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We consider how two networked large-scale service systems that normally operate separately, such as call
centers, can help each other when one encounters an unexpected overload and is unable to immediately

increase its own staffing. Our proposed control activates serving some customers from the other system when
a ratio of the two queue lengths (numbers of waiting customers) exceeds a threshold. Two thresholds, one for
each direction of sharing, automatically detect the overload condition and prevent undesired sharing under
normal loads. After a threshold has been exceeded, the control aims to keep the ratio of the two queue lengths
at a specified value. To gain insight, we introduce an idealized stochastic model with two customer classes and
two associated service pools containing large numbers of agents. To set the important queue-ratio parameters,
we consider an approximating deterministic fluid model. We determine queue-ratio parameters that minimize
convex costs for this fluid model. We perform simulation experiments to show that the control is effective for the
original stochastic model. Indeed, the simulations show that the proposed queue-ratio control with thresholds
outperforms the optimal fixed partition of the servers given known fixed arrival rates during the overload, even
though the proposed control does not use information about the arrival rates.
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1. Introduction
In a large-scale service system, such as a call cen-
ter, under normal circumstances the arrival rates vary
by time of day in a predictable way, and the staffing
responds to that anticipated pattern, typically with
fixed staffing levels over specified time intervals;
see Aksin et al. (2007) and Gans et al. (2003) for
background. However, occasionally, for various rea-
sons, there may be unforeseen surges in demand,
going significantly beyond the usual fluctuations, and
lasting for a significant period of time. A demand
surge might occur because of a catastrophic event in
emergency response, a system failure experienced by
an alternative service provider, or an unanticipated
intense television advertising campaign in retail. Such
unexpected demand surges typically cause conges-
tion that cannot be eliminated entirely. Because the
demand surge is sudden and unexpected, it may not
be possible to immediately change the staffing level.
Fortunately, there may be an opportunity to allevi-

ate the congestion caused by the overload by getting
help from another service system, which ordinarily
operates independently. For example, with the reduc-
tion of telecommunication costs, it is more and more
common to have networked call centers, often geo-
graphically dispersed, even on different continents.

Such sharing is typically possible among different
hospitals in a metropolitan area. It is often desirable
to operate these service systems separately, but their
connection provides opportunities, in particular, to
provide assistance under overloads. In this paper we
consider how that might be done and how to assess
the costs and benefits.
An important consideration is that we typically do

not want sharing under normal loads. One reason
is that it is easier to manage the different facilities
separately, e.g., by maintaining clear accountability.
Another reason is that the agents in each service facil-
ity may be less effective and/or less efficient serving
the customers from the other system, because each
requires specialized skills not required for the other.
We want to consider the case in which serving the
other class is possible, but that there are penalties for
doing so. We will assume that the service rates are
slower for nondesignated agents.
The proposed overload control applies directly to

separate service systems run by a single organization,
but could also be adopted by two different organiza-
tions by mutual agreement. Our analysis provides use-
ful information about the likely consequences of any
agreement, which should facilitate making the agree-
ment. Current practice for call centers (that we are
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aware of) is limited to sharing within a single organi-
zation, and then only manually or on a regular basis
under normal loading. Load-balancing schemes used
in practice are described in §5.3 of Gans et al. (2003).
Thus, our goal is to develop a control to automati-

cally detect when an overload has occurred (in either
system, or in both) and, then, before the staffing lev-
els can be changed, reduce the resulting congestion
by activating appropriate sharing from agents in the
other system. We also want to prevent undesired shar-
ing under normal loads. By focusing on this overload
problem, we aim to contribute new insight into the
longstanding question about the costs and benefits of
resource pooling; see §4.2 of Aksin et al. (2007) and
references therein. Here we focus on a situation where
we want to turn on and off the pooling.

1.1. Organization of the Paper
We start in §2 with a literature review. Next, in
§3, we introduce our proposed modelling approach.
As an idealized model of two large-scale service sys-
tems, which ordinarily operate separately, but have
the capability of serving customers from the other
system, we consider the Markovian X call-center
model having two homogeneous customer classes
and two homogeneous agent pools, where all the
agents are cross trained but serve the other class inef-
ficiently. For clarity, we provide a concrete example.
We then introduce a cost framework to evaluate alter-
native controls. We indicate how we specify an over-
load incident and how we evaluate the performance
consequence.
In §4, we introduce the proposed control, which is

a variant of the queue-ratio controls introduced by
Gurvich and Whitt (2009a, b). After reviewing that
control (without thresholds), we show that it can per-
form very poorly for this unintended application,
because it can induce inefficient sharing simultane-
ously in both directions. We then introduce our pro-
posed alternative, which includes two thresholds, one
for each direction of sharing.
In §5, we introduce a deterministic fluid model to

approximate the overloaded system after the over-
load incident has occurred. We then introduce a con-
vex cost structure and show how to select queue-ratio
functions to minimize the long-run average cost in
the overload incident for the fluid model. We then
develop a numerical algorithm to compute the opti-
mal queue-ratio functions for arbitrary convex cost
functions. We exhibit explicit formulas for the optimal
queue-ratio functions for special structured separable
cost functions in §EC.4 in the e-companion.1

1 An electronic companion to this paper is available as part of the on-
line version that can be found at http://mansci.journal.informs.org/.

In §6, we discuss how to set the threshold param-
eters. In §7, we conduct simulation experiments to
show that the optimal control for the fluid model is
effective for the stochastic X model. Finally, we state
our conclusions in §8. Supporting material appears in
the e-companion.

2. Literature Review
In this paper, we contribute to the literature on
overload (or congestion) control in queueing sys-
tems. There is a substantial literature studying con-
trols that route (or assign) customers (or jobs) to
servers, possibly exploiting thresholds. Many of these
papers, such as Bell and Williams (2005) and refer-
ences therein, focus on single-server systems without
customer abandonment, whereas we focus on many-
server systems with customer abandonment; we only
discuss the many-server literature. (The distinction is
between routing to one of several servers, as opposed
to routing to one of several pools of servers.) It is now
understood that the presence of many servers changes
the problem; e.g., see Gurvich and Whitt (2009a). One
feature of many-server systems with customer aban-
donment we will exploit is the rate at which the tran-
sient distribution approaches its steady-state limit:
it tends to be much faster for many-server queues.
In particular, the systems we consider tend to reach
steady state in a few mean service times; we elaborate
in §EC.1. Hence, in our analysis of performance dur-
ing an overload incident, we approximate using the
new steady state, determined by the new arrival rates
(assumed constant). Customer abandonments ensure
that the system remains stable.
Our paper can also be viewed as a contribution to

the call-routing problem for multiclass and multisite
call centers with skill-based routing; see §5 of Gans
et al. (2003) and §§2.3.3, 4.1, and 4.2 of Aksin et al.
(2007). Others have proposed responding to stochastic
fluctuations and unexpected overloads by modulat-
ing demand in different ways: (i) admission control;
(ii) making delay announcements that may induce
customers to leave, use a different service channel
(e.g., e-mail instead of voice), or call back later; and
(iii) acting to reduce service times, e.g., by curtailing
cross-selling activities; see §3 of Aksin et al. (2007) and
Armony and Gurvich (2006).
In contrast, our paper relates to the larger liter-

ature exploiting server flexibility (supply-side man-
agement). One approach is to have extra temporary
servers available on short notice; see Bhandari et al.
(2008) and references therein. Instead, we propose
using servers that are already working; i.e., we pro-
pose a form of resource pooling, which exploits cross
training; see §4.2 of Aksin et al. (2007) and §5.1 of Gans
et al. (2003). As should be anticipated, though, our
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control tends to be more effective in alleviating con-
gestion (rather than just balancing the service degra-
dation) when the less-loaded system actually has some
slack. Our work draws on the queue-ratio control pro-
posed in Gurvich and Whitt (2009a, b), which applies
to very general network topologies. Here we consider
the relatively difficult X model, allowing sharing in
both directions (see Figure 1), but our approach makes
the model behave more like the N model; see Tezcan
and Dai (2009).
However, we make significant departures from the

previous literature. First, we want resource sharing
only in the presence of the unanticipated overload,
and only in the proper direction, which depends on
the nature of the overload. Hence, we turn on and
off the sharing. Second, we regard the overload as
a rare, exceptional, unanticipated event, rather than
a stochastic fluctuation in demand. Thus, we think
that it is inappropriate to perform a long-run steady-
state analysis of system performance with alternat-
ing normal and overload periods (although that could
be done). Instead, we focus on a single overload in
isolation.
Because the system tends to be overloaded, even

after sharing has been activated, system performance
tends to be well approximated by deterministic
fluid approximations, as in Whitt (2004). From a
heavy-traffic perspective, the system operates in the
so-called efficiency driven (ED) many-server heavy-
traffic regime, instead of the quality-and-efficiency-
driven (QED) regime; see Garnett et al. (2002) and
Gurvich and Whitt (2009a, b). Our paper also relates
to the literature on arrival-rate uncertainty; see §4.4
of Gans et al. (2003) and §2.4 of Aksin et al. (2007).
Arrival-rate uncertainty also tends to make determin-
istic fluid approximations remarkably accurate; e.g.,
see Whitt (2006), Bassamboo and Zeevi (2009), and
references therein.
In closing, we mention the large literature on detec-

tion outside queueing, such as control charts in statis-
tical quality control, sequential analysis, and change
point problems, but we make no direct contact with it.
However, detecting the new arrival rate is not the
only issue: in simulations, our proposed control out-
performs the optimal fixed partition of the servers
given known arrival rates during the overload, even
though our proposed control does not use direct infor-
mation about the arrival rates; see §7.2.

3. Modelling Approach
3.1. X Model
As an idealized model of two separate service sys-
tems with the capability of sharing, we consider the
X model, depicted in Figure 1. The X model has two
homogeneous customer classes and two homogeneous

Figure 1 X Call-Center Model

Customer class 1

λ1 λ2

µ11

Arrivals

µ21

Same

µ12
µ22

OtherSame

Routing

Service pool 2

Queues

Abandonment

θ1 θ2

m1
agents

m2
agents

Other

Abandonment

Class-dependent
service rates

Customer class 2

Service pool 1

agent pools. We assume that each customer class has
a service pool primarily dedicated to it, but all agents
are cross trained, so that they can handle calls from
the other class, even though they may do so ineffi-
ciently or ineffectively. Under normal loading (at or
near forecasted arrival rates), we want each class to be
served only by its designated agents, without any help
from cross-trained agents in the other service pool. We
assume that staffing has been performed in standard
ways, so that the number of agents in each pool is ade-
quate to meet performance targets at forecasted arrival
rates. However, we also want to automatically acti-
vate sharing when there are unexpected unbalanced
overloads, either when only one class is overloaded
or when both classes are overloaded but one is much
more overloaded than the other.
More specifically, in this paper, we consider a fully

Markovian model. Customers from the two classes
arrive according to independent Poisson processes
with arrival rates �1 and �2. There is a queue for each
customer class, with customers from each class enter-
ing service in order of arrival. We assume that waiting
customers have limited patience. A class i customer
will abandon if he does not start service before a
random time that is exponentially distributed with
mean 1/�i. There are two service pools, with pool j
having mj homogeneous servers working in parallel.
The service times are mutually independent exponen-
tial random variables, but the mean may depend on
both the customer class and the service pool. The mean
service time for a class i customer served by a type j
agent is 1/	i
 j . Let the service times, abandonment
times, and arrival processes be mutually independent.
Let Qi�t� be the number of class i customers in queue
and let Zi
 j �t� be the number of type j agents busy
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serving class i customers, at time t. With the assump-
tions above, the stochastic process �Qi�t�
Zi
 j �t�� i =
1
2� j = 1
2� becomes a six-dimensional continuous-
time Markov chain, given any routing policy that
depends on this six-dimensional state.
In this context, under normal loading we want each

class served only by agents from its own designated
service pool; i.e., we want Z1
2�t�≈Z2
1�t�≈ 0 for all t.
One possible reason is that the value of service by
agents from the other pool might be less, perhaps
because they lack specialized skills. Another possi-
ble reason is that service by the cross-trained agents
is less efficient; we might have the strong inefficient-
sharing condition

	1
1 >	1
2 and 	2
2 >	2
1� (1)

We examine the inefficient-sharing case. Through-
out this paper, we assume the basic inefficient-sharing
condition

	1
1	2
2 ≥	1
2	2
1� (2)

Clearly, condition (1) implies condition (2). These con-
ditions play a role in §5.2.
In this X-model setting with inefficient sharing, we

suppose that an unexpected overload occurs at some
unanticipated time that changes the arrival rates. We
assume that we are unable to immediately change the
staffing levels in response to that unexpected over-
load. However, we do have the option of allowing
some of the cross-trained agents from the less-loaded
service pool serve customers from the more over-
loaded customer class. In addition, we do not know
the new arrival rates when the overload occurs. Thus,
we need to develop a control that depends on the
system history; in some way we must discover that
the arrival rates have indeed changed. That is chal-
lenging, because stochastic fluctuations under normal
loading may make us think that the arrival rates have
changed when in fact they have not. We illustrate
with the following example.
Example 1. To illustrate, consider a symmetric

model with forecasted arrival rates �1 = �2 = 90 per
unit of time, where the mean service time for cus-
tomers served by designated agents is 	−1

1
1 = 	−1
2
2 =

1�0, whereas the mean service time for customers
served by agents from the other pool is 	−1

1
2 = 	−1
2
1 =

1�25. We measure time in units of mean service times
by designated agents, which for discussion we take to
be five minutes. Notice that condition (1) holds here:
For all agents, the mean time required to serve the
other class is 25% greater than the mean time required
to serve an agent’s own class. Let customers abandon
at rate �1 = �2 = 0�4.
Because serving the other class is less efficient, with

these parameters it makes sense to operate the system
as two separate systems. Following standard staffing

methods for a single-class single-pool M/M/m +M
model, we may assign m1 = m2 = 100 agents to the
two service pools. That makes the traffic intensities
�1 ≡ �1/m1	1
1 = �2 = 0�90, which we regard as nor-
mal loading. With this staffing, standard algorithms
show that steady-state performance is quite good:
82% of the arrivals enter service immediately upon
arrival without joining the queue, only 0.5% of the
arrivals abandon, the average size of each queue
is 1�1, and the expected conditional waiting time,
given that the customer is served, is only 0.012 (about
3.6 seconds with a mean service time of five minutes).
Now suppose that, at some unanticipated time, the

arrival rate for class 1 jumps to �1 = 130, whereas the
arrival rate for class 2 remains at �2 = 90. If class 1
receives no help from pool 2, then class 1 experiences
severe congestion. Assuming that the system reaches
steady state after this shift in arrival rate (which does
not take very long, approximately a few mean service
times, as confirmed by simulations; see §EC.1), almost
all class 1 customers must wait before starting service,
23% of the class 1 customers abandon, the average
size of the class 1 queue becomes 75, the expected
conditional waiting time given that a class 1 customer
is served is 0�65 (3�25 minutes).
If, as system managers, we were able to recognize

that the class 1 arrival rate had shifted to 130, then
we might elect to reassign some of the class 2 agents.
For example, we might let 25 of the pool 2 agents
be devoted to serving class 1. That increases the total
service rate responding to the class 1 arrival rate of
130 from 100 to 100+ �1/1�25�25 = 120, and leaves a
total service rate of 100 − 25 = 75 to respond to the
class 2 arrival rate of 90. Because sharing is inefficient,
we must sacrifice 25 units of service rate for class 2 to
gain 20 units of service rate for class 1.
Assuming that the two classes can be modelled

as M/M/m + M queues (which is only approxi-
mately correct for class 1 because its servers have
become heterogenous), we can analyze the perfor-
mance, e.g., by Whitt (2005). The pair of abandon-
ment probabilities for the two classes changes from
(0�23
0�005) to (0�08
0�17); the pair of mean queue
lengths for the two classes changes from (75
1�1) to
(26
38); and the pair of conditional expected wait-
ing times given that the customer is served changes
from (0�65
0�012) to (0�205
0�450) (1.03 minutes and
2�25 minutes, respectively). In this paper we develop
a control that responds in a similar way, but does so
automatically without having to know that the arrival
rates made that specific shift, and without making a
fixed partition of the agents.

3.2. Analysis with a Cost Function
The advantage of such sharing, or any other control
that produces similar sharing by the inefficient cross-
trained agents, depends on the cost of the congestion
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experienced. To assess that cost, we will assume that
there is a cost function C, with C�Q1�t�
Q2�t�� repre-
senting the expected cost rate incurred at time t if the
vector of queue lengths at time t is (Q1�t�
Q2�t�). If
the overload incident takes place over the time inter-
val �a
 b�, then the expected total cost would be

CT ≡ E
[∫ b

a
C�Q1�t�
Q2�t�� dt

]

=
∫ b

a
E�C�Q1�t�
Q2�t��� dt� (3)

We assume that the cost function C is convex and
strictly increasing. The convexity explains why we
might want to share when one class is much more
overloaded than the other, no matter which class is
overloaded.
In this context, our goal is to choose a routing pol-

icy, which may allow assignments to cross-trained
agents, to achieve low (near-minimum) expected total
cost for all possible overload incidents and resulting
stochastic processes (Q1�t�
Q2�t�), although produc-
ing only a negligible amount of sharing under nor-
mal loading. To define what we mean by an “over-
load incident,” we can first specify an interval �a
 c�
over which the arrival-rate vector (�1�t�
�2�t�) differs
from the nominal vector. (We assume that the arrival
process is a nonhomogeneous Poisson process with
these new arrival rates.) However, we should also
include an additional interval �c
 b� after time c to
allow the vector queue length (Q1�t�
Q2�t�) to return
to its nominal steady-state value. (Engineering judge-
ment is required.) In our analysis, we simplify by
restricting attention to scenarios, as in the example
above, in which the pair of arrival rates (�1
�2) makes
a sudden unexpected shift at some time, and remains
at the new vector for a significant duration, so that
the system reaches a new steady state at the new
arrival-rate vector. (Customer abandonment ensures
that the system reaches steady state for any arrival-
rate vector.) Our control applies more generally.
For such scenarios, we simplify by reexpressing our

goal as minimizing the expected steady-state cost;
i.e., we aim to minimize CT ≡ E�C�Q1
Q2��, where
(Q1
Q2) is the vector of steady-state queue lengths
associated with the new arrival-rate vector associated
with the overload. We will use this steady-state over-
load framework to set the control parameters and
demonstrate effectiveness, but the control applies to
other overload scenarios. For this steady-state anal-
ysis to be effective, it is important that the system
approaches the new steady state associated with the
overload relatively quickly. As illustrated in the con-
crete example above, this tends to happen in a few
mean service times. We discuss this important point
further in §EC.1.

In the context of Example 1, we might have a shift
in arrival rates lasting five hours. It might not be pos-
sible to change the staffing in response, because it is
in the middle of the same day. The initial transient
period might last three mean service times or 15 min-
utes, which is 5% of the total overload incident. There
might then be a recovery period lasting about five
mean service times or 25 minutes, after which the sys-
tem returns to steady state. For such overloads, the
steady state is evidently reasonable, and it is essential
for tractability. Even with this simplifying approxima-
tion, the control problem for the stochastic system is
very difficult. We will get an approximate solution
only after exploiting a fluid approximation in addition
to this steady-state analysis; see §5.2. Even with that
approximation, the analysis with a general increasing
convex cost function gets complicated; see §5.2. How-
ever, as a byproduct, there is a very nice, simple story
(explicit formulas for everything), provided that we
assume a separable quadratic power cost function; see
Proposition 5.

4. Proposed Control
We start by briefly reviewing the fixed-queue-ratio
(FQR) routing rule from Gurvich and Whitt (2009b)
and then we show that the FQR rule without thresh-
olds can perform poorly with inefficient sharing,
where the conditions in the theorems of Gurvich and
Whitt (2009b) are violated. Then we introduce our
proposed modification of FQR to treat unexpected
overloads. It involves general queue-ratio functions,
as in Gurvich and Whitt (2009a), and thresholds, one
of each for each direction of sharing.

4.1. FQR and Its Difficulties with
Inefficient Sharing

With two queues, FQR can be implemented by con-
sidering a (weighted) queue-difference stochastic process
D�t�≡Q1�t�− rQ2�t�, t ≥ 0, where r is a single target-
ratio parameter that management can set. With FQR
for the X model, a newly available agent in either
service pool serves the customer at the head of the
class 1 (class 2) queue if D�t� > 0 (D�t� < 0), and serves
the customer at the head of its own queue if D�t� =
0. The goal of FQR is to maintain a nearly constant
queue ratio: Q1�t�/Q2�t� ≈ r throughout time. When
r = 1, FQR coincides with serving the longer queue.
Under regularity conditions, the FQR control has

two very desirable features for large-scale service sys-
tems, which makes it possible to reduce the multiclass
multipool staffing-and-routing problem to the well-
understood, single-class single-pool staffing problem.
First, if the required conditions are satisfied, then FQR
tends to produce state-space collapse (SSC); i.e., for the
X model, the two-dimensional queue-length vector
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(Q1�t�
Q2�t�) tends to evolve approximately as a one-
dimensional process determined by the total queue
length Q!�t� ≡ Q1�t� + Q2�t�. In particular, Qi�t� ≈
piQ!�t� for i = 1
2, where p1 = r/�1 + r� = 1 − p2;
e.g., see Figure EC.8 in §EC.2. Moreover, it does so
in a way such that all three stochastic processes—
Q!�t�, Q1�t�, and Q2�t�—remain appropriately sta-
ble as t → 	. Indeed, Gurvich and Whitt (2009b)
show that, under regularity conditions, FQR achieves
SSC asymptotically in the QED many-server heavy-
traffic limiting regime. Second, with FQR, it is possi-
ble to choose the ratio parameter r (or, equivalently,
the queue proportions pi) to determine the optimal
level of staffing to achieve desired service-level dif-
ferentiation; i.e., staffing costs are minimized sub-
ject to meeting class-dependent delay targets P�Wi >
Ti� = %; see §EC.2 and Gurvich and Whitt (2009b).
Gurvich and Whitt (2009a) also showed how to staff
to minimize convex costs under normal loading. In
that case, the asymptotically optimal control in the
QED regime is not FQR, but a state-dependent gen-
eralization: the queue-and-idleness-ratio (QIR) control.
Our optimal queue ratios for the fluid model under
overloading with convex costs are of the same state-
dependent form.
However, in our setting, where service provided

by nondesignated agents is inefficient, neither FQR
nor QIR, without the extra thresholds, is appropri-
ate in normal loading, because they induce unde-
sired sharing. Because of the inefficient sharing, the
system is not work conserving; sharing causes the
required workload to increase. Indeed, the conditions
in the key theorems of Gurvich and Whitt (2009a,
b) are violated. In fact, those conditions are actu-
ally needed to maintain stability. (However, for FQR
without the thresholds, SSC is still achieved; the two
queues explode together.)
Example 2. To illustrate, consider the X model

with parameters m1 = m2 = 100, 	1
1 = 	2
2 = 1�0,
	1
2 = 	2
1 = 0�8, �1 = �2 = 0�99, and �1 = �2 = 0�0
(no abandonment). Because the traffic intensities are
�i = �i/mi	i
 i = 0�99, the two separate systems with-
out sharing are stable (with mean queue length 85
and mean waiting time 0�85). However, if we use FQR
with r = 1, then inefficient sharing is generated, so
that a significant proportion of each agent pool is busy
serving the other class. As a consequence, the arrival
rate actually exceeds the service rate and the queue
lengths diverge to infinity. Here, there still is SSC, but
the two queue lengths diverge together.
This difficulty when FQR is applied inappropri-

ately is illustrated by Figures 2 and 3. They show the
sample paths of Q1�t� and Z2
1�t�, starting empty, in
one simulation run. After an initial transient period,
the number of agents serving the other class fluctu-
ates around E�Z1
2�= E�Z2
1�≈ 39, whereas the queue

Figure 2 Sample Path of Z2�1�t� for FQR
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grows in an approximately linear rate; the simulation
estimate is E�Qi�t��≈ 6�8t, t ≥ 0. (These numerical val-
ues are estimated from multiple simulation runs. The
confidence intervals are less than 1%. We develop ana-
lytical approximations to describe this behavior in a
subsequent paper.)
Customer abandonment necessarily prevents the

queues from exploding. Even in the worst case, when
all agents are dedicated to the wrong class, the sys-
tem would be stable. However, there still is perfor-
mance degradation, e.g., with �1 = �2 = 0�2 and r = 1
about 39% of the agents in each pool are busy serv-
ing customers from the other class which causes the
queues to grow from 10, if there is no sharing, to 34.
More details appear in §EC.2.

4.2. Proposed Control: FQR-T
Here is the lesson from the previous subsection: If we
are going to use a queue-ratio control, then we need to

Figure 3 Sample Path of Q1�t� for FQR
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take extra measures to prevent sharing under normal
loading. First, we want to prevent simultaneous inef-
ficient sharing in both directions. Hence, we restrict
the routing to one-way sharing at any time: We do not
allow a newly available type 2 agent to serve a wait-
ing class 1 customer if there are any type 1 agents
busy serving class 2 customers. And similarly in the
other direction. (However, over time, the direction of
one-way sharing may change; we are not considering
the so-called N model, which only allows one-way
sharing in one fixed direction.)
From cost considerations, discussed in §5, we want

to allow different ratio parameters r1
2 and r2
1 for
the different ways we may share. (In general, we
may need more complicated ratio functions or, equiv-
alently, sharing regions; see §5, especially Figure 4.)
To permit sharing only in the presence of unbal-
anced overloads, we suggest fixed-queue-ratio routing
with thresholds (FQR-T). In addition to the two ratio
parameters r1
2 and r2
1, we introduce two positive
thresholds &1
2 and &2
1. We then define two queue-
difference stochastic processes:

D1
2�t�≡Q1�t�− r1
2Q2�t� and

D2
1�t�≡ r2
1Q2�t�−Q1�t��
(4)

As long as D1
2�t� < &1
2 and D2
1�t� < &2
1, we do not
allow any sharing, i.e., we only let agents serve cus-
tomers from their designated class.
However, available pool 2 agents are assigned to

class 1 customers when D1
2�t� ≥ &1
2, provided that
no pool 1 agents are still serving a class 2 customer.
As soon as the first pool 2 agent is assigned to serve
a class 1 customer, we drop the threshold &1
2, but
keep the other threshold &2
1. (We could elect to add
another threshold for the sharing; see §EC.4.) Once
one-way sharing has been activated with pool 2 help-
ing class 1, we use ordinary FQR with ratio param-
eter r1
2. Upon service completion, a newly available
type 2 agent serves the customer at the head of the
class 1 queue (the class 1 customer who has waited
the longest) if D1
2�t� > 0; otherwise the agent serves
a customer from his own class. In this phase, pool 1
agents only serve class 1 customers. Only one-way
sharing in this direction will be allowed until either
the class 1 queue becomes empty or the other differ-
ence process crosses the other threshold, i.e., when
D2
1�t�≥ &2
1. As soon as either of these events occurs,
newly available pool 2 agents are only assigned to
class 2 and the threshold &1
2 is reinstated.
We can initiate sharing in the opposite direction

when first D2
1�t�≥ &2
1 and there are no class 2 agents
serving class 1 customers. At the first time both condi-
tions are satisfied, we start sharing with a pool 2 agent
serving a class 1 customer. When that first assign-
ment takes place, we remove the threshold &2
1 and

again use FQR with one-way sharing, but now with
the ratio parameter r2
1.
Upon arrival, a class i customer is routed to pool i if

there are idle servers; otherwise the arrival goes to the
end of the class i queue. An arrival might increase
the queue to a point that sharing is activated. Then
the first customer in queue is served by the other class
(presumably the agent that has been idle the longest,
but we do not focus on individual agents).
The queue-difference stochastic processes in (4) will

never provide any instantaneous motivation to have
agents of both types simultaneously inefficiently serv-
ing the other class if r1
2 ≥ r2
1. That property will be
satisfied when we apply a cost function to specify the
ratio parameters in §5.2.
To illustrate how FQR-T performs in normal loading

(heavy load, but not overloaded), we again consider
Example 2 with abandonments at rate �i = 0�2. We let
r1
2 = r2
1 = 1, so that there is no change from FQR
above, but nowwe add thresholds &1
2 = &2
1 = 10. The
performance is greatly improved with FQR-T com-
pared to FQR without thresholds: E�Z1
2� = E�Z2
1� ≈
2�0 for FQR-T, whereas E�Z1
2� = E�Z2
1� ≈ 39 for
FQR. As a consequence, the performance for FQR-T
is almost the same as without sharing. In particular,
with FQR-T, the abandonment rate is slightly higher
than without sharing (2�5% compared to 2�0%), but the
average queue length is actually less �9�4 compared
to 10�0). In fact, FQR-T can outperform no sharing
with larger threshold values, because of the resource-
pooling effect. For more details, see §EC.2.

5. Fluid Approximation for Steady
State of the X Model

To obtain a tractable characterization of performance
for FQR-T and find good queue-ratio parameters, we
now introduce a deterministic fluid approximation.
To describe the steady-state behavior of our model
when there is no sharing, we first discuss the case
of a single customer class served by a single service
pool—the classical M/M/m+M model, with arrival
rate �, individual service rate 	, and abandonment
rate �. Afterward we treat the more general X model.

5.1. One Class and One Pool
For theM/M/m+M model, the approximating deter-
ministic fluid model has been studied in Whitt (2004)
via many-server heavy-traffic limits. Here we will
derive the simple steady-state formulas directly. We
assume that input and output (which we call fluid)
occurs deterministically at the specified rates. We
think of the system as large and thus regard the num-
ber of customers and servers as continuous quanti-
ties as well. Thus, fluid arrives deterministically and
continuously at constant rate �. Fluid also is served
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and abandons deterministically and continuously at
rates that are directly proportional to the number of
busy servers and the queue length, respectively. If the
“number” of busy servers is x, then fluid is served at
rate x	; if the queue length is q, then fluid abandons
at rate q�.
We say that the system is overloaded if the input

rate exceeds the maximum possible total service rate.
Given m servers, each working at rate 	, the max-
imum possible total service rate is m	. Thus, the
system is overloaded if � > m	, and not overloaded
otherwise. If the system is overloaded, then in steady
state all servers will be busy and there will be a queue
of waiting fluid, with content q, which can be deter-
mined simply be equating the rate in to the rate out,
including customer abandonment: rate in≡ �=m	+
q� ≡ rate out. As an immediate consequence, we get
q = ��−m	�/�. If the system is not overloaded, i.e.,
if �≤m	, then there will be no queue. Then we can
describe the steady state via the amount of spare ser-
vice capacity (number of idle servers), s, which again
can be determined by equating the rate in to the rate
out: rate in≡ �= �m− s�	≡ rate out. As an immediate
consequence, we get s = m− ��/	�. Without directly
specifying whether or not the system is overloaded,
we can write

q = ��−m	�
+

�
and s =

(
m− �

	

)+

 (5)

where �x�+ ≡max*x
0+. We always have the comple-
mentarity relation qs = 0.
From the point of view of our analysis, we regard �

as an unknown parameter, but we consider the
remaining parametersm, 	, and � as fixed and known.
For any given �, we can compute q and s as indicated
above. With our overload control problem in mind, it
is significant that we can recover � from the pair (q
 s),
because we want to learn about � by observing (q
 s).
If q > 0 and s = 0, then necessarily we are overloaded,
and � = �q +m	; if q = 0 and s > 0, then necessarily
we are underloaded (which includes normally loaded),
and � = �m− s�	; if q = 0 and s = 0, then necessarily
we are critically loaded, and � = m	; we cannot have
q > 0 and s > 0. For an overloaded fluid queue, � is
an increasing linear function of q; for an underloaded
queue, � is a decreasing linear function of s.
As discussed in Whitt (2004), we can also describe

the transient behavior of the fluid model and deter-
mine other performance measures. For example, if the
fluid model is overloaded, then the associated approx-
imate potential steady-state waiting time (virtual wait-
ing time for a customer with infinite patience) is w =
log ��/m	�/�1 = log ���/�1, where �≡ �/m	 is the traf-
fic intensity, satisfying �> 1; see (2.26) of Whitt (2004).
Note that an increasing convex function of w is an

increasing convex function of � for �≥m	. Because �

is a positive linear function of q under overloads, we
see that an increasing convex function of w itself is a
convex increasing function of q, as we have assumed
in our optimization formulation. Similarly, the aban-
donment rate in the overloaded fluid model is �q =
�−m	, so the abandonment rate is an increasing lin-
ear function of q under overloads.

5.2. Optimal Solution for the X Fluid Model
The X fluid model is a natural generalization of
the single-class single-pool fluid model above. Now
we have two deterministic arrival rates �1 and �2,
one for each class, with the additional parame-
ters *mj
 �i
	i
 j� i = 1
2� j = 1
2+. Closely paralleling
the discussion above, we will be characterizing the
steady-state performance in terms of the quantities
(Q1
Q2
 S1
 S2), where Qi is the fluid content at the
class i queue, whereas Sj is the amount of spare capac-
ity at pool j .
The steady-state behavior of the X fluid model

depends on the number of agents from each pool
assigned to (and actually busy serving customers
from) each customer class, i.e., the deterministic vec-
tor (Z1
1
Z1
2
Z2
1
Z2
2), where Zi
 j is the number of
pool j agents assigned to serve class i customers,
which is regarded as a continuous variable. To be
legitimate assignments, we must have Zi
 j ≥ 0 for all
i and j with Z1
1 + Z2
1 ≤ m1 and Z1
2+Z2
2 ≤m2.
Because these agents are actually busy serving cus-
tomers, we must also have �1 ≥ Z1
1	1
1 + Z1
2	1
2
and �2 ≥ Z2
1	2
1 + Z2
2	2
2. Once we assign values
to these variables Zi
 j , we reduce the X model to
two single-class single-pool models. The arrival rate
for class i is �i, whereas the service rate for class
i is Zi
1	i
1 + Zi
2	i
2. Class i is then overloaded if
and only if �i > Zi
1	i
1 + Zi
2	i
2, in which case the
steady-state fluid content in the class i is

Qi =
�i−Zi
1	i
1−Zi
2	i
2

�i
� (6)

If class i is not overloaded, then Qi = 0. The spare
capacity in pool j in steady state is Sj = mj − Z1
 j −
Z2
 j ≥ 0, j = 1
2.
In this X fluid model setting, for known arrival

rates, our initial goal is to determine the mini-
mum cost C∗��1
�2�, which is the minimum of
C�Q1�Z1
1
Z1
2�
Q2�Z2
1
Z2
2�� for specified arrival-
rate vector (�1
�2), which we denote simply by
C�Z1
1
Z1
2
Z2
1
Z2
2�, over all feasible fixed assign-
ment vectors �Z1
1
Z1
2
Z2
1
Z2
2� in �4 with Qi ≡
Qi�Zi
1
Zi
2� defined in (6). We let the asterisk denote
the optimal solution. (We do not consider more
general controls.) We will apply the optimal solu-
tion to find the optimal state-dependent queue-ratio
functions.
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Let qi be the queue length of class i and let si be
the spare capacity in pool i when there is no shar-
ing. They can be expressed as in (5), with formulas
depending on i. In the fluid model, we regard the
system as being in normal loading if neither queue
is overloaded without sharing, i.e., if q1 = q2 = 0, but
the amount of spare capacity is not too large. Because
the cost function is increasing and convex, under nor-
mal loading we achieve the minimum cost by letting
Z1
2 = Z2
1 = 0 (no sharing) to obtain Qi = 0 for i =
1
2. The unexpected overload means that either q1 > 0
or q2 > 0, or both. Henceforth we assume that to be
the case.
The natural model state is (�1
�2), but an equiva-

lent representation is (q1
 s1
 q2
 s2), where we always
have the complementarity relation q1s1 = q2s2 = 0.
If qi > 0, then �i = mi	i
 i + qi�i; if si > 0, then �i =
�mi− si�	i
 i. This alternative representation implies
that, for the X fluid model, we can determine the
arrival rates by observing the queue lengths and spare
capacities.
Let Z∗

i
j be the optimal value of the variable Zi
 j . We
start by stating some basic propositions, which serve
to simplify our X-fluid-model optimization problem.
We first reduce the number of variables from four to
two. The following is immediate.

Proposition 1 (No Idle Agents). If we do not have
Q∗
1 = Q∗

2 = 0, then there should be no idle agents, i.e.,
S∗j = 0 or, equivalently, Z∗

1
 j +Z∗
2
 j =mj for j = 1
2.

As a consequence of Proposition 1, if q1 > 0, q2 = 0,
and s2 > 0, then necessarily Z∗

1
2 > 0. Moreover, either
Z∗
1
2 ≥ s2 or Q∗

1 =Q∗
2 = 0.

We next show that inefficient sharing implies no
two-way sharing.

Proposition 2 (One-Way Sharing). Because the
service rates satisfy the inefficient-sharing condition
	1
1	2
2 ≥ 	1
2	2
1 in (2), it suffices to consider one-way
sharing; i.e., Z∗

1
2Z
∗
2
1 = 0.

Proof. Suppose that Z1
2 > 0 and Z2
1 > 0, so that
we have sharing in both directions. It suffices to
assume that Q1 > 0 and Q2 > 0. We will show that,
for appropriate positive variables x1
2 and x2
1, if we
replace (Z1
2
Z2
1) by (Z1
2 − x1
2
Z2
1 − x2
1), then
both queue lengths will decrease until one of the
variables Z1
2 − x1
2 or Z2
1 − x2
1 becomes zero or
both queues become empty. We define x2
1 as an
appropriate constant multiple of x1
2, so that we
have a single real variable. To do so, let .i ≡ �i −
Zi
1	i
1−Zi
2	i
2 > 0 for i= 1
2. Then let x2
1 ≡ /x1
2,
where /≡ �.2	1
2+.1	2
2�/�.2	1
1+.1	2
1�. Then we
consider what happens as we increase x1
2, assum-
ing that / remains constant. Let 0i ≡ �i�Qi�0� −
Qi�x1
2��, where Qi�x1
2� denotes Qi with the initial

vector of sharing levels (Z1
2
Z2
1) replaced by (Z1
2−
x1
2
Z2
1−/x1
2). Then

01 = x1
2.1
(
	1
1	2
2−	1
2	2
1
.2	1
1+.1	2
1

)
and

02 = x1
2.2
(
	1
1	2
2−	1
2	2
1
.2	1
1+.1	2
1

)
�

(7)

Clearly, 0i ≥ 0 for both i if and only if inequal-
ity (2) holds. Moreover, from (6) and (7), we see
that both queues become empty at the same level of
x1
2. Hence, we can decrease both variables Z1
2 and
Z2
1 by increasing x1
2 until one of these variables
becomes zero or both queue lengths simultaneously
become zero. �

As a consequence of Proposition 2, we can re-
express the basic optimization problem, first, in terms
of two convex real-valued functions of a single real
variable, C1
2 and C2
1, and second, in terms of a sin-
gle combined convex function of a single real vari-
able, Cc. Let 1A be the indicator function of the set A;
i.e., 1A�x�= 1 if x ∈A and 1A�x�= 0 otherwise. We put
the short proof required in §EC.3.1.

Proposition 3 (Single-Variable Functions). Be-
cause the inefficient-sharing condition (2) holds, the opti-
mal cost can be expressed as

C∗��1
�2� = C∗�q1
 s1
 q2
 s2�

= min*C1
2�Z1
2�
C2
1�Z2
1�+

= min*Cc�Z1
2−Z2
1�+ (8)

over Z1
2 and Z2
1 such that 0≤Z1
2 ≤m2, 0≤Z2
1 ≤m1,
and Z1
2Z2
1 = 0, where

C1
2�Z1
2�

≡C1
2�Z1
2��1
�2�

≡C
(
��1−m1	1
1−Z1
2	1
2�+

�1


��2−�m2−Z1
2�	2
2�+

�2

)

≡C1
2�Z1
2�q1
s1=0
 q2
s2�

≡C
(
�q1−	1
2Z1
2�+

�1


�q2−s2	2
2+	2
2Z1
2�+

�2

)

 (9)

Cc�Z1
2−Z2
1�≡C1
2�Z1
2−Z2
1�1*Z1
2−Z2
1≥0+
+C2
1�−�Z1
2−Z2
1��1*Z1
2−Z2
1<0+

=C1
2�Z1
2�1*Z1
2>0++C2
1�Z2
1�1*Z2
1>0+
+C�q1
q2�1*Z1
2=Z2
1=0+
 (10)

with qi and si defined in (5), satisfying q1s2 = q2s2 = 0,
and C2
1�Z2
1� defined analogously to C1
2�Z1
2� in (9).
The functions C1
2 and C2
1 are continuous strictly con-
vex functions of the single real variables Z1
2 and Z2
1
over their domain. If, in addition, the stronger inefficient-
sharing condition 	1
1 >	1
2 and 	2
2 >	2
1 in (1) holds,
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then Cc is also a continuous strictly convex function of the
single real variable Z1
2−Z2
1 over the domain specified in
this proposition.

Corollary 1 (Three Intervals). If the stronger in-
efficient-sharing condition (1) holds, then for each pair of
arrival rates (�1
�2) or initial state (q1
 s1
 q2
 s2) (with-
out sharing), there are two thresholds 21
2 ≥ 22
1 such that
exactly one of the following occurs:

�i� Z∗
1
2>0 and Z∗

2
1=0 for Z1
2−Z2
1>21
2

�ii� Z∗

2
1>0 and Z∗
1
2=0 for Z1
2−Z2
1<22
1


�iii� Z∗
1
2=Z∗

2
1=0 for 22
1≤Z1
2−Z2
1≤21
2�
(11)

The value of Corollary 1 will be clear when we
turn our attention to the queue ratio r below. We
can apply Proposition 2 to get further simplification if
there is initially spare capacity. Then, from the begin-
ning, we know that we can only have sharing with
help provided by the pool with spare capacity; i.e.,
if q1 > 0> s2, then Z∗

1
2 > 0 and Z
∗
2
1 = 0, so that it suf-

fices to minimize C1
2�Z1
2�.
It is natural to have the cost function C be smooth,

in which case the optimal solution can be found by
simple calculus. Proposition EC.1 concludes that, if
the optimal solution found by calculus falls outside
the feasible set, then the actual optimum value is
obtained at the nearest boundary point.
It is easy to see that there is a one-to-one corre-

spondence between the queue ratio r ≡Q1/Q2 and the
real variable Z1
2−Z2
1 used to specify the optimiza-
tion problem in Proposition 3. That implies that there
is a one-to-one correspondence between the fixed-
agent-allocation optimization problem (choosing Z1
2
and Z2
1) and the (fixed) queue-ratio control problem
(choosing state-dependent queue-ratio functions r1
2
and r2
1) in the fluid-model context. We establish it
formally in §EC.3.3.
Finally, we provide a basis for an efficient algo-

rithm to determine the equivalent optimal controls. To
do so, we effectively reduce the dimension from two
to one by observing that special weighted sums of
the queue lengths (and corresponding weighted sums
of the arrival rates) are independent of the agent-
assignment variables Z1
2 and Z2
1. We only state the
result for Z1
2; the corresponding result for Z2
1 is
stated in §EC.3.4. The proof is verification by direct
computation, so we omit it. For understanding, it may
be helpful to refer to Figure 4 in §5.3.

Proposition 4 (Constant Weighted Queue
Lengths). Let

a1
2 ≡
	2
2�1
	1
2�2

and ã1
2 ≡
	1
2
	2
2

� (12)

Consider any initial state (�1
�2), or equivalently
(q1
 s1
 q2
 s2), with s1 = 0. Then

w1
2 ≡ a1
2
(
�1−m1	1
1

�1

)
+
(
�2−m2	2
2

�2

)

= a1
2q1+ q2−
s2	2
2
�2

= a1
2Q1�Z1
2�+Q2�Z1
2�−
S2�Z1
2�	2
2

�2
(13)

for all Z1
2 with 0≤Z1
2 ≤m2.

Proposition 4 implies that the locus of all non-
negative queue-length vectors �Q1
Q2� ≡ �Q1�Z1
2�

Q2�Z1
2�� associated with initial state (�1
�2), or
equivalently (q1
 s1
 q2
 s2), with s1 = 0, is on the line
*�Q1
Q2�3 a1
2Q1 + Q2 = w1
2+ in the nonnegative
quadrant. Thus, for any nonnegative constant w1
2,
the optimal queue-length vector (Q∗

1
Q
∗
2) and the opti-

mal queue-ratio r∗1
2 ≡ Q∗
1/Q

∗
2 restricted to one-way

sharing (Z2
1 = 0) are the same for all initial states
(q1
 s1
 q2
 s2) with s1 = 0 satisfying (13) provided that
q1 ≥ Q∗

1. In that case, a1
2Q∗
1 + Q∗

2 = w1
2. That same
optimal queue-length vector and optimal queue ratio
holds for all arrival pairs (�1
�2) where s1 = 0, Z2
1 = 0
and

�1+ ã1
2�2 = �w1
2

≡ �1�2w1
2+ a1
2�2m1	1
1+ �1m2	2
2
a1
2�2

� (14)

And similarly for sharing in the other direction; see
§EC.3.4.

5.3. Computing the Optimal
Queue-Ratio Functions

We now demonstrate how to numerically find the
optimal state-dependent queue ratios r∗1
2 and r∗2
1
as functions of the fluid state (Q1
 S1
Q2
 S2). With
the thresholds, this gives us a state-dependent queue-
ratio control with thresholds (QR-T). To illustrate, we
consider a (nonseparable) quadratic cost function of
the form

C�Q1
Q2�= 3Q2
1+ 2Q2

2+Q1Q2+ 10Q1+ 5Q2� (15)

For any vector of arrival rates (�1
�2) we can assign
one, and only one, point in the (Q1
Q2) plane, which
represents the queue lengths associated with these
arrival rates, when there is no sharing. To represent
spare capacity, we allow negative values; i.e., −Qi
is shorthand for −Si	i
 i/�i. (We actually plot (Q1 −
S1	1
1/�1
Q2 − S2	2
2/�2) even though the axes are
simply labelled Qi.)
We apply Proposition 4 to find the optimal queue

ratios. We first consider when pool 2 helps class 1.
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Figure 4 Curves of Optimal Queue Ratios for an X Model with
Parameters �i� i = 1, �1�2 = �2�1 = 0
8, �i = 0
3, mi = 100,
and Quadratic Cost Function C�Q1�Q2� from (15)

–50 0 50 100 150 200
–50

0

50

100

150

200

250

300

Q1

Q
2 Ratio = 1/r1, 2

Ratio = 1/r2,1
Slope = –a1, 2

Slope = –a2,1

Notes. Also shown are two possible initial states, depicted by stars, and the
lines of constant weighted queue lengths that relate the initial states to (recip-
rocals of) the optimal queue ratios, depicted by circles. Negative queues
stand for spare capacity.

To treat that case, we let �2 =m2	2
2, so that class 2
has no queue before pool 2 helps class 1. We then
assume that �1 >m1	1
1 so that class 1 is overloaded.
We then choose a large set of positive weighted arrival
sums * �w1

1
2
 � � � 
 �wn1
2+ and find the optimal queue ratio
for each. In the first step, we let �1 ≡ �w1
2 − ã1
2�2,
using (14). We then write (15) as a function of Z1
2,
take its derivative and find the optimal Z∗

1
2. Plug-
ging Z∗

1
2 in the queue equations gives us the optimal
queue lengths (for the specific arrival rates), and the
optimal queue ratio r∗1
2. We repeat this for every �wi1
2
to get the curve 1/r∗1
2 depicted in Figure 4. To find
the curve 1/r∗2
1 we go through essentially the same
procedure for Z∗

2
1.
Figure 4 simultaneously depicts the three optimal

sharing regions in the two-dimensional state space
and the two curves of optimal queue ratios. It was
generated using Matlab on a system with the follow-
ing parameters: m1 =m2 = 100, 	1
1 = 	2
2 = 1, 	1
2 =
	2
1 = 0�8, and �1 = �2 = 0�3. In addition, Figure 4
shows how to find the optimal queue ratio for two
possible initial queue lengths denoted by stars. When
the initial queue-length vector is �Q1
Q2� = �150
0�
(equivalently, �1 = 145 and �2 = 100), then the optimal
queue-length vector is �Q∗

1
Q
∗
2�= �76�5
91�8� and the

optimal queue ratio is r∗1
2 ≡Q∗
1/Q

∗
2 = 0�83. This opti-

mal queue ratio is the intersection of the curve 1/r1
2
with the line with slope −a1
2 that passes through
(150
0) (the circle on the 1/r1
2 curve). When the ini-
tial queue-length vector is �Q1
Q2�= �0
150� (equiv-
alently, �1 = 100 and �2 = 145), we get r∗2
1 = 0�41 and
�Q∗

1
Q
∗
2� = �46�6
112�8�. The optimal queue ratio is

also the intersection of the curve 1/r2
1 with the line

with slope −a2
1 that passes through (0
150) (the cir-
cle on the 1/r2
1 curve).
Both the 1/r∗1
2 and 1/r∗2
1 curves seem to be lin-

ear, although that is actually not quite the case; the
r∗i
 j ’s are not constants for this cost function. For exam-
ple, we already noted that, for ��1
�2� = �145
100�
the optimal queue ratio is r∗1
2 = 0�83. If we change �1
to 110 then the optimal ratio becomes 0�80. For the
other sharing direction, if ��1
�2� = �100
145�, then
r∗2
1 = 0�41, but if we change �2 to 110, then the opti-
mal ratio changes to 0�38.
The fact that the two optimal-ratio curves are nearly

linear in Figure 4 suggests that we can approxi-
mate the optimal queue-ratio function by fixed queue
ratios, depending only on the direction of sharing; i.e.,
we can use FQR-T with only two values: one for r1
2
and the other for r2
1. In our example we may choose
to use r1
2 = 0�8 and r2
1 = 0�4. The cost for using a
nearly optimal ratio is very small in the fluid approx-
imation, and even smaller in the stochastic system.
To understand when the optimal queue-ratio func-

tions are nearly linear, as in the example above,
and what the structure should be more generally,
we investigate structured cost functions in §EC.4. We
obtain explicit analytical expressions in special cases.
We focus on separable cost functions: C�Q1
Q2� =
C1�Q1� + C2�Q2�, where each component cost func-
tion Ci is strictly convex, strictly increasing and
twice differentiable. For example, we find that QR-T
reduces to FQR-T exactly when Ci�Qi� = ciQnii with
n1 = n2; the case n1 = n2 = 2 is close to (15).

Proposition 5 (Explicit Solution).WhenC�Q1
Q2�
= c1Q2

1 + c2Q2
2, FQR-T is optimal for the X fluid model

with

r∗1
2 ≡
a1
2c2
c1

= c2	2
2�1
c1	1
2�2


 r∗2
1 ≡
a2
1c2
c1

= c2	2
1�1
c1	1
1�2




Z∗
1
2=

�c1	1
2�1��q1−�s1	1
1/�1��−�c2	2
2�2��q2−�s2	2
2/�2��
c1	

2
1
2/�1+c2	22
2/�2




Z∗
2
1=

c2	2
1�2�q2−�s2	2
2�/�2�−c1	1
1�1�q1−�s1	1
1�/�1�
c1	

2
1
1+c2	22
1

�

(16)

In Proposition 5, the cost is specified by a single
parameter: the ratio c1/c2 specifies the relative impor-
tance of the two queues. (The remaining parameter
is equivalent to choosing the monetary units.) Finally,
we caution that other cases (e.g., linear costs) can be
quite different; see §EC.4.

5.4. Application to the Stochastic Model
We can directly apply the QR-T control derived above
to the stochastic model. Figure 4 identifies three
sharing regions to apply to the stochastic process
(Q1�t�
 S1�t�
Q2�t�
 S2�t�) once sharing has been acti-
vated. There are two regions for each direction of
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sharing; e.g., if sharing has been activated with pool 2
helping class 1, available pool 2 agents serve class 1
customers when the queue-length vector falls in the
lower right region, whereas there is no sharing in
the other two regions. The way to share is described
in §4.2.

6. Choosing the Thresholds
We now consider how to choose the thresholds &1
2
and &2
1. These thresholds have two important
roles: first, they automatically detect when the sys-
tem becomes overloaded and, second, they prevent
unwanted sharing in normal loading. If the thresh-
olds are too large, then the queues may not reach
them during the overload. (Abandonments necessar-
ily keep the queues from increasing without bound,
even under overloads.) On the other hand, as dis-
cussed in §4.1, if the thresholds are too small, then
sharing may be activated too often, so that we may
get inefficient sharing.
Unfortunately, the fluid analysis cannot reveal the

“right” size of the thresholds, because the fluid
queues are empty under normal loading. We need
to understand the extent of the stochastic fluctua-
tions, something that is not captured by the fluid
approximation. At this point, it is convenient to apply
many-server heavy-traffic limits to gain additional
insight. To understand the general idea, it suffices to
refer to established limits for the basic M/M/n+M
model, as in Garnett et al. (2002) and Whitt (2004).
There, both fluid models and refined diffusion process
models are obtained as limits as the scale increases,
where scale is measured by the number n of servers.
What is unusual here, though, is that we are simulta-
neously interested in the QED regime and the ED or
overloaded regime.
The QED regime is appropriate to describe nor-

mal loading, which is what prevails before the over-
load occurs, whereas the ED regime is appropriate
to describe the overloaded system. In both cases, the
arrival rate is allowed to grow as n → 	, whereas
the service rate and abandonment rate are held fixed.
The important insight is that the queue lengths tend
to be of order O�

√
n� in the QED regime, as depicted

by the diffusion limit in the QED regime, whereas
the queue lengths tend to be of order O�n� in the ED
regime, as depicted by the fluid limit in the ED regime.
Thus, to prevent unwanted sharing when the sys-

tem is normally loaded, we should choose the thresh-
olds to be of size bigger than O�

√
n�. That ensures

that the weighted-queue-difference processes, D1
2
and D2
1, will not move above the thresholds by
random fluctuations. On the other hand, we should
choose the thresholds to be o�n�, so that the thresh-
olds will be asymptotically negligible compared to the

O�n� fluid content. Then, asymptotically, they will be
exceeded instantaneously when the overload occurs
and they will not significantly alter the queue ratios.
From this simple reasoning, we see that it suffices
to have &�n�i
 j = O�np� as n→	 for 1/2 < p < 1. (Inci-
dentally, that scaling also makes the thresholds out
of reach in normal loading in the law-of-the-iterated
logarithm scaling of �n log logn�1/2.)
This asymptotic analysis shows that the thresh-

olds chosen in this way are asymptotically optimal,
both during normal loading and during overload inci-
dents. Asymptotically, the thresholds will be exceeded
negligibly often during normal loading; asymptoti-
cally, the thresholds do not alter the optimal aver-
age cost in the overload incidents. For the case of
normal loading, we can apply the QED results in
Garnett et al. (2002); for the overload incidents, the
ED results in Whitt (2004) provide only heuristic sup-
port, because they apply only to the M/M/n + M
model. We intend to prove the ED fluid model for the
X model with FQR-T in a subsequent paper.
Of course, we actually have a system with one

fixed n. When we want to apply the theory to a real
system, with a finite number of agents, it becomes
hard to distinguish between O�n� and O�

√
n�. For

example, if n= 100, then both 10= 0�1n and 10=√
n.

Thus, as in any application of asymptotic results, we
should numerically verify that the values chosen are
appropriate, and refine them if necessary, for which
we can use simulation. For example, for a system with
100 agents in each pool (and abandonment rates less
than service rates), we found that &i
 j = 10 is effective.
We found that the performance is not too sensitive to
the choice of the thresholds, provided that they are
neither too small nor too large. We present simulation
results for FQR-T under normal loading in §EC.5.2,
including a sensitivity analysis for the thresholds.

7. Simulation Experiments
Our analysis has been based on a fluid approxima-
tion of a stochastic system. It remains to show that
the fluid approximation is suitably accurate for the
stochastic system and that the optimal control for the
fluid model works well in the stochastic system. For
those purposes, we conduct simulation experiments.

7.1. Accuracy of Fluid Approximation
In this subsection, we investigate the accuracy of the
approximation. To show how the accuracy increases
as the system becomes larger, we simulated three
cases, each case represents an element in a sequence
of queueing systems indexed by n, scaled to satisfy
a many-server heavy-traffic limit in the ED regime as
n→	. We use the same fixed service and abandon-
ment rates as before (	i
 i = 1, 	1
2 = 	2
1 = 0�8 and
�i = 0�3). We consider a fixed queue ratio r = 1. We
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Table 1 Comparison of Steady-State Performance Measures in Fluid
Approximation with Corresponding Simulation Results for
the Markovian X Model

n= 25 n= 100 n= 400

Perf. meas. Approx. Sim. Approx. Sim. Approx. Sim.

Q1 13
9 13
5 55
6 52
8 222
2 216
7
±0
4 ±1
2 ±7
0

Q1/n 0
56 0
54 0
56 0
53 0
56 0
54
±0
02 ±0
01 ±0
02

Q2 13
9 15
7 55
6 58
4 222
2 223
1
±0
5 ±1
2 ±7
0

Q2/n 0
56 0
63 0
56 0
58 0
56 0
56
±0
02 ±0
01 ±0
02

Ratio 1
0 0
98 1
0 0
90 1
0 0
96
±0
02 0
00 0
00

Z1�2 4
2 4
8 16
7 17
7 66
7 66
4
±0
2 ±0
3 ±2
2

Z1�2/n 0
17 0
19 0
17 0
18 0
17 0
17
±0
01 ±0
00 ±0
01

Cost 1
37 1
79 19
35 20
28 299
6 299
8
(thousands) ±0
01 ±0
81 ±19
2

Notes. For each n, there are n agents in each pool, with �1 = 1
3n, �2 = n,
�i� i = 1, �1�2 = �2�1 = 0
8, and �i = 0
3. The thresholds �1�2 = �2�1 are
3�10�30 for n= 25�100�400, respectively.

let the arrival rates be �1 = 1�3n and �2 = n, when
there are n agents in each service pool. The three
cases we consider are n = 25
100
400. We let the
thresholds for these three values of n be &1
2 = &2
1 =
3
10
30, respectively. (The thresholds were dropped
when exceeded.)
Table 1 shows the results. Each result is the average

of five independent simulation runs having 300,000
arrivals in each run. The half-width of 95% confidence
intervals, calculated using the t random variable with
four degrees of freedom, are also given.
To show both the actual performance and the con-

vergence to the fluid limit as n increases, we dis-
play both the direct values and the scaled values,
dividing by n. Because the scaled values tend to be
nearly independent of n, we witness the heavy-traffic
fluid limit. We see that the approximations get better
as n increases, but they are already not too bad when
n= 25.

7.2. Comparing the Two Controls
In the fluid analysis, choosing the number of agents in
each pool that are helping customers from the other
class is equivalent to choosing the queue ratio, ri
 j .
However, that is not the case in the actual stochastic
system. With specified numbers of agents serving cus-
tomers from the other class, the queue ratio fluctuates
randomly. With specified queue ratios, the numbers
of agents helping the other class fluctuates randomly.
Moreover, with specified numbers of agents serving
customers from the other class, the two queue-length
processes evolve independently. In sharp contrast,

Figure 5 Comparison of Cost of Using FQR-T with Different Ratios
and Cost of Fixing the Equivalent Z1�2s

18,000

18,500

19,000

19,500

20,000

20,500

21,000

21,500

22,000

22,500

23,000

C
os

t

r cost
Z cost

r cost 20,508.6

Z cost

1 2 3 4 5

21,466.3

20,281.5

21,345.4

19,729.7

20,856.1

21,160.4

21,417.0

22,306.2

22,632.3

Notes. In order, the five ratios considered are r = 1
2�1�0
83�0
6�0
4,
where r = 0
83 is the optimal queue ratio according to the fluid model. Based
on the fluid model, the equivalent Z1�2s are, respectively, 15�17�19�22�25,
where each Z1�2 has been rounded up to the smallest integer greater than its
actual value. The average cost of five independent simulation runs is written
beneath each point. The cost function is (15), and the system parameters are
mi = 100, �1 = 130, �2 = 100, �i� i = 1, �1�2 = �2�1 = 0
8, and �i = 0
3.

with specified queue ratios, the queue-length pro-
cesses are strongly dependent, as in Figure EC.8. This
suggests that there is a big difference between the two
controls in a real, stochastic system. We thus expect
the average cost under FQR-T to be different than the
average cost when fixing Zi
 j . We conducted simula-
tion experiments to compare the two controls.
To compare the two controls—FQR-T and fixed

Zi
 j—we simulated a system with mi = 100 agents in
each pool, arrival rates �1 = 130 and �2 = 100, ser-
vice rates 	1
1 = 	2
2 = 1 and 	1
2 = 	2
1 = 0�8, and
abandonment rates �1 = �2 = 0�3. Because class 1 is
overloaded, we took &2
1 = &1
2 = 10, but once we go
over the threshold &1
2, we drop it, so that it becomes
&1
2 = 0.
Figure 5 presents simulation results comparing the

two average costs for five different cases: (1) r1
2 =
1�2
Z1
2 = 15; (2) r1
2 = 1
Z1
2 = 17; (3) r1
2 = 0�83,
Z1
2 = 19 (optimal point); (4) r1
2 = 0�6
Z1
2 = 22; and
(5) r1
2 = 0�4
Z1
2 = 25. For each point, we fixed the
queue-ratio r1
2, and used FQR-T with this ratio. For
each such r1
2, there is an equivalent Z1
2 in the fluid
equations. Because this Z1
2 is not necessarily an inte-
ger, we rounded it up to the smallest integer larger
than Z1
2, i.e., we used �Z1
2� in each simulation of
the fixed-Zi
 j control. According to the fluid approxi-
mation, the optimal queue ratio is r1
2 = 0�83, and the

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Perry and Whitt: Responding to Unexpected Overloads in Large-Scale Service Systems
1366 Management Science 55(8), pp. 1353–1367, © 2009 INFORMS

respective optimal Z1
2 is equal to 18�4, rounded up to
19 in the simulation experiments.
For each case, we conducted five independent sim-

ulation runs using FQR-T, and five independent sim-
ulation runs with a fixed Z1
2, each run with 300,000
arrivals. The independent replications make it pos-
sible to reliably estimate confidence intervals using
the t statistic with four degrees of freedom. The
large number of arrivals ensures that the transient
behavior in the beginning of the simulation, before
reaching steady state, does not affect the final sim-
ulation estimates of the steady-state averages. Addi-
tional simulation results are given in Table EC.1 in
§EC.5, including the half-width of 95% confidence
intervals and a comparison of the simulation to the
fluid approximation.
There are several interesting observations to be

made: First, the r-cost curve lies significantly below
the Z-cost curve, which shows that FQR-T is a supe-
rior control. At the optimal point for FQR-T, the aver-
age cost under FQR-T is about 5�4% smaller than the
average cost under the fixed-Z1
2 control.
Secondly, FQR-T tends to be a more robust con-

trol. Small changes in r do not produce large changes
in the cost. Note that the largest r value here (1�2)
is three times as large as the smallest r value (0�4),
whereas the largest Z value here (25) is only 1�6 times
as large as the smallest Z value (15). Moreover, the
average costs when using FQR-T with r1
2 = 1�2 and
r1
2 = 1 are still smaller than the cost of fixing Z1
2 at
its optimal value. For further discussion, see §EC.5.

8. Conclusions
In this paper, we studied ways to respond to unex-
pected overloads in large-scale service systems. We
considered the Markovian X model with two cus-
tomer classes and two service pools, assuming that
agents are more effective serving customers from their
own class than customers from the other class, as
specified by the inefficient-sharing conditions in (1)
and (2). Thus, we want negligible sharing under nor-
mal loads, but we want to activate sharing when there
is an unexpected overload at an unanticipated time,
without knowing what the new arrival rates will be.
The main ideas for analyzing the performance and

determining appropriate queue-ratio functions for the
QR-T and FQR-T controls we propose are (i) to use
steady-state analysis and (ii) to apply an approximat-
ing deterministic fluid model. The QR-T and FQR-T
controls proposed for the actual stochastic system are
direct applications of the corresponding optimal con-
trols derived for the fluid model in §5.2. We devel-
oped an algorithm to find the optimal queue-ratio
curves for a general convex cost function in Propo-
sition 4 and §5.3. The resulting QR-T control is eas-
ily understood as a partition of the state space into

three sharing regions, as depicted in Figure 4, with
two regions for each direction of sharing.
In Proposition 5 we also provided strong justifica-

tion for FQR-T when the cost function has the form
C�Q1
Q2� = c1Q2

1 +Q2
2 for some constants c1 and c2.

In that case, we proved that FQR-T is optimal for the
fluid model (i.e., the optimal QR-T control reduces to
an instance of FQR-T) and exhibited the explicit opti-
mal queue-ratio parameters. Then the optimal queue-
ratio parameters depend on the cost function C only
via the single parameter c1/c2, which succinctly cap-
tures the relative importance of the two queues. For
other sharing regions, see §EC.4.
The main ideas for gaining insight into appropriate

threshold values were to apply (i) many-server heavy-
traffic asymptotics and (ii) simulation. Heuristically,
we showed that the thresholds should be asymptot-
ically optimal simultaneously for periods of normal
loading and for periods of overload. Asymptotically,
no trade-off need be made. The requirement is that
the thresholds should be of order O�np� as n→ 	,
where 1/2 < p < 1 and n is the system scale factor.
We used simulation to verify that the thresholds work
well for given finite n.
Our FQR-T (or QR-T) control is appealing for sev-

eral reasons. First, it is automatic and simple; we
need not directly discover the arrival rates to find out
when overloads occur, and then decide what amount
of sharing should be done. Instead, FQR-T automati-
cally detects the time the system becomes overloaded,
and then automatically enforces the optimal ratio, by
observing only the size of the two queues. It is eas-
ier to use the information about the queues, which is
readily available, than to use information about the
arrival rates, which is not readily available. Moreover,
simulation experiments indicate that FQR-T performs
better (produces lower expected costs) than fixing Zi
 j
at their optimal values, even with known arrival rates;
see Figure 5.
It remains to mathematically prove that the fluid

model with QR-T or FQR-T arises as the many-server
heavy-traffic limit of scaled overloaded queueing sys-
tems as the scale increases. It also remains to show
that FQR-T is asymptotically optimal among all pos-
sible controls in such a limit. It remains to develop
similar controls for more complex multiclass multi-
pool systems with nonexponential service-time and
abandonment-time distributions.

9. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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