t) ≡ Xn(t) − n√

n
,

M̂n(t) ≡ Mn(t) − n√
n

, N̂n(t) ≡ Nn(t) − n√
n

,

M̂Q
n (t) ≡ M

Q
n (t)√
n

= M̂n(t)
+, M̂I

n (t) ≡ MI
n(t)√
n

= (−N̂n(t)
)+

, t ≥ 0.

(2.5)

It was proved in [13] that, if there exists a random variable X̂(0) such that X̂n(0) ⇒
X̂(0) in R as n → ∞, then X̂n ⇒ X̂ in D as n → ∞, where the limit X̂ is the
diffusion process with infinitesimal mean ν(x) = −βμ − θx for x ≥ 0 and ν(x) =
−βμ − μx for x < 0, and infinitesimal variance σ 2(x) = 2μ, i.e.,

X̂(t) = X̂(0) − βμt −
∫ t

0
μ

(
X̂(s) ∧ 0

)
ds

−
∫ t

0
θ
(
X̂(s) ∨ 0

)
ds + √

2μB(t), t ≥ 0, (2.6)

where B ≡ {B(t) : t ≥ 0} is a standard Brownian motion.
Moreover, stationary distributions exist and converge; i.e., X̂(t) ⇒ X̂(∞) and

X̂n(t) ⇒ X̂n(∞) as t → ∞ for each n, and X̂n(∞) ⇒ X̂(∞) as n → ∞. Hence,
we can initialize with stationary distributions, i.e., we can regard all the processes
as stationary processes. That is not required for the extreme value limits, see Theo-
rem 3.1, but it is realistic for applications and clearly should make the approximations
perform better for smaller sample size.

Let M̂ ≡ {M̂(t) : t ≥ 0} and N̂ ≡ {N̂(t) : t ≥ 0} be the running maximum and

minimum processes of X̂, respectively, i.e.,

M̂(t) ≡ max
0≤s≤t

X̂(s) and N̂(t) ≡ min
0≤s≤t

X̂(s), t ≥ 0. (2.7)

It follows immediately from applying the continuous mapping theorem [26, Sect. 13.4]
that, if there exists a random variable X̂(0) such that X̂n(0) ⇒ X̂(0) in R as n → ∞,
then (

M̂n, N̂n

) ⇒ (
M̂, N̂

)
in D2 as n → ∞. (2.8)

We first characterize the extremal behavior of the limit diffusion process X̂ in
(2.6) in the following proposition. We apply the general extreme value limit theo-
rems established in [5, 10], which are summarized in Sect. 3.1. The proof is given in
Sect. 3.2. The extreme value limits for the maximum process M̂ and the minimum
process N̂ are asymptotically independent as t → ∞; see Theorem 3.4 in [10]. In all
our extreme value limits, the limiting random variables will have the standard Gum-
bel distribution; let Z denote such a random variable; i.e., P(Z ≤ x) ≡ e−e−x

, x ∈ R.
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The general form of the scaling we obtain in our heavy-traffic extreme value limits
combines the heavy-traffic scaling with the extreme value scaling. The extreme value
scaling is similar to the scaling for the maximum of i.i.d. random variables with the
steady-state distribution of the diffusions process, but there are minor differences. In
general, extreme value limits for recurrent diffusion processes are not characterized
by their steady-state distributions; see Sect. 3.1.

Proposition 2.1 The extremal processes M̂ and N̂ of the limit diffusion process X̂

defined in (2.6) and (2.7) have the joint limit

(
M̂(t) − b(t)

a(t)
,
−N̂(t) − d(t)

c(t)

)
⇒ (Z1,Z2) in R

2 as t → ∞, (2.9)

where Z1 and Z2 are independent random variables with the standard Gumbel dis-
tribution, and

a(t) ≡ r/
√

2 log t, c(t) ≡ 1/
√

2 log t,

b(t) ≡ r
√

2 log t − βr2 + r√
8 log t

(
log log t + log

(
θ2α2π−1(1 − Φ(rβ)

)−2))
,

d(t) ≡ √
2 log t − β +

(
log log t + log(μ2(1 − α)2π−1Φ(β)−2)√

8 log t

)
,

α ≡
(

1 + φ(rβ)Φ(β)

r(1 − Φ(rβ))φ(β)

)−1

, r ≡ √
μ/θ,

(2.10)

where Φ and φ are the cdf and pdf of the standard normal distribution.

We remark that the quantity α in Proposition 2.1 plays a key role in the perfor-
mance measures of Erlang A models; see [13]. Notice that a(t) → 0, as t → ∞,
so that we have the limit M̂(t) − b(t) ⇒ 0 as t → ∞ as a consequence of Propo-
sition 2.1; i.e., there is a concentration about b(t) without additional scaling, and
similarly for the other processes. By first letting n → ∞ and then letting t → ∞, we
obtain the following extreme value limit theorem for the extremal processes Mn, Nn,
M

Q
n and MI

n .

Theorem 2.1 Consider the M/M/n/∞ + M queueing model in the QED regime
specified in (2.4). If there exists a random variable X̂(0) such that X̂n(0) ⇒ X̂(0) in
R as n → ∞, then

(
M̂n(t) − b(t)

a(t)
,
M̂

Q
n (t) − b(t)

a(t)
,
−N̂n(t) − d(t)

c(t)
,
M̂I

n (t) − d(t)

c(t)

)

⇒ (Z1,Z1,Z2,Z2) in R
4 (2.11)

as first n → ∞ and then t → ∞, where Z1 and Z2 are independent with the standard
Gumbel distribution and a(t), b(t), c(t) and d(t) are as given in (2.10).
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We next establish an extreme value limit as n → ∞ and t → ∞ simultaneously
by imposing a condition that tn not increase too rapidly.

Theorem 2.2 If, in addition to the assumptions of Theorem 2.1, tn → ∞ and
tn/n1/2−ε → 0 as n → ∞ for some ε > 0, then

(
M̂n(tn) − bn(tn)

an(tn)
,
M̂

Q
n (tn) − bn(tn)

an(tn)
,
−N̂n(tn) − dn(tn)

cn(tn)
,
M̂I

n (tn) − dn(tn)

cn(tn)

)

⇒ (Z1,Z1,Z2,Z2), (2.12)

in R
4 as n → ∞, where Z1 and Z2 are independent with the standard Gumbel dis-

tribution,

an(tn) ≡ rγn√
2 log tn

, cn(tn) = γn√
2 log tn

,

bn(tn) ≡ rγn

√
2 log tn − βnr

2

+ rγn√
8 log tn

(
log log tn + log

(
θ2α2

nπ
−1(1 − Φ(βnr/γn)

)−2))
,

dn(tn) ≡ γn

√
2 log tn − βn

+ γn√
8 log tn

(
log log tn + log

(
θ2(1 − α2

n

)
π−1(1 − Φ(βn/γn)

)−2))
,

αn ≡
(

1 + φ(βnr/γn)

r(1 − Φ(βnr/γn))

(
Φ(βn/γn)

φ(βn/γn)

))−1

→ α,

βn ≡ √
n(1 − ρn) → β and γn ≡

√[
(λn/n) + μ

]
/2μ → 1 as n → ∞,

(2.13)

for β in (2.5) and α and r in (2.10). Moreover, the constants an(tn), bn(tn), cn(tn),
and dn(tn) can be replaced by a(tn), b(tn), c(tn), and d(tn), respectively, which are
defined in (2.10).

So far, we have not been able to directly prove the heavy-traffic extreme value
limit for the process M̂I

n in the Erlang B model, but we conjecture that it is given in
Theorem 2.2, where we let θ → ∞ in the normalization constants. Note that θ does
not appear in cn and only affects dn through αn, which only appears in the lowest-
order term. The M/M/n + M model provides a lower bound.

Based on Theorem 2.2, we can approximate the random vector (M
Q
n (t),MI

n (t))

without scaling in the usual way by

(
MQ

n (t),MI
n(t)

) ≈ (√
n
[
an(t)Z1 + bn(t)

]
,
√

n
[
cn(t)Z2 + dn(t)

])

for large t , where the constants an(t), bn(t), cn(t) and dn(t) are given in (2.13), and
(Z1,Z2) is a pair of independent random variables, each with the Gumbel distrib-
ution. Since E[Z] ≈ 0.57721, the Euler-Mascheroni constant, and Var(Z) = π2/6,
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we obtain simple explicit approximations for the mean and variance of the extremal
variables M

Q
n (t) and MI

n(t) for appropriately large n and t , e.g.,

E
[
MQ

n (t)
] ≈ √

n
(
0.577an(t) + bn(t)

)
, Var

(
MQ

n (t)
) ≈ na2

n(t)π
2/6.

Moreover, we can also approximate the spread of Xn, i.e., SX
n (t) ≡ Mn − Nn =

M
Q
n (t) + MI

n(t), by

SX
n (t) ≈ √

n
(
bn(t) + dn(t) + an(t)Z1 + cn(t)Z2

)
for appropriately large n and t .

However, for applications we suggest applying the approximation with the scal-
ing. Over different hours, the scaled maximum random variables in (2.12) all ap-
proximately have the standard Gumbel distribution independent of n, provided that n

is not too small. With the scaling, the maximum of k maxima over several separate
hours can be approximated as the maximum of k i.i.d. random variables, each with the
standard Gumbel distribution, which is again a (nonstandard) Gumbel distribution.

2.3 Erlang A: ED

In the ED regime, the system is overloaded; i.e., we assume that λn = nλ and λ > μ.
It is proved in [27] that the fluid scaled process X̄ED

n ≡ Xn/n converges to the
constant limit X̄ED(t) ≡ 1 + (λ − μ)/θ in D as n → ∞ if the scaled initial val-
ues converge: X̄ED

n (0) ⇒ X̄ED(0) as n → ∞. Define the diffusion scaled processes
X̂ED

n ≡ {X̂ED
n (t) : t ≥ 0}, and the scaled extremal processes M̂ED

n ≡ {M̂ED
n (t) : t ≥ 0}

and M̂
Q,ED
n ≡ {M̂Q,ED

n (t) : t ≥ 0} by

X̂ED
n (t) ≡ XED

n (t) − n(1 + (λ − μ)/θ)√
n

and

M̂ED
n (t) ≡ Mn(t) − n(1 + (λ − μ)/θ)√

n
,

M̂Q,ED
n (t) ≡ M

Q
n (t) − n(λ − μ)/θ√

n
, t ≥ 0.

(2.14)

It is also proved in [27] that if, in addition, X̂ED
n (0) ⇒ X̂ED(0) as n → ∞, then

X̂ED
n ⇒ X̂ED in D as n → ∞, where the limit process X̂ED ≡ {X̂ED(t) : t ≥ 0} is an

Ornstein-Uhlenbeck (OU) process, given by

X̂ED(t) = X̂ED(0) + √
2λB(t) − θ

∫ t

0
X̂ED(s) ds, t ≥ 0, (2.15)

where B is a standard Brownian motion. As in Sect. 2.2, limiting steady-state distri-
butions exist and converge, so that it is natural to assume that we initialize with the
steady-state distributions, so that we have stationary processes. The extremal behav-
ior of OU processes has been well studied; see Proposition 3.1. Thus, we have the
following extreme value result, paralleling Theorems 2.1 and 2.2.

 Author's personal copy 



Queueing Syst (2009) 63: 13–32 21

Theorem 2.3 Consider the M/M/n/∞ + M queueing model in the ED regime. If
X̂ED

n (0) ⇒ X̂ED(0) in R as n → ∞, then

(
M̂ED

n (t) − b(t)

a(t)
,
M̂

Q,ED
n (t) − b(t)

a(t)

)
⇒ (Z,Z) in R

2, (2.16)

either (i) as first n → ∞ and then t → ∞ with

a(t) ≡
√

λ

2θ log t
,

b(t) ≡
√

2λ log t

θ
+

√
λ

8θ log t

(
log log t + log

(
θ2/π

))
.

(2.17)

or (ii) if in addition t is replaced by tn, where tn → ∞ and tn/n1/2−ε → 0 as n → ∞
for some ε > 0, where Z is again a random variable with the standard Gumbel dis-
tribution.

2.4 Erlang C: QED

The story changes if we have no customer abandonment (θ = 0). Without abandon-
ment, the QED regime is again defined by (2.4) but with β > 0. The representation
of the process Xn in (2.1) becomes

Xn(t) = Xn(0) + A(λnt) − S

(∫ t

0
μ

(
Xn(s) ∧ n

)
ds

)
, t ≥ 0, (2.18)

where A = {A(t) : t ≥ 0} and S = {S(t) : t ≥ 0} are independent unit-rate Poisson
processes. Thus the limit diffusion process X̂ in (2.6) becomes

X̂(t) = X̂(0) − βμt −
∫ t

0
μ

(
X̂(s) ∧ 0

)
ds + √

2μB(t), t ≥ 0, (2.19)

where B ≡ {B(t) : t ≥ 0} is a standard Brownian motion. Halfin and Whitt [16]
showed that the steady-state distribution is a combination of a normal pdf below 0
and an exponential pdf above 0; see (3.13) and [6] for an explanation.

Paralleling Proposition 2.1, we have the following characterization of the extremal
behavior of the limit process X̂ in (2.19).

Proposition 2.2 The scaled versions of the extremal processes M̂ and N̂ of the limit
diffusion process X̂ defined in (2.19) converge jointly:

(
M̂(t) − b(t)

a(t)
,
−N̂(t) − d(t)

c(t)

)
⇒ (Z1,Z2) in R

2 as t → ∞, (2.20)

where Z1 and Z2 are independent with the standard Gumbel distribution, a(t) ≡
1/β , b(t) ≡ (log t + log(β2μα))/β , c(t) and d(t) are the same as in (2.10), where α
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becomes

α ≡ (
1 + βΦ(β)/φ(β)

)−1
. (2.21)

Thus, paralleling Theorems 2.1 and 2.2, we obtain the following result.

Theorem 2.4 Consider the M/M/n/∞ queueing model in the QED regime. If
X̂n(0) ⇒ X̂(0) in R as n → ∞, then (2.12) holds either (i) as first n → ∞ and then
t → ∞ with the normalization constants a(t), b(t), c(t) and d(t) given in Proposi-
tion 2.2, or (ii) if in addition t is replaced by tn, where tn → ∞ and tn/n1/2−ε → 0
as n → ∞ for some ε > 0, with the normalization constants

an(tn) ≡ γ 2
n /βn, bn(tn) ≡ [

log tn + log
(
μβ2

nαn/γ
2
n

)](
γ 2
n /βn

)
,

αn ≡ (
1 + (βn/γn)Φ(βn/γn)/φ(βn/γn)

)−1
,

(2.22)

cn(tn) and dn(tn) are given in (2.13) with αn replaced by αn in (2.22), and βn and γn

are defined in (2.13). Moreover, the constants an(tn), bn(tn), cn(tn), and dn(tn) can
be replaced by a(tn), b(tn), c(tn), and d(tn), which are defined in Proposition 2.2.

2.5 The infinite-server model

Another important special case of the M/M/n+M model arises with parameter val-
ues θ = μ, which is equivalent to the infinite-server M/M/∞ model. It only requires
the limit theorem for Mn. The normalization constants in Theorems 2.1 and 2.2 are
simplified to

a(t) = 1√
2 log t

, an(tn) = γn√
2 log tn

,

b(t) = √
2 log t − β + (log log t + log(μ2/π))√

8 log t
,

bn(tn) = γn

√
2 log tn − βn + γn(log log tn + log(μ2/π))√

8 log tn
,

and βn and γn are defined in (2.13).

3 Proofs

3.1 Preliminaries: general results for diffusion processes

The asymptotic behavior of the extremes of general diffusion processes has been
established in [5, 10] and references therein. The following is Proposition 3.1 and
Corollary 3.2 of [5]. It is significant that, in general, extreme value limits for diffusion
processes are not determined by the steady-state distribution of the diffusion process,
even assuming that it is well defined.

 Author's personal copy 



Queueing Syst (2009) 63: 13–32 23

Theorem 3.1 Consider the general diffusion process {Y(t) : t ≥ 0} in R defined by

dY (t) = ν
(
Y(t)

)
dt + σ

(
Y(t)

)
dB(t), t ≥ 0, Y (0) = y,

and its running maximum process MY
t ≡ max0≤s≤t Y (s). Suppose that it satisfies the

following conditions: Y is recurrent, its speed measure m has total mass |m| < ∞
and the scale function s satisfies s(+∞) = −s(−∞) = ∞. Then for any y ∈ R and
any ut ↑ ∞,

lim
t→∞

∣∣P (
MY

t ≤ ut |Y(0) = y
) − F(ut )

t
∣∣ = 0,

where F is a distribution function, defined by

F(x) = e
− 1

|m|s(x) 1(z,∞)(x), x ∈ R, z ∈ R, (3.1)

where the values of s(x) and |m| depend on the choice of z. Moreover, the tail of F

satisfies

Fc(x) ≡ 1 − F(x) ∼
(

|m|
∫ x

z

s′(y) dy

)−1

∼ (|m|s(x)
)−1

as x → ∞.

Theorem 3.7 of [5] further characterizes the tail behavior of F in Theorem 3.1 by
imposing conditions on the drift coefficient ν(x) and the volatility coefficient σ(x);
we only apply part (c) of that theorem. This next result connects the cdf F in (3.1) to
the steady-state distribution of the diffusion process under further conditions.

Theorem 3.2 Under the conditions of Theorem 3.1, if ν and σ are differentiable
functions on (x0,∞) for some x0 < ∞ such that

lim
x→∞

d

dx

(
σ 2(x)

ν(x)

)
= 0 and lim

x→∞
σ 2(x)

ν(x)
exp

(
−2

∫ x

z

ν(t)

σ 2(t)
dt

)
= −∞,

then Fc(x) ∼ |ν(x)|h(x) as x → ∞, where h is the stationary density of Y .

The maximum domain of attraction of the Gumbel distribution is characterized
by a large class of distribution functions; see Theorem 3.3.26 in [11]. An important
subclass of such cdf’s is the set of von Mises distribution functions F , satisfying

Fc(x) ≡ 1 − F(x) = c exp

{
−

∫ x

z

1

ζ(t)
dt

}
, z < x < xF ≤ ∞,

where c > 0 and ζ is a positive, absolutely continuous function (with respect to
Lebesgue measure) with density ζ ′(x) having limx↑xF

ζ ′(s) = 0. For such a cdf F ,
let F←(p) be the inverse, i.e., x is such that F(x) = p.

Theorem 3.3 If a distribution function F is twice differentiable on (z, xF ) with pos-
itive density f and F ′′(x) < 0 for x ∈ (z, xF ), then F is a von Mises function with
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ζ ≡ Fc/f if and only if

lim
x→xF

F c(x)F ′′(x)

f 2(x)
= −1.

A von Mises function F belongs to the maximum domain of attraction of the Gumbel
distribution and a possible choice of normalization constants is bn = F←(1 − 1/n)

and an = ζ(bn).

Extreme value limits for OU processes have been established; see Example 4.1
in [5] for the following result and [9] (also see Theorem 1.9.1 in [8]) for the special
case α = 0, β = 1 and σ 2 = 2 (standard OU process).

Proposition 3.1 Let Y be an OU process with drift ν(x) = α − βx and infinitesimal
deviation σ(x) = σ > 0 for α ∈ R and β > 0. Then properly scaled versions of the
extremal process M(t) ≡ max0≤s≤t Y (s), t ≥ 0, converge:

M(t) − b(t)

a(t)
⇒ Z in R as t → ∞,

where Z has the standard Gumbel distribution and

a(t) ≡ σ

2
√

β log t
, b(t) ≡

√
σ 2 log t

β
+ α

β
+ σ

4
√

β log t

(
log log t + log

(
β2/π

))
.

(We obtain log(β2/π) in the final term of b(t) above instead of log(σ 2β2/2π)

shown in the bottom line of p. 64 of [5].)

3.2 Proofs for M/M/n/∞ + M queues in the QED regime

The limiting diffusion process X̂ in (2.6) has the following stationary density; e.g.,
see [6] or [13]:

h(x) = αφ(x/r + βr)

r(1 − Φ(βr))
, x ≥ 0, and

h(x) = (1 − α)φ(x + β)

Φ(β)
, x < 0,

(3.2)

for α and r in (2.10).

Proof of Proposition 2.1 Because of the established asymptotic independence for
the extreme value limits of the maximum and the minimum, it suffices to treat them
separately. The argument is essentially the same in both cases, so we focus on the
maximum. First, it is easy to check that the limit process X̂ in the QED regime sat-
isfies the conditions of Theorem 3.2. Hence, we can apply Theorem 3.2 with (3.2) to
deduce that

Fc(x) ∼ | − μβ − θx| φ(x/r + βr)

r(1 − Φ(βr))
α as x → ∞,
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where α and r are given in (2.10). Then, as x → ∞,

Fc(x) ∼ θα

1 − Φ(βr)
(x/r + βr)2 φ(x/r + βr)

x/r + βr
≡ Gc(x) ∼ 1 − G(x)

∼ θα

1 − Φ(βr)
(x/r + βr)2Φc(x/r + βr) ≡ Hc(x).

It is well known that Φ(·) is a von Mises function, from which we deduce that H and
F are as well. By Theorem 3.3, we can choose normalization constants

b(t) = G←(1 − 1/t) and a(t) = Gc
(
b(t)

)
/g

(
b(t)

)
, (3.3)

where

g(x) = − d

dx
Gc(x) = − θα

r(1 − Φ(βr))
φ(x/r + βr) + (x/r + βr)Gc(x).

Since − logGc(b(t)) = log t , we have

− log

(
θα

1 − Φ(βr)

)
− log

(
b(t)/r + βr

) + 1

2
log(2π) + 1

2

(
b(t)/r + βr

)2 = log t,

and

(b(t)/r + βr)2

2 log t
→ 1 as t → ∞.

Hence, we can choose

log
(
b(t)/r + βr

) = 1

2
(log 2 + log log t) + o(1),

so that

1

2

(
b(t)/r + βr

)2 = log t + 1

2
(log 2 + log log t) − 1

2
log(2π)

+ log

(
θα

1 − Φ(βr)

)
+ o(1)

= log t

[
1 + 1

2 log t

(
log log t + log

(
θ2α2(1 − Φ(βr)

)−2
π−1))]

+ o(1/ log t).

Thus, we have

b(t)/r + βr = √
2 log t

[
1 + 1

2 log t

(
log log t + log

(
θ2α2(1 − Φ(βr)

)−2
π−1))]1/2

+ o
(
1/

√
log t

)
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= √
2 log t

[
1 + 1

4 log t

(
log log t + log

(
θ2α2(1 − Φ(βr)

)−2
π−1))

+ o(1/ log t)

]
+ o

(
1/

√
log t

)
,

which gives

b(t) = r
√

2 log t − βr2 + r√
8 log t

(
log log t + log

(
θ2α2π−1(1 − Φ(βr)

)−2))

+ o
(
1/

√
log t

)
.

In addition,

a(t) = Gc
(
b(t)

)
/g

(
b(t)

) ∼ 1/t

(b(t)/r + βr)(1/t)
∼ r√

2 log t
.

For the normalization constants c(t) and d(t), consider the process Y = −X̂ with
drift ν(y) = −βμ − μy for y > 0, and use a similar argument. �

In preparation for our proof of Theorem 2.2, we establish some bounds in the next
two lemmas. We will use a strong “sample-path” form of stochastic order for sto-
chastic processes; e.g., see [25]. We write X1 ≤st X2 for two processes X1 and X2

with sample paths in D if E[f (X1)] ≤ E[f (X2)] for all nondecreasing measurable
real-valued functions f on D for which the expectations are well defined. The fol-
lowing holds by a direct sample-path construction because the birth and death rates
are ordered.

Lemma 3.1 Under the assumptions of Theorem 2.2, the process Xn in (2.1) can be
stochastically bounded above and below:

n − c2
√

n − Ln(n·) ≤st Xn(·) ≤st n + c1
√

n + Un(n·), (3.4)

where Un(t) is the number in system at time t in an M/M/1 queue with ar-
rival rate λn/n and service rate θ(1 + c1/

√
n) for c1 ∈ (0,∞) chosen such that

ρu
n ≡ (λn/n)/(θ(1 + c1/

√
n)) < 1 for all n and

√
n(1 − ρu

n) → βu > 0 as n → ∞,
while Ln(t) is the number in systems in an M/M/1 queue with arrival rate
μ(1 − c2/

√
n) and service rate λn/n for c2 ∈ (0,∞) chosen such that ρl

n ≡ μ(1 −
c2/

√
n)/(λn/n) < 1 for all n and

√
n(1 − ρl

n) → βl > 0 as n → ∞.

We now apply Lemma 3.1 together with the previous heavy-traffic extreme value
limit for single-server queues in [15] to obtain another bound. For any t > 0, let
‖x‖t ≡ sup0≤s≤t {|x(s)|}. Let η be the unit constant function, i.e., η(t) ≡ 1, t ≥ 0.

Lemma 3.2 Under the assumptions of Theorem 2.2, for the given ε > 0, ‖X̄n −
η‖tn = o(n−(1−ε)/2) as n → ∞.
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Proof Define Mu
n(ntn) ≡ max0≤t≤tn Un(nt) and Ml

n(ntn) ≡ max0≤t≤tn Ln(nt). Then
by (3.4), we have

1 − c2/
√

n − Ml
n(ntn)/n ≤st X̄n(t) ≤st 1 + c1/

√
n + Mu

n(ntn)/n, t ∈ [0, tn].
By the definitions of Un and Ln in Lemma 3.1, we can apply Theorem 2 and its
corollary in [15], and obtain that there exists some large n0 such that for all n ≥ n0

Ml
n(ntn) ≤ O

(√
n log tn

)
and Mu

n (ntn) ≤ O
(√

n log tn
)
.

This implies the stated bound. �

Proof of Theorem 2.2 We start from representation (2.1) and apply the strong ap-
proximation for a Poisson process by Brownian motion, see Theorem 2.6.2 in [8] and
Lemma 3.1 in [19]. As in Lemma 3.3 of [22], we first apply a crude bound for Xn(t):
Xn(t) ≤ Xn(0)+A(λnt). By the strong law of large numbers (SLLN) for the Poisson
process, we then get Xn(t) ≤ c1 + c2nt w.p.1 for all t , for all n suitably large. Thus,∫ t

0 X̄n(s) ds ≤ c1tn/n+c2t
2
n/2 w.p.1 for 0 ≤ t ≤ tn for all n suitably large. The strong

approximation, with that rough bound, allows us to represent the process Xn over the
interval [0, tn] as

Xn(t) = Xn(0) + Ba(λnt) − Bs

(
nμ

∫ t

0

(
X̄n(s) ∧ 1

)
ds

)

− Bl

(
nθ

∫ t

0

(
X̄n(s) − 1

)+
ds

)

+ λnt − nμ

∫ t

0

(
X̄n(s) ∧ 1

)
ds − nθ

∫ t

0

(
X̄n(s) − 1

)+
ds

+ O
(
log

(
n
(
t2
n ∨ 1

)))
(3.5)

w.p.1 as n → ∞, where Ba , Bs and Bl are mutually independent standard Brownian
motions.

By Lemma 3.2, for the given ε, there exists some large n0 such that, for all n ≥ n0,
∥∥∥∥
∫ ·

0

(
X̄n(s) ∧ 1

)
ds − ·

∥∥∥∥
tn

≤
∫ tn

0

∣∣X̄n(s) − 1
∣∣ds = o

(
tn/n(1−ε)/2),

∣∣∣∣
∫ tn

0

(
X̄n(s) − 1

)+
ds

∣∣∣∣ = o
(
tn/n(1−ε)/2).

(Notice that we are using a “gap” of only ε/2 in the exponent of n.) We now ap-

ply (i) the classical Brownian motion scaling property {c−1/2B(ct) : t ≥ 0} d= {B(t) :
t ≥ 0} for each c > 0, where

d= means equal in distribution on D, and (ii) the continu-
ity modulus of standard Brownian motion (ω(δ) = √

2δ log 1/δ for sufficiently small
δ, e.g., see Theorem 2.9.25 in [18]), to obtain a stochastically equivalent alternative
representation. In particular, after letting Ŷn(0) ≡ X̂n(0) and p ≡ (1 − ε)/2, we con-
clude that we can work with a new stochastic process Ŷn instead of X̂n. In particular,
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for each n ≥ n0, there are stochastic processes X̃n and Ŷn such that X̃n
d= X̂n for each

n,

∥∥X̃n − Ŷn

∥∥
tn

≡ �n = O
(((

tn/np
)

log
(
np/tn

))1/2 + (
lognt2

n

)
/
√

n
)

w.p.1 and

Ŷn(t) = Ŷn(0) + Ba,n(λnt/n) − Bs,n(μt) − √
n(1 − ρn)μt

−
∫ t

0

[
μ

(
Ŷn(s) ∧ 0

) + θŶn(s)
+]

ds,

(3.6)

where Ba,n, Bs,n and Bl,n are mutually independent standard Brownian motions for
each n (which in general depend upon n because of our rescaling). Under our as-
sumption that tn/n(1/2−ε) → 0 as n → ∞, we have (tn/np) log(np/tn) → 0 and
(log tn)/

√
n → 0 as n → ∞, so that �n → 0 as n → ∞. Thus, we have a stochas-

tically equivalent representation for each n ≥ n0 over the interval [0, tn]. Moreover,

for showing that the extreme value limits of X̂n are the same as for Ŷn (because of
the scaling in (2.12)), we exploit the additional relation:

(logn)
∥∥X̃n − Ŷn

∥∥
tn

= (logn)�n → 0 w.p.1 as n → ∞, (3.7)

which follows easily from the extra ε/2 in the exponent of n. We use the prefactor
logn to treat the extreme value scaling; note that an(tn) = O(1/

√
log tn) = o(1) as

n → ∞; see (3.9)–(3.11).

Now observe that Ŷn is a diffusion process with infinitesimal drift νn(x) ≡
−√

n(1 − ρn)μ − θx for x ≥ 0 and νn(x) = −√
n(1 − ρn)μ − μx for x < 0 and

infinitesimal variance σ 2
n (x) = λn/n + μ. The stationary density of Yn is given by

h
Ŷn

(x) = φ((x + βnr
2)/(γnr))

rγn(1 − Φ((x + βnr2)/(γnr)))
αn, x ≥ 0;

h
Ŷn

(x) = φ((x + βn)/γn)

γnΦ(βn/γn)
(1 − αn), x < 0,

where αn, γn and βn are given in (2.13), and r is given in (2.10).

Define M̂Y
n (t) = max0≤s≤t Ŷn(s) and N̂Y

n (t) = min0≤s≤t Ŷn(s). Then by essen-
tially the same argument as in the proof of Proposition 2.1, we obtain

(
M̂Y

n (t) − bn(t)

an(t)
,
−N̂Y

n (t) − dn(t)

cn(t)

)
⇒ (Z1,Z2) in R

2 as t → ∞, (3.8)

where Z1 and Z2 are independent with the standard Gumbel distribution, and the
normalization constants an(t), bn(t), cn(t), and dn(t) are as given in (2.13) with tn
replaced by t .

Now we exploit the fact that, for each n ≥ 1, Ŷn is a diffusion process just like
the limit process X̂, with νn(x) → ν(x) and σ 2

n (x) → σ 2(x) uniformly in x. As
an immediate consequence, we have Ŷn ⇒ X̂ in D as n → ∞. In addition, we can
deduce that the extreme value limits for Ŷn hold as t → ∞ and n → ∞ jointly with t
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set equal to tn. We establish this step rigorously below, in the final two paragraphs of
the proof.

Next, the limit in (3.7), together with the fact that X̃n
d= X̂n for each n, implies

that the same extreme value limit holds for the scaled versions of X̂n as n → ∞ with
tn → ∞ at the specified rate. We now give additional details. In particular, we now
justify that the scaling functions can be switched in the way claimed. First, it is easy
to see from (2.10) and (2.13) that an(t) → a(t), bn(t) → b(t), cn(t) → c(t), and
dn(t) → d(t) as n → ∞ for each t . For the replacement of an(tn), bn(tn), cn(tn) and
dn(tn) by a(tn), b(tn), c(tn) and d(tn), respectively, in (2.12), some care is needed,
because b(tn) → ∞ and a(tn) → 0 as n → ∞ (and similarly for c and d). We can
write

M̂n(tn) − bn(tn)

an(tn)
= M̂n(tn) − b(tn)

a(tn)[an(tn)/a(tn)] − bn(tn) − b(tn)

a(tn)[an(tn)/a(tn)] . (3.9)

First, an(tn)/a(tn) → 1 as n → ∞. Second,

bn(tn) − b(tn)

a(tn)
= 2(γn − 1) log tn − r(βn − β)

√
2 log tn + 1

2
(γn − 1) log log tn

+ 1

2
(γn − 1) log

(
θ2α2

nπ
−1(1 − Φ(βnr/γn)

)−2)

− 1

2
log

(
α2

n(1 − Φ(βnr/γn))
−2

α2(1 − Φ(βr))−2

)
. (3.10)

Note that, by (2.4), we have ρn = 1 − O(1/
√

n), and γn = √
(ρn + 1)/2 = 1 −

O(1/
√

n). Hence,

|γn − 1| log tn = O

(
log tn√

n

)
→ 0 as n → ∞. (3.11)

Consequently, all the terms in (3.10) are o(1) as n → ∞.
Finally, we justify the joint limit as n → ∞ and t → ∞ in (3.8) where t = tn,

satisfying the growth assumption. We do so by bounding the processes Ŷn above and
below by deterministic modifications of the fixed limit process X̂. In particular, we
establish the strong sample path stochastic ordering

(1 + cn)X̂(t) − dl
nt ≤st Ŷn(t) ≤st (1 + cn)X̂(t) + du

n t, t ≥ 0, (3.12)

where cn, dl
n and du

n are all constants depending on n, each being O(1/
√

n). We use
the prefactor (1 + cn) to make the infinitesimal variance match the infinitesimal vari-
ance σ 2

n (x) = σ 2
n of Ŷn. Then we use the stochastic comparison of diffusion processes

with common infinitesimal variance but ordered drifts in Theorem 23.5 of [17] to ob-
tain the ordering in (3.12).

The starting point is the elementary observation that, if Z is a diffusion process
with infinitesimal mean function ν(x) and infinitesimal variance σ 2(x), and c is a
positive constant, then cZ(t) is a diffusion process with infinitesimal mean func-
tion νc(x) = cν(x/c) and infinitesimal variance function σ 2

c (x) = c2σ 2(x/c). That
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applies conveniently in our case, because σ 2(x) = σ 2, a constant, while ν(x) is
composed of two linear pieces. Thus, in (3.12) we take 1 + cn = √

σ 2
n /σ 2. That

yields (1 + cn)
2 = σ 2

n /σ 2 = 1 + O(1/
√

n), which implies that cn = O(1/
√

n). The
infinitesimal drift function for (1 + cn)X̂ is −(1 + cn)μβn − θx for x ≥ 0 and
−(1 + cn)μβn − μx for x ≤ 0, which differs from the infinitesimal mean function ν

of X̂ by a constant function of x depending on n. We can now obtain the two bounds
in (3.12) by subtracting and adding appropriate functions dnt . These constants dl

n and
du
n are both O(1/

√
n) because cn = O(1/

√
n) and βn − β = O(1/

√
n). The proof is

completed by observing that the extreme value limits for the bounds, setting t = tn,
are the same as for X̂ itself, because tn/

√
n → 0 as n → ∞ under the assumption on

the growth of tn. Hence, the claim (2.12) is proved. �

3.3 Sketch of the remaining proofs

Proof of Theorem 2.3 We can use the same argument as in the proof of Theo-
rem 2.2 except for the following points. First, by the known fluid limit, for any
ε ∈ (0, (λ − μ)/θ), there exists some n1 such that for all n ≥ n1, inf0≤t≤T XED

n (s) ≥
n(1 + (λ − μ)/θ − ε) > n, for any T > 0. So, the strong approximation of XED

n in
(3.5) simplifies:

XED
n (t) = XED

n (0) + Ba(nλt) − Bs(nμt) − Bl

(
nθ

∫ t

0

(
X̄ED

n (s) − 1
)
ds

)

+ nλt − nμt − nθ

∫ t

0

(
X̄ED

n (s) − 1
)
ds + O

(
logn

(
t2
n ∨ 1

))
.

Second, as in Lemma 3.1, we can stochastically bound XED
n above and below, but now

centering around n(1 + (λ − μ)/θ) instead of around n, by two M/M/1 queues to
obtain the same bound for ‖X̄ED

n −η‖tn as in Lemma 3.2. Third, paralleling (3.6), for
each n ≥ n0, after letting Ŷn(0) ≡ X̂ED

n (0) and p ≡ (1 − ε)/2, we observe that there

are stochastic processes X̃n and Ŷn such that X̃n
d= X̂ED

n for each n, ‖X̃n− Ŷn‖tn ≡ �n

as in (3.6), and

Ŷn(t) = Ŷn(0) + Ba.n(λt) − Bs,n(μt) − Bl,n

(
(λ − μ)t

) − θ

∫ t

0
Ŷn(s) ds.

However, now we find that Ŷn
d= X̂ED for each n, where X̂ED is the OU process in

(2.15). Hence we can directly apply Proposition 3.1. �

Proof of Proposition 2.2 We apply the argument used in the proof of Proposition 2.1.

First, the stationary density of X̂ in (2.19) is given by

h(x) = βe−βxα, x ≥ 0 and h(x) = φ(β + x)

Φ(β)
(1 − α), x < 0, (3.13)
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where α is given in (2.21). Then the tail of the distribution function F in (3.1) be-
comes

Fc(x) ∼ β2μαe−βx ≡ Gc(x) ∼ 1 − G(x) as x → ∞.

Thus, the constants a(t) and b(t) given in Proposition 2.2 can be obtained by
(3.3) where g(x) = −dGc(x)/dx = βGc(x). Since − logGc(b(t)) = log t , we have
− log(β2μα) + βb(t) = log t. �

Proof of Theorem 2.4 Again, we can use the same argument as in the proof of Theo-
rem 2.2 with minor modification. First, in Lemma 3.1, we only need to stochastically
bound the process Xn from below, which will result in the same bound as given in
Lemma 3.2. Second, the stochastically equivalent representation Ŷn in (3.6) becomes

Ŷn(t) = Ŷn(0) + Ba,n(λnt/n) − Bs,n(μt) − √
n(1 − ρn)μt − μ

∫ t

0

(
Ŷn(s) ∧ 0

)
ds,

with Ŷn(0) = X̂n(0). In order to obtain the joint limit as n → ∞ and t → ∞ with
t = tn, we can again relate Ŷn to X̂ in the same way. Third, the stationary density of
Ŷn is given by

h
Ŷn

(x) = αnβnγ
−2
n exp

(−βnγ
−2
n x

)
, x ≥ 0, and

h
Ŷn

(x) = φ((x + βn)/γn)

γnΦ(βn/γn)
(1 − αn), x < 0,

where αn, βn and γn are given in (2.22). Then by the argument used to prove Propo-
sition 2.1, we obtain (3.8) where the normalization constants an(t), bn(t), cn(t) and
dn(t) are given in (2.22) with tn replaced by t . �
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