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In a recent paper we considered two networked service systems, each having its own customers and designated service pool
with many agents, where all agents are able to serve the other customers, although they may do so inefficiently. Usually the
agents should serve only their own customers, but we want an automatic control that activates serving some of the other
customers when an unexpected overload occurs. Assuming that the identity of the class that will experience the overload or
the timing and extent of the overload are unknown, we proposed a queue-ratio control with thresholds: When a weighted
difference of the queue lengths crosses a prespecified threshold, with the weight and the threshold depending on the class
to be helped, serving the other customers is activated so that a certain queue ratio is maintained. We then developed a
simple deterministic steady-state fluid approximation, based on flow balance, under which this control was shown to be
optimal, and we showed how to calculate the control parameters. In this sequel we focus on the fluid approximation itself
and describe its transient behavior, which depends on a heavy-traffic averaging principle. The new fluid model developed
here is an ordinary differential equation driven by the instantaneous steady-state probabilities of a fast-time-scale stochastic
process. The averaging principle also provides the basis for an effective Gaussian approximation for the steady-state queue
lengths. Effectiveness of the approximations is confirmed by simulation experiments.
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1. Introduction
Responding to unexpected overloads. In Perry and Whitt
(2009), we considered how two service systems that nor-
mally operate independently, such as call centers, can help
each other when one encounters an unexpected overload
and is unable to immediately increase its own staffing. We
assumed that each service system has a service pool with
many agents, each of whom has the ability to serve cus-
tomers from the other system as well as its own, even
though the other customers may be served inefficiently. The
goal was to find a way to automatically respond to over-
loads, without knowledge of the arrival rates, while pro-
ducing only negligible sharing under normal loads.

Toward that end, we proposed a queue-ratio control with
thresholds (QR-T) that activates serving customers from the
other system when a weighted difference of the two queue
lengths exceeds a threshold, allowing sharing in only one
direction at any time. There is a target queue-ratio function
and threshold for each direction of sharing. The general
QR-T control allows the queue ratio to be a function of the
two queue lengths, but it often suffices to use fixed queue
ratios (FQR-T), which is advantageous because the control

then has fewer parameters, namely, the two ratio parameters
and the two thresholds.

These queue-ratio controls are modifications of ones pro-
posed previously in Gurvich and Whitt (2009a, b, 2010).
The thresholds and the application to respond to unexpected
overloads are new. These QR controls tend to be effective
because they simplify the problem by reducing the dimen-
sion. With the QR-T control, the two system queues tend
to evolve independently when the sharing is not activated
(under normal loads), but the two queues tend to evolve
together in a fixed relation when the sharing is activated
(under overloads). Indeed, under overloads, the two system
queues tend to evolve dependently to the maximum extent.
This maximum dependence can be formalized by the notion
of state-space collapse (SSC), as in Bramson (1998), Dai
and Tezcan (2011), and Gurvich and Whitt (2009a).

The Markovian X model. To analyze this QR-T over-
load control and determine appropriate control parame-
ters, we considered a Markovian X call-center model, as
depicted in Figure 1, having two customer classes, each
with its own queue, and two service pools, each with many
agents; see Aksin et al. (2007), Gans et al. (2003), and
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Figure 1. The X model.
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Garnett and Mandelbaum (2000) for background on the
basic call-center models.

A fluid model with convex costs. In order to determine
appropriate queue-ratio functions and to approximate the
performance of this QR-T control, we introduced a convex-
cost framework and a simple deterministic steady-state fluid
approximation for the X call-center model. Within that
framework, we proved that properly chosen queue-ratio
functions minimize the average steady-state cost during
an overload incident without requiring knowledge of the
arrival rates. Moreover, we showed how to calculate the
optimal queue-ratio functions. In addition, we indicated
how to determine the thresholds. We then applied simula-
tion to show that the optimal control for the fluid model
is effective for the original stochastic X call-center model.
Indeed, the simulations show that the proposed queue-ratio
control with thresholds outperforms the optimal fixed par-
tition of the servers given known fixed arrival rates during
the overload, even though the proposed control does not
use information about the arrival rates.

The contributions here. The present paper develops an
approximation for the stochastic processes describing the
performance of the overloaded X model with the ratio con-
trol. The approximation is interesting because it involves
a heavy-traffic averaging principle (AP). First, the AP
directly yields an approximation for the transient behavior
as well as the steady-state behavior. The new approximation
for the transient behavior is a deterministic fluid approxi-
mation, i.e., an ordinary differential equation (ODE), but
it is an unconventional ODE. As a consequence of the AP,
the ODE is driven by a function of the ODE state involving
the steady-state probability distributions of an associated
family of fast-time-scale stochastic processes; see §3. The
most familiar example of an AP is no doubt in the theory
of nearly completely decomposable (NCD) Markov chains,
as in Courtois (1977); see Remark 2.4.1 of Whitt (2002) for

more discussion and references. We validated the transient
approximation based on the ODE by conducting simulation
experiments; see §3.

We also apply the AP to develop improved approxima-
tions for the steady-state distribution. The heuristic steady-
state fluid approximation developed in Perry and Whitt
(2009) provides only an approximation for the mean queue
lengths. First, the AP provides improved approximations
for these mean steady-state values; see §5. Effectiveness is
confirmed by simulations in §6. Second, the AP provides a
tractable approximation for the full steady-state joint distri-
bution of the queue lengths during the overload incident. In
particular, the AP leads to a Gaussian approximation, with
explicit formulas for the variances; see §7. The full dis-
tribution provided by this Gaussian approximation is vital
because, for typical system sizes, the standard deviations
tend to be of roughly the same order as the mean values.

The many-server heavy-traffic regime. The perfor-
mance of the X model during overloads, including the AP,
can be understood by considering the many-server heavy-
traffic (MSHT) limiting regime, briefly reviewed here in §2.
Based on an understanding of the MSHT efficiency-driven
(ED) regime, we see that an AP is appropriate here. We
justify these approximations empirically through extensive
simulation experiments.

In subsequent papers, Perry and Whitt (2011a, b, c),
we put the AP and the associated performance approxima-
tions on a firm mathematical basis. We show that the ODE
stemming from the AP is well defined, with good proper-
ties, and that the approximations we develop in this paper
arise as MSHT stochastic process limits involving the AP,
paralleling earlier papers by Hunt and Kurtz (1994), and
Coffman et al. (1995). We contribute here by showing how
the SSC and the AP associated with the MSHT regime can
be applied directly as engineering principles.

Even though we do not do any proofs here, we do verify
the accuracy of our approximations empirically with sim-
ulation. We demonstrate the convergence as n→ � in the
MSHT limit by showing the performance of the scaled pro-
cesses for several values of n, in particular, for n= 25, 100,
and 400. We see remarkable accuracy for n= 400 and sur-
prisingly good rough approximations even for n = 25. We
also see the rapid convergence to steady state as t → �.
Additional material appears in a longer version maintained
on the authors’ webpages.

2. Preliminaries
The model. The Markovian X model is depicted in Fig-
ure 1. There are two customer classes, with customers
from each class arriving according to a Poisson process.
There is a queue for each customer class, from which cus-
tomers are served in order of arrival. Waiting customers
have limited patience: A class-i customer will abandon
if he does not start service before a random time that
is exponentially distributed with mean 1/�i. There are
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two service pools, with pool j having mj homogeneous
servers working in parallel. The mean service time for a
class-i customer served by a type-j agent is 1/�i1 j , which
may depend on both the customer class i and the ser-
vice pool j . The service times, abandonment times, and
arrival processes are mutually independent. Let Qi4t5 be
the number of class-i customers in queue and let Zi1 j4t5
be the number of type-j agents busy serving class-i cus-
tomers at time t. With the assumptions above, the stochas-
tic process 84Qi4t51Zi1 j4t53 i = 1123 j = 11252 t ¾ 09 is a
six-dimensional continuous-time Markov chain (CTMC),
given any routing policy that depends on the six-
dimensional state.

We are using this model to describe the system during
the overload incident. Our approximation applies after the
arrival rates have shifted to new values and after sharing
has begun. We assume that customers from the two classes
arrive during the overload with constant arrival rates �1

and �2, which make at least one class overloaded. Our
goal is to develop approximations for the stochastic pro-
cess 84Qi4t51Zi1 j4t53 i = 1123 j = 11252 t ¾ 09 during the
overload incident.

The FQR-T control. The FQR-T control is based on
two nonnegative thresholds k112 and k211 and two posi-
tive queue-ratio parameters r112 and r211. We define two
(weighted) queue-difference stochastic processes D1124t5≡

Q14t5 − r112Q24t5 and D2114t5 ≡ r211Q24t5 − Q14t5. As
long as D1124t5 ¶ k112 and D2114t5 ¶ k211, agents may
only serve customers from their designated class. (Ordi-
nary FQR without thresholds corresponds to r211 = r112 and
k112 = k211 = 0.)

However, pool-2 agents are allowed to start serving
class-1 customers when D1124t5 > k112, provided that no
pool-1 agents are still serving a class-2 customer. (We
restrict attention to sharing in only one direction at a time,
but either direction is possible.) Pool 2 is allowed to begin
service as soon as no pool-1 agents are serving class-2 cus-
tomers and D1124t5 > k112. As soon as the first pool-2 agent
is assigned to serve a class-1 customer, we drop the thresh-
old k112, but keep the other threshold k211. Thus, once one-
way sharing has been activated with pool 2 helping class 1,
we use ordinary FQR with ratio parameter r112: Upon ser-
vice completion, a newly available type-2 agent serves the
class-1 customer who has waited the longest if D1124t5 > 0;
otherwise, the agent serves a customer from his own class.
(There also is the other threshold k211, but it will usually
not be crossed during the overload incident.) Only one-way
sharing in this direction will be allowed until either the
class-1 queue becomes empty or the other difference pro-
cess crosses the other threshold, i.e., when D2114t5 > k211.
As soon as either of these events occurs, newly available
pool-2 agents are only assigned to class 2 and the threshold
k112 is reinstated and, similarly, in the other direction.

Even though we intend to drop the threshold k112 when
sharing is activated with pool 2 helping class 1 (in the
manner just described), we consider a centering constant

�112 after sharing, which can be interpreted as a threshold.
Perry and Whitt (2009) show that in some cases it is actu-
ally optimal to use the shifted FQR-T control, i.e., keeping
the queues at a fixed ratio centered about a constant. Such
is the case, for example, when the holding cost is separa-
ble and quadratic, i.e., of the form C4Q11Q25= C14Q15+

C24Q25, where Ci4Qi5= ai +biQi + ciQ
2
i ; this is proved in

§EC.4 in Perry and Whitt (2009). In these cases the opti-
mal relation between the queues is Q1 + r112Q2 = �112 or
Q1 + r211Q2 = �211 for some �1121 �211 ∈ �, depending on
the direction of sharing; explicit formulas for the optimal
ratios and centering constants appear in EC.11 and EC.12
of Perry and Whitt (2009). If bi = 0 for i = 112, then the
two centering constants take the form �112 = �211 = 0, and
we have ordinary FQR once sharing has been activated in
some direction.

More on the MSHT limiting regime. The MSHT
regime is specified by considering a sequence of models
indexed by n, here denoted by a superscript. The main idea
is that the system scale should grow with n. Accordingly,
we assume that the arrival rates and number of servers grow
proportionally to n:

�
4n5
i

n
→ �̄i and

m
4n5
j

n
→ m̄j as n→ �1 (1)

where �̄i and m̄j are positive constants for i = 112 and
j = 112. The individual abandonment rates �i and service
rates �i1 j remain constant for all n. We add superscript 4n5
to all processes along the sequence of systems we consider,
e.g., Q

4n5
i 4t5 denotes the number of class-i customers in

queue at time t in system n (having arrival rates �
4n5
1 and

�
4n5
2 and m

4n5
1 and m

4n5
2 agents in the pools).

Because our model is overloaded, we will be consid-
ering a special case of the efficiency-driven (ED) MSHT
regime; see Garnett et al. (2002) and Whitt (2004). For a
Markovian I model, having one service pool, one customer
class and customer abandonment, i.e., the M/M/m + M
model, we would be assuming that �4n5 = � > 1 for all n,
where �4n5 ≡ �4n5/n� is the traffic intensity in model n.
With customer abandonment, the ED regime is quite prac-
tical because the queue lengths have proper steady-state
distributions whenever the abandonment rates are positive.
In this setting, we consider the scaled processes

Q̄
4n5
i 4t5≡

Q
4n5
i 4t5

n
and Z̄

4n5
i1 j 4t5≡

Z
4n5
i1 j 4t5

n
1 t ¾ 00 (2)

These scaled processes converge as n→ �, with

4Q̄
4n5
i 4t51 Z̄

4n5
i1 j 4t51 i = 1123 j = 1125⇒ 4Q̄i4t51 Z̄i1 j4t51

i = 1123 j = 1125 as n→ �1 (3)

where ⇒ denotes convergence in distribution and the limit
4Q̄i4t51 Z̄i1 j4t51 i = 1123 j = 1125 evolves as a deterministic
ODE. The limit in (3) is referred to as a functional weak
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law of large numbers (FWLLN); it is established in Perry
and Whitt (2011b).

Perry and Whitt (2011c) show that there is also an asso-
ciated functional central limit theorem (FCLT) establishing
associated stochastic limits, which serve as refinements of
the fluid limits above. For these, we introduce the new
scaled processes

Q̂
4n5
i 4t5≡

Q
4n5
i 4t5− nQ̄i4t5

√
n

and

Ẑ
4n5
i1 j 4t5≡

Z
4n5
i1 j 4t5− nZ̄i1 j4t5

√
n

1 t ¾ 00 (4)

These scaled processes also converge as n→ �, with

4Q̂
4n5
i 4t51 Ẑ

4n5
i1 j 4t51 i = 1123 j = 1125⇒ 4Q̂i4t51 Ẑi1 j4t51

i = 1123 j = 1125 as n→ �1 (5)

where the limit 4Q̂i4t51 Ẑi1 j4t51 i = 1123 j = 1125 evolves
as a stochastic (not deterministic) process.

3. The ODE Based on the AP
Overload scenarios. In this section we develop the fluid
approximation, working with a single X model (not con-
sidering the MSHT regime). We do not know in advance,
which class will experience the overload and need help
from the other service pool. Indeed, the direction of shar-
ing may switch in successive overload incidents. However,
without loss of generality, when we consider the behavior
of the system in one particular overload incident, under an
unbalanced overload, we assume that class 1 is overloaded,
and more so than class 2 if class 2 is also overloaded.
Hence, we need only consider the queue-difference process
D1124t5, now denoted by D4t5≡Q14t5− rQ24t5.

When we say that class 1 is overloaded, we mean that
�1 >m1�111. There are two cases for the less-loaded class 2
after sharing: We may either have class 2 also overloaded,
but less so than class 1, or class 2 underloaded. We will pri-
marily be focusing on the fully overloaded case, in which
class 2 is overloaded after sharing. That can occur in two
ways. First, class 2 might be overloaded by itself, before
helping class 1. That occurs if �2 ≡ �2/m2�212 > 1. Alter-
natively, class 2 may be underloaded before sharing, but
become overloaded on account of the sharing.

Approximation when fully overloaded. We now
develop the approximation for the transient behavior of the
CTMC 84Qi4t51 Zi1 j4t53 i = 1123 j = 11252 t ¾ 09 during
an overload incident in the fully overloaded case. We start
when the overload begins, at the instant the arrival rates
change. The ODEs should apply to all possible initial con-
ditions, but the standard case is for the system to be initially
in steady state with the two service pools operating inde-
pendently at normal levels. The sudden shift in the arrival
rates causes the system to go through two transient peri-
ods. In the first transient period, the two systems continue

to operate independently, with each responding to its own
new arrival rate. In the fully overloaded case being consid-
ered, the first transient period ends and the second transient
period begins after D4t5 exceeds its threshold and shar-
ing is initiated, with all servers in both pools busy. That is
when the AP begins to operate. The system evolves in this
second transient period approaching the steady-state asso-
ciated with the overload. In this section we are focusing on
the second transient period; see Appendix B of Perry and
Whitt (2011a) for discussion of the first transient period.

The averaging principle (AP). We can exploit SSC to
deduce the relation Q14t5 = rQ24t5 + � for each t in the
fully overloaded case. However, it is evident that SSC does
not actually occur in such a simple way. Instead, the queue-
difference process D4t5≡Q14t5− rQ24t5 oscillates around
the centering constant �. The key observation is that the
queue-difference process D4t5 moves back and forth across
the boundary � relatively quickly, because it has a strong
drift pointing toward � on both sides (under typical over-
load conditions). These boundary crossings occur in a faster
time scale than the relative changes in the other processes
under consideration. Even though all processes move due
to arrivals and service completions (which are happening
quickly because the system is large), the relative changes
of the processes Qi4t5 and Zi1 j4t5 over short time intervals
are small due to their size, which is of the same order as
the number of servers. (For that reason, a continuous fluid
approximation for these processes is appropriate.) In con-
trast, D4t5 does not grow with the system’s size, and stays
close to the boundary � throughout. Hence, over very short
time intervals, D4t5 moves rapidly between the two regions
4−�1 �7 and 4�1�5, with its speed growing proportionally
to the size of the system. From the asymptotic perspec-
tive, Qi4t5 and Zi1 j4t5 evolve with an O415 clock, whereas
D4t5 evolves with an O41/n5 clock when the arrival rate is
of order n.

In particular, we conclude that D4t5 approximately
reaches a time-dependent steady state instantaneously at
each time t, where that steady-state distribution depends on
the time-dependent quantities Qi4t5 and Zi1 j4t5 (t fixed);
i.e., there is an AP. For each t ¾ 0, let Dt4�5 denote
a random variable with that time-dependent steady-state
distribution. We will then exploit the time-dependent
probabilities �1124X4t55 ≡ P4Dt4�5 > �5. To obtain the
probability distribution of the steady-state random variable
Dt4�5, we introduce a new stochastic process, the fast-
time-scale process (FTSP) Dt ≡ 8Dt4s52 s ¾ 09, which is
the process 8D4t + s52 s ¾ 09, initialized at D4t5, but with
the transition rates of the stochastic process D under the
extra condition that 4Q11Q21Z1125 remain fixed at their val-
ues at time t.

Based on the AP, the FTSP Dt is a pure-jump
continuous-time Markov process (CTMP), with state space
8k+rj2 k ∈�1 j ∈�9. with transition rates that depend only
on the fluid-model state at time t. There are four possible



Perry and Whitt: Fluid Approximation
Operations Research 59(5), pp. 1159–1170, © 2011 INFORMS 1163

transitions in each state: ±1 and ±r . We obtain simplifica-
tion without practical sacrifice by assuming that r is ratio-
nal. For rational r ≡ j/k, the FTSP is a CTMC on the state
space 8j/k2 j ∈�9. We multiply by k to make all the states
integers. Moreover, then the CTMC can be represented as
a homogeneous quasi-birth-and-death (QBD) process, as
in Definition 1.3.1 and §6.4 of Latouche and Ramaswami
(1999). For each t, we can apply the logarithmic reduction
algorithm in §8.7 of Latouche and Ramaswami (1999) to
efficiently calculate the steady-state distribution of Dt , i.e.,
the distribution of Dt4�5. As a consequence, we can cal-
culate the desired probabilities �1124X4t55 given any state
vector X4t5≡ 4Q14t51Q24t51Z1124t55.

We now specify the transition rates of the CTMC Dt

given the time t and the state X4t5, using the integer state
space. Let �4j5

+ 4m1X4t55, �4k5
+ 4m1X4t55, �4j5

+ 4m1X4t55, and
�

4k5
+ 4m1X4t55 be the transition rates of the FTSMC Dt

for transitions of +j , +k, −j , and −k, respectively,
when Dt4s5 = m > �. Similarly, we define the transi-
tions when Dt4s5 = m ¶ �: �4j5

−
4m1X4t55, �4k5

−
4m1X4t55,

�4j5
−
4m1X4t55, and �4k5

−
4m1X4t55.

First, for Dt4s5=m ∈ 4−�1 �7, the upward rates are

�4k5
−
4m1X4t55= �11 and

�4j5
−
4m1X4t55=�112Z1124t5+�212Z2124t5+ �2Q24t51 (6)

corresponding, first, to a class-1 arrival and, second, to a
departure from the class-2 queue, caused by a type-2 agent
service completion (of either customer type) or by a class-2
customer abandonment. Similarly, the downward rates are

�4k5
−
4m1X4t55=�111Z1114t5+ �1Q14t5 and

�4j5
−
4m1X4t55= �21 (7)

corresponding, first, to a departure from the class-1 cus-
tomer queue, caused by a class-1 agent service comple-
tion or by a class-1 customer abandonment, and, second,
to a class-2 arrival. Next, for Dt4s5=m ∈ 4�1�5, we have
upward rates

�
4k5
+ 4m1X4t55= �1 and �

4j5
+ 4m1X4t55= �2Q24t51 (8)

corresponding, first, to a class-1 arrival and, second, to a
departure from the class-2 customer queue caused by a
class-2 customer abandonment. The downward rates are

�
4k5
+ 4m1X4t55

=�111Z1114t5+�112Z1124t5+�212Z2124t5+ �1Q14t5 and

�
4j5
+ 4m1X4t55= �21 (9)

corresponding, first, to a departure from the class-1 cus-
tomer queue, caused by (i) a type-1 agent service com-
pletion, (ii) a type-2 agent service completion (of either
customer type), or (iii) by a class-1 customer abandonment
and, second, to a class-2 arrival.

We conclude the definition of the FTSP by noting
that great simplification occurs in the special case r = 1,
because then the CTMC reduces to a simple birth-death
(BD) process instead of a QBD process. Then it is easy to
calculate �1124X4t55; see Theorem 6.2 of Perry and Whitt
(2011a).

The ODE. The fluid approximation is a solution to an
ODE and, in particular, it is a differentiable function. Its
derivative at each time t approximates the instantaneous
rates of X4t5, which is a CTMC, provided all agents are
working and there are no class-2 customers in pool 1
(which is what we assume). We have just observed that the
rate of change of the FTSP Dt depends on (i) the state X4t5
and (ii) whether or not Dt4s5 > �. In the same way, the
rates of the CTMC X at time t depend on (i) X4t5 itself and
(ii) the state of D4t5. Now, the deterministic fluid approx-
imation of the evolution of X4t5, we let the rates (i.e.,
derivatives) depend on (i) X4t5 itself and (ii) the steady-
state probability �1124X4t55= P4Dt4�5 > �5.

First, given Zi1 j4t5 and �i1 j4X4t55, we obtain ODE’s for
the two queue-length processes. Let Q̇i ≡ Q̇i4t5 denote the
derivative of Qi evaluated at t. The derivative Q̇14t5 equals
the rate of increase minus its rate of decrease. The rate of
increase is simply the arrival rate to customer queue 1, �1.
The rate of decrease is more complicated. First, there is
the rate of abandonment from queue 1, which is Q14t5�1.
Second, there is the rate of decrease from queue 1 due
to service completions by servers who will next take cus-
tomers from queue 1, which depends on the state of the
queue-difference stochastic process. Exploiting the AP, we
will not focus on the actual state of the queue-difference
process, but instead focus on the average state, assum-
ing that the queue-difference process oscillates relatively
rapidly compared to the other processes. We thus assume
that a proportion �1124X4t55 of the time that the queue-
difference exceeds the shifting constant �. That portion of
the decrease rate is �1124X4t554Z1124t5�112 +Z2124t5�2125.
There will be corresponding, but different, rates of decrease
for the proportion of time 1 − �1124X4t55 that the queue
difference is less than or equal to �. That reasoning leads
to the system of three ODEs

Q̇14t5≡ �1 −m1�111 −�1124X4t55

· 6Z1124t5�112 +Z2124t5�2127− �1Q14t5

Q̇24t5≡ �2 − 41 −�1124X4t555

· 6Z2124t5�212 +Z1124t5�1127− �2Q24t5

Ż1124t5≡�1124X4t55Z2124t5�212

− 41 −�1124X4t555Z1124t5�1120

(10)

More compactly, we have a single three-dimensional ODE
with the general form Ẋ4t5=ë4X4t51 t5 for a function ë .
In addition, our ODE is autonomous (or time invariant)
because ë4X4t51 t5≡ë4X4t55. An autonomous ODE does



Perry and Whitt: Fluid Approximation
1164 Operations Research 59(5), pp. 1159–1170, © 2011 INFORMS

not depend explicitly on the time-argument t, and its behav-
ior is invariant to shifts in the time origin. Thus, we propose
the autonomous ODE

Ẋ4t5≡ 4Q̇14t51 Q̇24t51 Ż1124t55=ë4X4t55

≡ë4Q14t51Q24t51Z1124t551 t ¾ 01 (11)

where ë2 601�52 × 601m27 → �3 is displayed via (10)
above. The derivatives in (10) are evident given the transi-
tion rates of the CTMC, given that we replace the CTMC
by an ODE and invoke the AP.

A more systematic derivation of the ODE (10), involv-
ing the asymptotic approach, appears in Perry and Whitt
(2011a, b). In particular, Theorem 5.2 in Perry and Whitt
(2011a) proves that there exists a unique solution to the
ODE that is continuous and differentiable almost every-
where. The setting considered in Perry and Whitt (2011a)
is much more general than here, and the unique solution
is shown to exist in the full three-dimensional state space
(not only in the two-dimensional state space where the AP
operates and SSC of the queues occurs). Thus, there exists
a unique solution to the ODE for any set of parameters that
puts the system into overload (see Assumption A in Perry
and Whitt 2011a). Building on that existence and unique-
ness result, Theorem 6.1 in Perry and Whitt (2011b) proves
that the solution to that ODE is achieved as the MSHT fluid
limit for the sequence of stochastic systems.

What is important for us here is that we can apply stan-
dard iterative algorithms for solving ODEs to solve (11),
where we calculate �1124X4t55 at each step. We used the
classical forward Euler algorithm for the ODE together
with the logarithmic reduction algorithm for QBDs from
Latouche and Ramaswami (1999); additional details are
provided in §§6 and 11 of Perry and Whitt (2011a).

4. Validating the Transient Approximation
Through Simulation Experiments

We now provide evidence that our proposed approxima-
tion is effective for the transient behavior. Accordingly,
in this section we compare numerical results for the tran-
sient behavior of the fluid model, based on our algorithm
from Perry and Whitt (2011a), to simulation estimates of
the actual performance measures in the original queueing
model. This will show that the transient approximations are
computable and sufficiently accurate for engineering appli-
cations. We also show that the deterministic fluid model
does not capture important stochastic fluctuations unless
the scale is very large, but the fluid model provides remark-
ably accurate approximations for the mean values of the
key queueing processes, Q14t5, Q24t5, and Z1124t5, pro-
vided that the scale is not too small.

In order to demonstrate the MSHT limits in the ED
regime described in §2, we report results for scaled pro-
cesses, as in (2), for several values of n. We will then
be confirming the FWLLN in (3) via the simulation. Our

simulation examples throughout the paper will have param-
eters related to a base case that we consider here as well.
It has several parameters depending on n: mi ≡ m

4n5
i = n,

�1 ≡ �
4n5
1 = 103n, �2 ≡ �

4n5
2 = 009n, and � ≡ �4n5. Here we

take �n = 0, but we will later also consider a positive �,
specifically, � ≡ �n = 001n. The other model parameters
are independent of n: �1 = �2 = 002, �111 =�212 = 100, and
�112 =�211 = 008. The arrival rates are chosen to put class 1
in a focused overload, whereas class 2 is initially normally
loaded or slightly underloaded, but becomes overloaded too
after the sharing. The rest of the parameters are chosen to
make a symmetric model, where serving the other class is
less efficient. We use the FQR-T control with ratio param-
eter r = 008; this makes the QBD matrices be as in (6.5)
and (6.6) of Perry and Whitt (2011a), following the gen-
eral structure in §§6.1 and 6.2 there; the algorithm is given
in §11 there.

We have in mind large-scale applications, e.g., with
n¾ 50, but to test the limits of the approximations, we
also consider smaller systems. Specifically, we consider the
three cases: n= 10, n= 25, and n= 100, initialized empty.
Because the processes are scaled, they all have the same
fluid approximation. For each n, we ran 11000 independent
replications, sampling each of the 11000 simulated sam-
ple paths every h ≡ 0001 time units over the time interval
601 T 7= 601507. This gives 51001 sample points for each
replication.

Figures 2–4 show the fluid approximation together with
simulation estimates of the time-dependent mean values for
each n, specifically, the averages of the 1,000 observed
values of three scaled processes Q̄

4n5
i 4t5 ≡ n−1Q

4n5
i 4t5, i =

112, and Z̄
4n5
1124t5≡ n−1Z

4n5
1124t5 at each of the 5,001 sample

points. Figure 5 shows one sample path of 8Q̄
4n5
1 4t52 0 ¶

t ¶ 509, when n = 100, together with the fluid approxi-
mation, to show the typical stochastic fluctuations. These

Figure 2. A comparison of simulation estimates of
E6Q̄

4n5
1 4t57 for n = 101251100 to the fluid

approximation in the base case.
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Figure 3. A comparison of simulation estimates of
E6Q̄

4n5
2 4t57 for n = 101251100 to the fluid

approximation in the base case.
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Figure 4. A comparison of simulation estimates of
E6Z̄

4n5
1124t57 for n = 101251100 to the fluid

approximation in the base case.
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stochastic fluctuations are the reason for using a large num-
ber of replications in order to accurately estimate the mean
values at each point along the sample path. The statistical
precision of the estimators is directly visible in the plots,
because the processes are effectively in steady state in the
second half of the time interval 601507. As n grows larger,
the impact of these fluctuations decreases; they are of order
1/

√
n by (5). The stochastic fluctuations show the impor-

tance of the diffusion refinements in §7.
Consistent with the FWLLN in (3), the larger the system,

the better the fluid approximates the means. The figures
clearly show that n ¾ 100 is “large enough” in the sense
that the simulated means are extremely close to the fluid
approximation. Even a relatively small system, with only

Figure 5. A comparison of one sample path of Q̄4n5
1 4t5

when n = 100 to the fluid approximation in
the base case.
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25 agents in each pool, is approximated quite well by the
fluid. However, the fluid approximation is quite rough when
n= 10. There is approximately 25% difference between the
fluid and the means of Q̄4n5

2 4t5 when n= 10.
Nevertheless, the fluid approximation is useful even for

small systems, because the shape of the curves of the sim-
ulation means for n = 10 is the same as the shape of the
fluid curve; in particular, the rate of convergence to steady
state is about the same in all systems. Because the fluid
approximation was shown to converge exponentially fast
to steady state in §9 of Perry and Whitt (2011a), we see
that the same must be true, approximately, for the queueing
system even for a quite small numbers of servers.

5. Stochastic Refinements to the
Steady-State Fluid Approximation

In this section we present two stochastic refinements to the
deterministic fluid-model approximations for the steady-
state quantities Qi and Z112 describing performance dur-
ing the overload, assuming shifted FQR is used. The first
exploits the AP to determine the average queue difference
for the fully overloaded case. The second develops a birth-
and-death-process (BD) approximation for the steady-state
queue length Q1 in the spare capacity case.

For reference, we refer to the steady-state approximation
based on the simple flow balance from Perry and Whitt
(2009). Based on the argument there, we can find the three
variables Q1, Q2, and Z112 by solving the following two
equations in two unknowns (Q1 and Z112):

Q1 =
�1 − 4m1�111 +Z112�1125

�1

and

Q2 =
Q1 −�

r
=

�2 − 4m2 −Z1125�212

�2

0 (12)
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This simple approximation can also be derived from the
ODE. We can directly apply the ODE for Z1124t5 to find
�112 by noting that in steady state Ż1124t5= 0. Thus,

�112 =
Z112�112

Z112�112 + 4m2 −Z1125�212

0 (13)

Setting Ẋ4t5 = 0 in (11) and applying (13) yields
(12) above.

5.1. The Average Difference E[D] in the Fully
Overloaded Case

We have observed that SSC does not happen exactly; we
do not get precisely Q1 = rQ2 + �. Instead, the queue-
difference process D4t5 oscillates around the centering con-
stant �. We can apply the AP to find an approximating
steady-state distribution of D4t5 by treating it as an FTSP.
Let D denote a random variable with the limit of these
steady-state distributions as t → �.

We propose refining our fluid approximation for the
steady-state distribution by replacing the target difference
� in (12) by the mean E6D7. To find E6D7, we solve the
balance equations of the FTSP and then take the mean

E6D7=
�
∑

j=−�

jP4D = j50 (14)

Because the drifts tend to point strongly toward the center-
ing constant �, it usually suffices to perform the sum for
�− 20 ¶ j ¶ �+ 20.

We now obtain our refined approximation, assuming that
the queue difference is E6D7 instead of �. The calculation
of E6D7 can be easily done if Q1, Q2, and Z112 are known.
Because they depend on the value E6D7, we need to solve
for them simultaneously. To do that, we propose an iterative
algorithm that solves the three equations

Q1 =
�1 − 4m1�111 +Z112�1125

�1

1

Q2 =
Q1 −E6D7

r
=

�2 − 4m2 −Z1125�212

�2

1

E6D7=
�
∑

j=−k211

jP4D = j50 (15)

For the iterative procedure, it is natural to start with the
values of Q1, Q2, and Z112 obtained from (12), and then cal-
culate the distribution of D and E6D7. We can then obtain
new values of Q1, Q2, and Z112 by solving (12) again with
E6D7 replacing �. We then can keep iterating. Experience
indicates that this iteration consistently converges in a few
iterations (typically only two), yielding the solution to (15).

5.2. A BD-Process Refinement for
the Spare-Capacity Case

For the case in which queue 2 has spare capacity, we
now develop another refinement, obtaining a nondegener-
ate approximation for the distribution of Q1. In this case,
because of the available agents in pool 2, as soon as Q1

exceeds the centering constant �, an idle pool-2 agent
serves a customer from class 1. Thus, it is evident that we
must have Q1 ¶ �. Of course, the fluid approximation is
just Q1 ≈ �.

Because of the averaging principle, it is not hard to esti-
mate the approximate distribution of Q1. To do so, we
observe that we can regard the class-1 queue as evolving
below the level �112 by itself as a BD process. When the
queue length is j , the birth rate is a constant �1, whereas the
death rate is approximately m1�111 + �1j . (Queue 2 plays
no role.) For the reason given, the birth rate is 0 when the
queue is at �. The death rate should be small when the
queue length is small. For the approximation to be good,
we do not want Q1 to spend much time at very low levels,
like 1 or 0. That can be verified approximately by look-
ing at the approximate BD steady-state distribution. In any
case, we let the death rate be 0 when the queue length is 0.
Our refined approximation for the distribution of Q1 is the
steady-state distribution of this finite-state BD process.

Because Qalone
1 = 4�1 − m1�1115/�1 > �, the birth rate

always exceeds the death rate here. Indeed, the BD pro-
cess here for �−Q14t5 is stochastically bounded above by
the queue-length process in an M/M/1/� queue, where
� serves as the size of a finite waiting room. If we take the
asymptotic perspective in §2, this stochastic bound shows
that the difference � − Q1 should be of order O415 as
n→ �. Hence, this adjustment should be asymptotically
negligible in both the diffusion scale (

√
n) and the fluid

scale (n). However, the refinement can help in actual exam-
ples, even large ones with 11000 servers in each pool.

As a refined deterministic fluid approximation, we use
the mean value of the steady-state distribution of the BD
process here. However, by this method, we also obtain
an estimate for the variance and the entire distribution
of Q1. The observed M/M/1 structure indicates that the
distribution of �−Q14t5 should be approximately a trun-
cated geometric distribution. That is quite different from
the approximate normal distribution we derive for the fully
overloaded case in §7.

6. Simulation Experiments to Evaluate
the Steady-State Mean Values

The fully overloaded case. We have developed determin-
istic fluid approximations for the steady-state mean values
in the fully overloaded case via the solutions to the two
equations in (12) and the three equations in (15). We now
compare these approximations to simulation estimates. In
order to use the simulation to substantiate the conjectured
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Table 1. A comparison of the basic fluid approximations based on two equations in (12) and its refinement based
on the three equations in (15) with simulation results in the base case, having m1 = m2 = 100n, �1 = 103n,
�2 = 009n, �111 =�212 = 100, �112 =�211 = 008, �1 = �2 = 002, and �= 001n (rounding up to the nearest integer
if necessary).

n= 25 n= 100 n= 400

Perf. meas. 2 Eq. 3 Eq. Sim. 2 Eq. 3 Eq. Sim. 2 Eq. 3 Eq. Sim

E6Q17 1606 1404 1507 ± 003 6506 6301 6306 ± 109 26202 25907 25803 ± 500
E6Q1/n7 00656 00575 00629 ± 00013 00656 00631 00636 ± 00019 00656 00649 00646 ± 00013
E6Q27 1306 1604 1509 ± 004 5506 5806 5806 ± 108 22202 22503 22309 ± 500
E6Q2/n7 00556 00656 00636 ± 00016 00556 00586 00586 ± 00018 00556 00563 00560 ± 00013
E6D7 — −200 −002 ± 003 — 406 500 ± 001 — 3404 3404 ± 0004
�−E6D7 — 500 302 ± 003 — 504 500 ± 001 — 506 506 ± 0004
E6Z1127 503 508 506 ± 001 2101 2107 2109 ± 0004 8404 8501 8402 ± 102
E6Z112/n7 00211 00231 00224 ± 00003 00211 00217 00219 ± 00004 00211 00213 00210 ± 00003

stochastic process limits in §2, we choose parameters corre-
sponding to scaled systems, indexed by n, letting n take the
values 25, 100, and 400. We have considered much larger n,
such as n = 11000, but from the results for n= 400, we
see that accurate results will be obtained for all n larger
than 400.

We consider the base case, introduced in §4, with r = 1.
This makes the model symmetric and reduces the fast-scale
MP to a BD process. In the online version we present cor-
responding results for asymmetric models. In all our sim-
ulation experiments, we used five independent runs, each
with 3001000 arrivals. We report averages together with the
half-widths of the 95% confidence intervals, based on a t
statistic with four degrees of freedom. Simulation results
for the base case above are presented in Table 1 below.
Table 1 shows both the steady-state mean values and the
associated scaled values (i.e., divided by n). The unscaled
values helps us evaluate the performance of the actual sys-
tem, whereas the scaled values show the convergence of
the stochastic process limits in (3). Table 1 clearly shows
that the level of accuracy grows as n gets larger, but even
for relatively small systems, the fluid approximation gives
reasonable results.

Table 1 also gives the approximation for the steady-state
mean of the unscaled weighted-difference process D4t5 as
developed in §5.1, and compares it to simulation results.
The sixth row in the table is especially insightful. It shows
that E6D7 is about the same distance from �112 for each
n, thus strengthening our claim that D4t5 should have fluc-
tuations of order O415 as n → �. In closing, we remark
that we rounded up the centering constant � to the nearest
integer when n = 25; i.e., we used � = 3 when n = 25. In
the table we show the fluid solution using � = 205 so as
to make the scaled fluid solutions uniform. However, the
solution using �= 3 is similar.

Independent cases. One of our objectives is to avoid
sharing without unbalanced overloads. That occurs in two
scenarios: (i) under normal loads and (ii) under balanced
overloads. In both of these cases, our FQR-T control makes
the X model operate approximately as two independent

M/M/n+M systems, each operating in the QD or QED
regime in the first scenario (depending on the actual load of
each queue), or the ED regime in the second scenario. We
present supporting simulation results in the online version.

The spare-capacity case. For the spare capacity case,
we modify the base case above to make queue-1 over-
loaded, whereas pool-2 has enough spare capacity to poten-
tially serve all the extra class-1 customers. As before, we
just change the arrival rates—in this case, to �1 = 101n and
�2 = 008n.

It is easy to see that pool 2 has spare capacity (in the
fluid scale). We can analyze the available capacity from
this deterministic fluid-approximation perspective as fol-
lows: First, we observe that class 1 has an extra arrival
rate of 001n, whereas pool 2 has 002n “extra” service rate,
assuming that 008n servers are enough to take care of all the
class-2 arrivals. Because pool-2 agents serve class-1 cus-
tomers at rate �112 = 008, we initially estimate that we need
to have at least 00125n pool-2 agents working with class-1
customers. However, upon further analysis, we see that the
number of pool-1 agents needed is actually less than that,
because queue 1 will stabilize at the centering constant
� = 001n, and thus �1Q1 = 0002n class-1 customers will
abandon. Hence, only about 00105n pool-2 agents should
be needed to serve class 1. In any case, pool 2 has spare
capacity.

We compare the approximation from §5.2 with simula-
tion results in Table 2. Our initial approximation for Q1

is �, but that is not shown in Table 2. Instead, we only show
the BD refinement from §5.2. (The cruder approximation
would yield values of 205, 1000, and 4000 in the first row.)
We see that the refined approximation is much better for
large n. For the approximation of Z112, we use

Z112 =
�1 −m1�111 −��1

�112

0 (16)

We obtain (16) using the flow balance reasoning of Perry
and Whitt (2009) by observing that we achieve that value
� for Q1 if and only if Z112 serves to balance the rate in
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Table 2. A comparison of the approximation for the steady-state performance mea-
sures in the spare-capacity case with simulation results.

n= 25 n= 100 n= 400

Perf. meas. Approx. Sim. Approx. Sim. Approx. Sim.

E6Q17 101 303 ± 001 502 604 ± 006 2900 3001 ± 005
E6Q1/n7 0004 0013 ± 0000 0005 0006 ± 0001 0007 0007 ± 0000
E6Q27 0 304 ± 0005 0 207 ± 005 0 100 ± 002
E6Q2/n7 0 0014 ± 0000 0 00027 ± 00005 0 00003 ± 00000
E6Z1127 205 309 ± 001 1000 1202 ± 005 4000 4304 ± 102
E6Z112/n7 00100 00156 ± 00007 00100 00122 ± 00007 00100 00108 ± 00003

Note. The arrival rates are now �1 = 101n and �2 = 008n.

and rate out at queue 1. Because the rate into queue 1
is �1, whereas the rate out is m1�111 + ��1 +Z112�112, we
obtain (16). In order for queue 2 to be empty with the rate
into queue 2 being �2, which is less than or equal to the
maximum rate out of queue 2, which is �2124m2 − Z1125,
to have Q2 = 0 along with Q1 = �, we necessarily have
Z112 <m2.

7. A Diffusion Process Refinement
In the fully overloaded case, we now go beyond the
deterministic fluid approximation to obtain a diffusion
process refinement, which yields a nondegenerate approx-
imation for the steady-state distribution of the two queue
lengths. The approximating distribution is bivariate normal,
where the means are the previous fluid approximations. In
addition, the approximating correlation is 1 and the vari-
ances are

Var4Q15≈
r24�1 +�25

41 + r54r�1 + �25
and

Var4Q25≈
4�1 +�25

41 + r54r�1 + �25
0 (17)

A special case. We base our approximation on a special
case for which we can easily do the asymptotic analysis
exactly, and then we extend the approximation heuristically
to other cases. The special case has �1 = �2 and �112 =�212

(with class 1 overloaded as usual). Under those additional
assumptions, the total queue length Qs4t5≡Q14t5+Q24t5
behaves the same as the queue length in the M/M/m+M
model in the ED regime, as analyzed in Whitt (2004). In
this special case, we can directly obtain a FCLT like (5)
for the total queue-length stochastic process, centered about
the steady-state fluid limit. From Whitt (2004), we see that
the limit is an Ornstein-Uhlenbeck diffusion process with
infinitesimal mean m4x5= −�1x and infinitesimal variance
�2 ≡ �24x5= 24�1 +�25. That diffusion process has a nor-
mal steady-state distribution. We invoke SSC to treat the
individual queue lengths; that yields the correlation 1.

Here are additional details: Because the system is fully
overloaded, as an approximation we assume that all the
agents are busy all the time. (That is asymptotically correct

in the MSHT limit.) Thus, the departure rate by service
completion has the constant value m1�111 + m2�212. The
assumption that �112 =�212 implies that it does not matter
which class the type-2 agents are serving. Because the total
arrival process is a superposition of two independent Pois-
son processes, the total arrival process is directly a Poisson
process with rate �1 +�2. Finally, because �1 = �2, there is
a common abandonment rate for both classes.

A heuristic refinement. Now we heuristically extend
this same tractable OU approximation with a normal
steady-state distribution to more general cases. First, when
�112 6= �212, we again act as if all agents are busy all the
time. The total service rate at time t is then m1�111 +

Z1124t5�112 + 4m2 − Z1124t55�212. To obtain the desired
constant rate, we act as if Z1124t5 is constant, assuming
its deterministic steady-state fluid approximation. This is
a heuristic approximation, because we are ignoring the
stochastic fluctuations in Z112. Experiments show that this
simple approximation works pretty well, but as n→ � in
the ED regime the infinitesimal mean of the scaled queue-
length process does in fact depend on the stochastic behav-
ior of the scaled version of the stochastic process Z112 (as
we would expect); i.e., simulations show that this heuristic
extension is not asymptotically correct as n→ �, but it is
a useful approximation.

We also treat the abandonments in a similar way when
�1 6= �2. We will approximate by a constant abandon-
ment rate applying to all customers. For this step we also
will invoke SSC (ignoring the difference) and assume that
Q14t5 ≈ rQs4t5/41 + r5 (and similarly for Q2). Thus, our
approximating constant abandonment rate to apply to the
total queue length is � ≈ 4r�1/41 + r55 + 4�2/41 + r55.
With the new approximating total service rate and average
abandonment rate, we again are in the domain of an OU
approximation, with normal steady-state distribution. Paral-
leling our previous analysis, we obtain a new approximate
variance for the total queue length,

Var4Qs5≈
41 + r54�1 +�25

4r�1 + �25
0 (18)

Then SSC again gives a joint normal distribution for
4Q11Q25 with correlation 1. The individual variances are
thus approximated by (17).
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Table 3. A comparison of the approximating distributions of steady-state performance mea-
sures in the unbalanced-overload case with simulation results for the base case
with �1 = 103n and �2 = 009n.

n= 25 n= 100 n= 400

Perf. meas. Approx. Sim. Approx. Sim. Approx. Sim.

std4Qs5 1606 1600 ± 003 3302 3307 ± 104 6603 6706 ± 209
std4Q̂s5 3032 3.21 3032 3.37 3032 3.38
std4Q15 803 808 ± 001 1606 1702 ± 007 3302 3309 ± 104
std4Q̂15 1066 1.75 1066 1.72 1066 1.7
std4Q25 803 806 ± 001 1606 1701 ± 007 3302 3309 ± 105
std4Q̂25 1066 1.73 1066 1.71 1066 1.69

Q̂1 quantiles
0.05 −2072 −2075 ± 0006 −2072 −2084 ± 0011 −2072 −2072 ± 0019
0.25 −1012 −1027 ± 0008 −1012 −1014 ± 0003 −1012 −1018 ± 0008
0.75 1012 1013 ± 0008 1012 1014 ± 0008 1012 1011 ± 0008
0.95 2072 2097 ± 0011 2072 2082 ± 0020 2072 2092 ± 0016

Q̂2 quantiles
0.05 −2072 −2094 ± 0014 −2072 −2082 ± 0015 −2072 −2068 ± 0021
0.25 −1012 −1018 ± 0008 −1012 −1014 ± 0004 −1012 −1017 ± 0006
0.75 1012 1018 ± 0007 1012 1014 ± 0009 1012 1011 ± 0008
0.95 2072 2090 ± 0010 2072 2080 ± 0020 2072 2091 ± 0015

Centered D quantiles
0.05 −1704 −1304 ± 007 −1804 −1606 ± 006 −1905 −1802 ± 006
0.25 −704 −600 ± 000 −804 −706 ± 006 −805 −800 ± 000
0.75 −104 −008 ± 006 −104 −100 ± 001 −104 −100 ± 000
0.95 005 500 ± 108 005 100 ± 001 005 100 ± 000

Comparison with simulation. We now compare the
approximating normal steady-state distributions to simula-
tion results. We again consider the base case in Table 1 with
�1 = 103n and �2 = 009n. The results are given in Table 3.

We give the standard deviations of the total queue length
Qs = Q1 + Q2, as well as the two queues. As before, we
treat both the actual values and the scaled values, but now
we are scaling in diffusion scale (dividing by

√
n after sub-

tracting the order-O4n5 mean), as in (4), so that we will
be substantiating the stochastic process limit in (5). To fur-
ther substantiate both the stochastic process limit and the
normal approximations, we also give the quantiles of the
scaled queue lengths Q̂1 and Q̂2. To save space, we omit
the confidence intervals for the scaled standard deviations;
these can be computed from those of the actual queues by
dividing the half-widths by

√
n.

We also give the quantiles for the centered steady-state
queue difference D̃ ≡ D −E6D7. (Table 1 already showed
that the approximation for the mean E6D7 is accurate for
n ¾ 100.) The approximate distribution of D is obtained
from the QBD FTSP. The quantiles of the distribution of
D̃ pose a problem because D is integer valued. We thus
calculate a linear interpolation of two values. For example,
for the 0005 quantile, we took the largest value d0 such
that P4D̃ ¶ d05 < 0005, and linearly interpolate this value
with the smallest value d1 such that P4D̃¶ d15 > 0005. The
linear interpolation becomes just the weighted average of
the two values d0 and d1. As in Table 1, D̃ is not scaled
by any division.

The exact asymptotic distribution. In fact, we have
established an FCLT in Perry and Whitt (2011c) that
yields the exact asymptotic steady-state distribution of
4Q11Q21Z1125. Consistent with above, the distribution is
multivariate normal, but the variances and covariances are
different in general; see Corollary 4.1 of Perry and Whitt
(2011c). The exact asymptotic results show that there is
another term, but it tends to be small. Interestingly, this
second term has a contribution from the asymptotic vari-
ance of the FTSP Dt . Overall, the FCLT provides strong
support for the elementary approximations in (17).

As should be expected, our heuristic OU approximation
deteriorates as the difference between �1 and �2 grows. In
extreme cases it might be safer to use the exact diffusion
limits (which are harder to analyze), especially if the full
distribution of the diffusion approximation is desired. How-
ever, simulation experiments show that even if very large
differences between the abandonment and service rates of
the two classes hold (unlikely in applications), and in addi-
tion the system is only lightly overloaded, the heuristic
OU process still provides surprisingly accurate steady-state
approximations for the variance terms; see EC.6.2 in the
authors’ homepages, where a very extreme case, having �1

ten times larger than �2 and a lightly overloaded system, is
considered.

8. Conclusions
In this paper we have developed the AP and applied it to
describe (i) the transient behavior of the X model during an
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overload incident and (ii) greatly improve the quality of the
steady-state approximation, improving the approximation
of the mean queue lengths and obtaining an approximation
for the full joint distribution of the queue lengths.

Many open problems remain. First, it remains to develop
corresponding performance approximations for the X
model with nonexponential distributions. Second, the whole
discussion was limited to the overloaded two-class-two-
pool X-model setting, but the control and the results should
be extended to other MSHT regimes and more complex
systems, as in Gurvich and Whitt (2009a, b, 2010). For
applications to modern call centers, we would want the
two service systems to be more general than the I mod-
els considered here. Also, we would like to consider shar-
ing among more than two service systems. The QR-T and
FQR-T controls extend quite naturally to more complex
systems, but our mathematical analysis, both here and in
our other papers, evidently does not extend so easily. Such
extensions remain a topic for future research.
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