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We consider an automatic overload control for two large service systems modeled as multiserver queues
such as call centers. We assume that the two systems are designed to operate independently, but want

to help each other respond to unexpected overloads. The proposed overload control automatically activates
sharing (sending some customers from one system to the other) once a ratio of the queue lengths in the two
systems crosses an activation threshold (with ratio and activation threshold parameters for each direction). In
this paper, we are primarily concerned with ensuring that the system recovers rapidly after the overload is
over, either because (i) the two systems return to normal loading or (ii) the direction of the overload suddenly
shifts in the opposite direction. To achieve rapid recovery, we introduce lower thresholds for the queue ratios,
below which one-way sharing is released. As a basis for studying the complex dynamics, we develop a new
six-dimensional fluid approximation for a system with time-varying arrival rates, extending a previous fluid
approximation involving a stochastic averaging principle. We conduct simulations to confirm that the new
algorithm is effective for predicting the system performance and choosing effective control parameters. The
simulation and the algorithm show that the system can experience an inefficient nearly periodic behavior,
corresponding to an oscillating equilibrium (congestion collapse) if the sharing is strongly inefficient and the
control parameters are set inappropriately.
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1. Introduction
An Automatic Overload Control. In this paper, we

study an automatic control to temporarily activate
“emergency” measures in an uncertain dynamic envi-
ronment to mitigate damage from unexpected disrup-
tions, and automatically return to normal operation
when the how and when should the control be acti-
vated? And, second, how and when should the con-
trol be released?

As in our previous papers (Perry and Whitt 2009;
2011a, b; 2013; 2014) the specific setting we consider
(described in detail in §2) involves two large-scale
telephone call centers (or service pools within the
same call center) that are designed to operate inde-
pendently, but have the capability (due to network
technology and agent training) to respond to calls
from the other system, even though there might be
some loss in service effectiveness and efficiency in
doing so. These call centers are designed and man-
aged to separately respond to uncertain fluctuating
demand and, with good practices, can usually do so

effectively; see Aksin et al. (2007) for background.
However, these call centers may occasionally face
exceptional unexpected overloads, due to sudden
surges in arrivals, extensive agent absenteeism, or sys-
tem malfunction (e.g., due to computer failures). It
thus might be mutually beneficial for the two systems
to agree to help each other during such overload inci-
dents by serving some of the other customers.

In our previous papers, we proposed an automatic
fixed-queue-ratio-with-thresholds (FQR-T) overload con-
trol for sharing when needed. While doing that
work, we observed that our proposed FQR-T con-
trol needs to be further modified to ensure that the
system recovers rapidly after an overload is over,
either (i) because the two systems return to normal
loading or (ii) because the direction of the overload
suddenly shifts in the opposite direction; see Perry
and Whitt (2011b, §2.2, paragraph 3) and Perry and
Whitt (2013, Appendix B, Remark B.1). We contribute
now by addressing that recovery problem. We do so
by extending the previous FQR-T control to include
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lower release thresholds (RT), producing a new FQR
control with activation-and-release thresholds (FQR-ART).
To study the system with the new FQR-ART control,
we develop a new approximating six-dimensional
deterministic fluid model, develop an efficient algo-
rithm to analyze that fluid model, and perform sim-
ulation to verify the effectiveness of the control and
the algorithm. We also generalize the previous mod-
els to incorporate the realistic feature of time-varying
arrival rates and staffing functions. We are motivated
by this call center application and queueing model,
but the insights and analytical methods should be
useful for other service systems and queueing models.

Congestion Collapse. An important feature of the
FQR controls is that the sharing may be inefficient.
A simple symmetric example that we will consider
in §4 has identical service rates for agents serving
their own customers, but identical slower service rates
when serving the other customers. With such inef-
ficiency, the whole system will necessarily operate
inefficiently, with lower throughput of both classes,
if both pools are busy serving the other customers
instead of their own. Nevertheless, we find that judi-
cious sharing with our proposed overload control can
be effective even with some degree of inefficiency,
but care is needed in setting the control parameters.
A major concern with such inefficient sharing is that
the system may possibly experience congestion collapse,
i.e., the system may become overloaded due to the
control, even though it has sufficient service capacity
to handle all arrivals; see Erramilli and Forys (1991)
and Shah and Wischiik (2011).

For the model considered here, we show in §4 that
the two call centers can indeed experience behavior
that is best described as congestion collapse if the
sharing is strongly inefficient and an inappropriate
control is used. An unstable oscillating equilibrium is
predicted by our numerical algorithm for the approx-
imating fluid model and confirmed by simulation; see
Figures 3 and 4 later. We perform a detailed rigorous
study of the challenging oscillatory behavior in Perry
and Whitt (2015).

We emphasize that this oscillatory phenomenon is
far from obvious because the stochastic model after
the overload is over (without time-varying param-
eters) is an ergodic time-homogeneous continuous-
time Markov chain (CTMC) with a steady-state lim-
iting distribution. The situation that we consider in
this paper is similar to the nearly periodic behavior
of the G/D/s + GI queue exposed in Liu and Whitt
(2011). Here, by “nearly periodic,” we mean that a
periodic equilibrium exists for the fluid model, and
that any oscillating fluid model will converge to that
equilibrium in an appropriate sense as time increases.
In particular, the fluid model does not have a unique

steady state (fixed point). The reason for the discrep-
ancy between the behavior of the stochastic system
and its fluid model (which is the fluid limit of the
system; see Perry and Whitt 2015) is that the two iter-
ated limits (as time gets large and as the scale of the
system gets large) done in a different order are not
equal.

In this paper, we are primarily interested in iden-
tifying the possibility for congestion collapse due to
oscillation, so that the control is designed appropri-
ately to avoid this phenomenon. In particular, the
fluid model and the algorithm for analyzing that
model that we develop can be used to achieve the
benefits of sharing while avoiding such bad behavior.

Congestion Collapse in the Queueing Literature. With-
in telecommunications there is a long history of
congestion collapse and its prevention in the circuit-
switched telephone network. More than 60 years ago,
it was discovered that the capacity and performance
of the network could greatly be expanded by allow-
ing alternative routing paths; see Wilkinson (1956). If
a circuit is not available on the most direct path, then
the switch can search for free circuits on alternative
paths. The difficulty is that these alternative paths
may use more links and thus more circuits. This prob-
lem was first studied by simulation by Weber (1964).
The classical remedy in such loss networks is trunk
reservation control, where the last few circuits on a
link are reserved for direct traffic; see Feinberg and
Reiman (1994), Kelly (1991, §§4.3–4.5), and references
therein.

Even though a call center can be regarded as a tele-
communications network, our problem is quite differ-
ent from the classical loss network setting discussed
above, because queueing occurs and no customers are
turned away. As a consequence, our system is more
“sluggish;” it responds more slowly to changes in
conditions, and presents new challenges. A thorough
literature review is found in the online supplement
(available as supplemental material at http://dx.doi
.org/10.1287/ijoc.2015.0642) for this paper.

Organization of the Rest of the Paper. In §2, we define
the stochastic X model and the FQR-T and FQR-ART
controls. Building on simple fluid considerations, in
§§3 and 4, we demonstrate the need to modify FQR-T
to rapidly recover after the overload is over. In §3, we
show why RTs are needed. In §4, we show that, unless
precaution is taken, the RTs can cause congestion col-
lapse when the system recovers from an overload.
To avoid that bad behavior, the activation thresholds
need to be increased beyond the FQR-T values. In §5,
we develop the fluid approximation, and in §6, we
develop an efficient algorithm to numerically solve it.
Finally, in §7, we draw conclusions and suggest direc-
tions for further research.
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Additional material appears in an online supple-
ment. The supplement has an extended discussion
about the related literature and our contribution to
that literature; fluid models for an underloaded sys-
tem (when at least one pool has idleness); three
numerical examples that demonstrate the effective-
ness of the FQR-ART control, and the fluid model by
comparing the results of the numerical algorithm for
the ordinary differential equation (ODE) to the results
of simulation experiments; numerical and simulation
examples that demonstrate congestion collapse due to
oscillations; and finally, a fluid model for at least one
pool is underloaded (has some fluid-scaled idleness).

2. The Time-Varying X Model
The X model has two customer classes and two agent
pools, each with many homogeneous agents working
in parallel. We assume that each customer class has a
service pool primarily dedicated to it, but all agents
are cross-trained so that they can handle calls from the
other class, even though they may do so inefficiently,
i.e., customers may be served at a slower rate when
served in the other class pool. We assume that the ser-
vice times are independent exponential random vari-
ables, with 1/�i1 j being the expected time for a class i
customer to be served in service pool j . Each class
has a buffer with unlimited capacity where customers
who are not routed immediately into service upon
arrival wait to be served. Within each class, customers
enter service according to the first-come, first-served
discipline. Customers have limited patience, so that
they may abandon from the queue. The successive
patience times of class i customers are independent
and identically distributed (i.i.d.) exponential vari-
ables with mean 1/�i.

We assume that customers arrive according to inde-
pendent nonhomogeneous Poisson processes, one for
each class, with time-varying deterministic rate func-
tions. The staffing levels are assumed to be time
dependent as well, usually chosen to respond to antic-
ipated changes in the arrival rates; see Liu and Whitt
(2012b), and references therein. As discussed in §1, it
is necessary to specify how the system responds when
the staffing level of a service pool is scheduled to
decrease. We too allow server switching (an agent can
take over service from an agent scheduled to leave).
Because service times are exponential, it thus suffices
to let idle agents leave when staffing decreases, and
the first agent to become idle leaves when all agents
are busy when staffing is scheduled to decrease.

Even though we do not prove any limit theo-
rems here, and instead develop direct fluid mod-
els to approximate the stochastic system, we will
use asymptotic considerations in our analysis. We
therefore consider a sequence of X systems, as just

described, indexed by a superscript n. As is standard
for many-server heavy traffic limits, the service rates
and abandonment rates are independent of n, but the
arrival rates and staffing levels increase. Specifically,
for each n ≥ 1, let �n

i 4t5 be the arrival rate to pool i
and let mn

j 4t5 be the number of agents in pool j at
time t. For the fluid approximation, we assume that

�n
i 4t5/n→ �i4t5 and mn

j 4t5/n→mj4t5

as n→ �1 (1)

uniformly in t over each bounded time interval.
As in Liu and Whitt (2012a), we assume that the

limit functions �i and mj in (1) are piecewise smooth,
by which we mean that they have only finitely many
discontinuities in any finite interval, have limits from
the left and right at each discontinuity point and are
differentiable at all continuity points. That assump-
tion is not restrictive for applications and supports
analysis of the approximating fluid model by differ-
ential equations. For call center applications, it usu-
ally suffices to consider piecewise-constant functions,
but we allow greater generality because our analytical
methods can be applied in other settings, which will
be shown in the following examples.

Let Qn
i 4t5 be the number of customers waiting in

the class-i buffer and Zn
i1 j4t5 be the number of class-i

customers in service pool j at time t in system n. Let
the associated six-dimensional vector process be

Xn
≡Xn4t5≡ 4Qn

i 4t51Z
n
i1 j4t52 i1 j = 11251 t ≥ 00 (2)

To define asymptotic regimes, let �n
i 4t5 2= �n

i 4t5/
4�i1 im

n
i 4t55 be the instantaneous traffic intensity func-

tion of class i (and pool i) alone in system n at time t.
By (1),

�n
i 4t5− 1 → �i4t5 as n→ �1 (3)

uniformly in t over each bounded time interval. We
say that class i (and pool i) is underloaded at time t if
�i4t5 < 0, overloaded at time t if �i4t5 > 0, and normally
loaded at time t if �i4t5= 0.

The generality we have introduced allows for many
possible scenarios, but here we restrict attention to
an unexpected overload incident followed by a subse-
quent instantaneous switch in state, either (i) a return
to normal loading or (ii) a switch in the direction of
overloading. Thus, there are now three intervals: first
normally loaded, then overloaded, and then a final
new regime, which is either normal loading for both
classes or an overload in the opposite direction. Dur-
ing each of these three intervals, the arrival rates and
staffing functions are allowed to change.

Like before, we consider the system starting at the
unanticipated time when the first overload incident
begins. However, now the arrival rates and staffing
functions no longer need to be constant within each
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interval. By assumption, they have discontinuities at
the beginning of the first overload incident and at the
subsequent time when the overload is over. For the
generality that we do consider, we exploit the fact
that we know how to staff to stabilize the fluid sys-
tem in face of time-varying arrival rates under normal
loading; see Liu and Whitt (2012a, b), and references
therein.

We assume that overloads may occur at an unantic-
ipated time due to a sudden shift of the arrival rates
to new and unknown values, or due to an unplanned
decrease in the total service rates (e.g., due to agent
absenteeism). One can then model the problem as a
hybrid stochastic system 4Xn1 p5, where Xn is defined
in (2) and p represents the environment, e.g., p may
achieve the values 01112, where p = 0 represents nor-
mal loads, and p = i stands for a class-i overload
i = 112. However, this approach requires tracking the
arrival and service rates continuously, which may
be hard to do in practice. Instead, we propose a
state-dependent control that can effectively respond to
changes in the system’s loads, and under which Xn is
a nonhomogeneous CTMC.

2.1. The Initial FQR-T Control
Before describing the control, we review the origi-
nal FQR-T control and demonstrate why it must be
adjusted for the time-varying setting considered here.
For each n ≥ 1, the FQR-T control is based on two
positive (activation) thresholds, kn112 and kn211 and the
two queue-ratio parameters, r112 and r211 (which are
chosen independent of n under (1)). We define the
following two (centered) queue-difference stochastic
processes:

Dn
1124t5 ≡ Qn

1 4t5− kn112 − r112Q
n
2 4t5 and

Dn
2114t5 ≡ r211Q

n
2 4t5− kn211 −Qn

1 4t51 t ≥ 00 (4)

As long as Dn
1124t5 < 0 and Dn

2114t5 < 0, we consider the
system to be not overloaded so that no customers are
routed to be served in the other class pool. Indeed,
if the activation thresholds are chosen appropriately,
then the event 8Dn

i1 j4t5 ≥ 09 will occur with proba-
bility converging to 0 as n → � unless �i > 0; we
elaborate below. Once one of these inequalities is vio-
lated, the system is considered to be overloaded, and
sharing is initiated. For example, if Dn

1124t5 ≥ 0, then
class 1 is judged to be overloaded (because then Qn

1 −

r112Q
n
2 ≥ kn112), and it is desirable to send class-1 cus-

tomers to be served in pool 2. Note that Dn
1124t5 ≥ 0

does not exclude the case that class 2 is also over-
loaded; we can have �i4t5 > 0 for both i. However,
once one of the thresholds is crossed, its correspond-
ing class is considered to be “more overloaded” than
the other class. We refer to this situation as unbalanced
overloads. We call kn112 and kn211 activation thresholds,

because exceeding one of these thresholds activates
sharing (and not exceeding prevents sharing when it
is not desired).

The behavior of Xn in (2) depends on the choice of
the thresholds kni1 j . In particular, we want the thresh-
olds to be large enough so that sharing will not take
place if both service pools are normally loaded, and
small enough to detect any overload quickly, and
start sharing in the correct direction once the over-
load begins. Note that without sharing, the two pools
operate like two independent Mt/M/mn

t + M (time-
varying Erlang-A) models. The familiar fluid and dif-
fusion limits for the stationary Erlang-A model give
insight as to how to choose these thresholds; e.g.,
see Garnett et al. (2002) and Pang et al. (2007). In
Perry and Whitt (2013, Assumption 2.4) and Perry
and Whitt (2014, Assumption 3), we assumed that the
activation thresholds are chosen to satisfy

kni1 j/n→ 0 and kni1 j/
√
n→ � as n→ �1

i1 j = 112 with i 6= j0 (5)

The first limit in (5) ensures that overloads are
detected quickly (immediately in the fluid model
obtained as n → �), whereas the second limit in (5)
ensures that stochastic fluctuations of normally loaded
pools will not cause undesired sharing, since the
diffusion-scaled queue in that case are of order

√
n.

Given that the system is designed so that sharing
of customers takes place only during overloads, it is
reasonable to assume that agents serve the other class
customers (the so-called shared customers) at a slower
rate than they serve their own designated customers.
Thus, substantial sharing is likely to reduce the effec-
tive service rate of the helping pool. In our previ-
ous work, we took measures to avoid sharing in both
directions simultaneously. In particular, we imposed
the one-way sharing rule described in §1. However,
it is evident that the one-way sharing rule may con-
siderably slow the recovery after the overload is over.
We elaborate in §3.

To remedy this problem, we could consider remov-
ing the one-way sharing rule altogether and rely
solely on the activation thresholds to avoid undesired
sharing. However, removing the one-way sharing rule
makes it necessary to increase the activation thresh-
olds substantially, increasing the time until overloads
are detected. Moreover, if these thresholds are too
large, then some overloads may not be detected at all,
because abandonment keeps the queues from increas-
ing indefinitely. (Whereas there is also a need to
increase the activation thresholds in our setting here,
that increase is less than would be required if the one-
way sharing was completely removed.) Moreover, if
sharing is taking place in one direction and then
immediately starts in the other direction in response
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to a switch in the overload, then the combined service
capacity of both pools may be reduced significantly,
creating a period of severe congestion in both direc-
tions. Hence, it is beneficial to avoid too much simul-
taneous two-way sharing; see Perry and Whitt (2009,
Example 2). Therefore our new control relaxes the
one-way sharing rule by introducing the RTs alluded
to earlier. We elaborate in the following section.

2.2. The Proposed FQR-ART Control
For the reasons discussed, we suggest a modification
of the one-way sharing rule by introducing RTs. For
each n ≥ 1, we introduce two strictly positive num-
bers �n

112 and �n
211. A newly available type-2 agent is

allowed to take a class-1 customer at time t only if
Zn

2114t5≤ �n
211, i.e., if the number of type-1 agents serv-

ing class-2 customers at the same time t is below �n
211

(and, of course, Dn
1124t5≥ 0), and similarly in the other

direction. Ways to choose the parameters �n
112 and �n

211
will be discussed later.

However, the new RTs allow small simultaneous
sharing in both directions, which can slightly increase
the overload. In some cases, this slight increase in
the overload is sufficient to cause the system to spin
out of control and start to oscillate. The study of that
oscillatory behavior is challenging, and is therefore
rigorously established separately in Perry and Whitt
(2015). Here, we demonstrate these oscillations in a
simulation example; see §4. In particular, the new RTs
make activation thresholds satisfying (5) unsuitable.
We therefore conclude that these activation thresholds
should be positive in “fluid scale,” i.e., they should
be chosen to satisfy

lim
n→�

kni1 j/n= ki1 j > 01 i1 j = 1120 (6)

Thus, the FQR-ART control is specified by the param-
eter six-tuple 4r1121 r2111 k

n
1121 k

n
2111 �

n
1121 �

n
2115 and the

routing and scheduling rules that depend on the val-
ues of the two processes, Dn

i1 j and Zn
i1 j , i 6= j , in the

manner described above. Note that FQR-T requires
knowing only the queue lengths Qn

i 4t5 at each time t
(specifically, the values of the two difference pro-
cesses (4)), whereas FQR-ART also requires knowl-
edge of Zn

112 and Zn
211. Under either control, the X

model is a (possible inhomogeneous) CTMC.

2.3. Analysis via Fluid Approximations
Since the stochastic process Xn in (2) under FQR-ART
is evidently too difficult to analyze exactly, we will
employ a deterministic dynamical system approxima-
tion, and refer to that approximation as “fluid approx-
imation” or “fluid model” interchangeably. The main
idea in using fluid approximations is that, for large n,
X̄n ≈ x, for some deterministic function x that is easier
to analyze than the untractable stochastic process Xn.

We use the “bar” notation throughout to denote fluid-
scaled processes, e.g., X̄n ≡ Xn/n. In particular, the
fluid counterpart of Xn in (2) is the six-dimensional
deterministic function

x ≡ x4t5≡
(

qi4t51 zi1 j4t52 i1 j = 112
)

1 t ≥ 01

where qi and zi1 j are the fluid approximations for the
stochastic processes Qn

i and Zn
i1 j , i1 j = 112. The ap-

proximation X̄n ≈ x should be supported by a func-
tional weak law of large numbers (FWLLN), stating that
X̄n ⇒ x as n → �, extending Perry and Whitt (2013),
but that remains to be established. (However, the
FWLLN has been established for the FQR-T model in
Perry and Whitt 2013.)

The value of the state-dependent control is also
apparent in the fluid approximation, since, if we
were to consider a stochastic hybrid system 4Xn1 p5,
p ∈ P 2= 8011129, as described above, then the fluid
approximation would be a hybrid dynamical system
of the form ẋ = ë4x1p51 for some function ë2 �6 ×

P→�6 that is discontinuous in its first argument due
to (i) the switching of the dynamics caused when-
ever the value of p changes and (ii) state space col-
lapse (SSC) when sharing takes place to keep the two
queues at their designated ratio. Nevertheless, devel-
oping the fluid model for the system under FQR-ART
is still challenging because of the need to “translate”
the control in the stochastic system to a control in the
deterministic dynamical system.

In the stochastic system, customer routing depends
on the values of the difference processes in (4). For
example, if sharing is taking place with pool 2 help-
ing class 1, and assuming Zn

211 ≤ �n
211, the process

Dn
112 determines which customer class a newly avail-

able type-2 agent will take. As shown in Perry and
Whitt (2011a, b; 2013), that convention implies that
the resulting fluid model is much more complicated
than most fluid models in the literature. In particular,
in the fluid system we cannot simply replace the pro-
cess Dn

112 with its fluid counterpart process d1124t5 ≡

q14t5− k112 − r112q24t51 t ≥ 0 when sharing takes place.
In fact, the purpose of the control is to produce SSC by
keeping d112 fixed at 0 during the overload. (Note that,
in that case, the value of the three-dimensional pro-
cess 4q11 z1121 z2115, say, determines the value of the
six-dimensional process x, implying that SSC indeed
occurs.) Hence, a refined asymptotic analysis of the
behavior of Dn

112 (or Dn
211 during overloads in the other

direction) is required. That refined analysis can be
carried out thanks to a stochastic average principle
(AP), which replaces the processes Dn

i1 j , i1 j = 112,
with the long-run average behavior of correspond-
ing limiting stochastic processes. In turn, those deter-
ministic long-run averages determine the evolution of
the fluid model; see §5, where the fluid equations are
developed.
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3. The Need to Relax the One-Way
Sharing Rule

Relying on the fluid approximation, we now demon-
strate why the one-way sharing rule impedes recov-
ery after the overload incident is over. The simple
fluid analysis suggests that RTs provide a good rem-
edy, and helps indicate how they should be chosen.

3.1. The Recovery Time with One-Way Sharing
We consider two consecutive time intervals I1 = 6t01 t15
and I2 = 6t11 t25 with 0 ≤ t0 < t1 < t2 ≤ �, with the sys-
tem being overloaded in opposite direction over each
interval. Suppose that class 2 is overloaded over the
time interval I1 and that sharing is taking place with
pool 1 helping class 2. Then, at time t1, the loads sud-
denly change in such a way that sharing is required
in the other direction. In particular, we assume that
�14t5≤ 0 and �24t5 > 0 for t ∈ I1, whereas �14t5 > 0 and
�24t5≤ 0 for t ∈ I2. We also assume that z2114t15 > 0.

We do two different mathematical analyses. We
first consider a direct fluid model analysis, and then
afterward, we consider the stochastic system. A fluid
approximation for the evolution of Zn

112 (which we
refer to as z1124t5) can easily be derived using rate
considerations. Since every type-1 agent who is help-
ing a class-2 customer at time t > t1 will finish service
immediately after time t at a rate �211, regardless of
the value of t, due to the memoryless property, and
since there are no more class-2 customers routed to
pool 1 after time t1, we expect that z211 will satisfy
the ODE ż2114t5 = −�211z2114t51 t ∈ I21 whose unique
solution is

z2114t5= z2114t15e
−�211t1 t ∈ 6t11 t250 (7)

As a consequence, for the fluid model, if z2114t15 > 0,
then pool 1 will never empty, so that sharing can never
begin in the opposite direction.

We now characterize the random time T n after the
time t1 in the stochastic system with scale n for Zn

2114t5
to first hit 0. The time required for all these customers
to complete service is the maximum of Zn

2114t15 i.i.d.
exponential random variables. It is well known that
the maximum of n i.i.d. exponential random variables
with mean 1 is the harmonic sum Hn ≡

∑n
j=141/j5.

Moreover, it is well known that Hn − loge n → � as
n→ �, where � ≡ 0057721 0 0 0 is the Euler-Mascheroni
constant, e.g., see Young (1991). This limit is relevant
for us, because from the established FWLLN in Perry
and Whitt (2013), we know that having z2114t15 > 0
implies that Zn

2114t15≈ z2114t15n.
Hence, given Zn

2114t15 and its approximate value, for
large n,

E6T n7 =

Zn
2114t15
∑

j=1

1
j ·�211

≈
loge 4Z

n
2114t155

�211

≈
loge 4nz2114t155

�211
0 (8)

We thus see that the expected time required for a pool
to empty its shared customers after an overload is
over, and no new shared customers are routed to that
pool, is of order loge4n5 as n→ �.

3.2. Choosing Appropriate Release Thresholds
The simple considerations leading to (7) and (8) show
that a large system will be slow to recover after
an overload is over. That analysis also helps choose
appropriate RTs. Indeed, the fluid model easily gen-
erates an approximate recovery time. In particular, if
a RT of �211 is used in the fluid model starting with
z2114t15 at time t1, where z2114t15 > �211 > 0, then the RT
will be hit at time

T ≡
1

�211
loge

(

z2114t15

�211

)

0

This analysis indicates that the RTs in stochastic
system n should be of order O4n5 as n increases.
It suffices to pick two strictly positive numbers �112
and �211, and let

�n
112 ≡ n�112 and �n

211 ≡ n�2110 (9)

With the scaling in (9), the recovery time T n in sys-
tem n should be approximately a constant, indepen-
dent of n.

In summary, with FQR-ART, an available type-2
agent is allowed to serve a class-1 customer only if
Zn

2114t5 ≤ �n
211 (or, equivalently, only if Z̄n

2114t5 ≤ �211),
and, of course, Dn

1124t5 ≥ 0, and similarly in the other
direction. The choice in (9) shows that the RTs should
be proportional to n, but does not determine the pro-
portionality constants, �112 and �112. Further analysis
shows that these can be quite small, as we show next.

3.3. Simulation Experiments
To illustrate the importance of the RTs for stochastic
systems, we conducted simulation experiments, com-
paring the performance of a system with and without
RTs. The results can be seen in Figures 2 and 3. The
(fixed) parameters for this simulation are mn

1 = mn
2 =

11000, �n
1 = 11200, �n

2 = 990, �111 = �212 = 1, �112 =

�211 = 005, �n
112 = �n

211 = 100, r112 = r211 = 1.
Here, we can think of n as being fixed and equal

to 11000. With these parameters, �n
1 = 102 and �n

2 =

0099, where �n
i ≡ �n

i /4m
n
i �i1 i5, so that class 1 may

be regarded as overloaded, whereas class 2 may be
regarded as normally loaded (recall (3)).

To respond to that unbalanced overload by hav-
ing pool 2 help class 1, we should have Zn

112 > 0 and
Zn

211 = 0 if one-way sharing is employed. However, we
initialize the system at time 0 sharing in the oppo-
site direction, with all pool-1 agents serving class-2
customers. We are interested in the time it takes the
stochastic process Zn

211 to reach 0, so that the desired
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Figure 1 (Color online) Shared Customers When Initialized Incorrectly
Without Any Release Thresholds

sharing can begin. Without RTs, the required recov-
ery time is quite long, approximately 21 (mean ser-
vice times of their own type). In contrast, with RTs of
only �n

112 = �n
211 = 0001n= 10, that time is reduced from

about 21 to 9 service times. Thus, clearing the last 1%
of the class-2 customers in pool 1 without RTs takes
more than half the total clearing time.

We hasten to admit that we just considered an
extreme example in which all service pool 1 is ini-
tially busy with customers from class 2. We did so to
convey the message that it is the last few agents work-
ing with class 1 that cause the largest part of the delayed
response. In particular, the Zn

211 process decreases fast
at the beginning, but then the decrease rate slows
down considerably.

From Figures 1 and 2, it is also easy to see what
happens in less extreme cases, when 0 <Z211405 <m1.
For example, if we initialize with 20% sharing in the
wrong direction, we see that, without a RT, the time to
activate sharing in the right direction is about 21−4 =

17 time units. In contrast, with RTs, it is about 9−4 =

5 time units. Figures 1 and 2 show that the common
value 4 in these calculations is the time to go from
100% sharing in the wrong direction to only 20% shar-
ing in the wrong direction, which would be the same
in the two cases. When we start with a lower percent-
age of agents sharing the wrong way, the difference
becomes even more dramatic, because we eliminate a
common initial period (here of length 4 time units).

4. Congestion Collapse Due to
Oscillations

Section 3 dramatically showed the need for the RTs
when the direction of the overload suddenly shifts.
However, a more common case is for the two systems
to simply return to normal loading, after which no
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Figure 2 (Color online) Shared Customers When Initialized Incor-
rectly, with Release Thresholds �112 = �211 = 0001

sharing in either direction is desired. We now show
that RTs can cause serious problems when the sys-
tem returns to normal loading after an overload inci-
dent if the activation thresholds are too small. In this
case, there is a potential difficulty when the ineffi-
cient sharing condition holds, i.e., when �111 > �211
and �212 >�112, which is what we now assume. In this
case, RTs combined with small activation thresholds
can lead to oscillatory poor performance. Indeed, the
small number of shared customers, under the restric-
tion imposed by the RTs, can lead to minor overloads
that may trigger undesirable sharing if the activation
thresholds are too small. (The simplest example is
when kn112 = kn211 = 0, in which case, it is intuitively
clear that sharing will be activated and switch sides
often.)

We emphasize that, even though the performance is
oscillatory, the model after the overload is over a (nec-
essarily aperiodic) positive recurrent and stationary
time-homogeneous CTMC when there is abandon-
ment (as discussed in §1), and when the staffing func-
tions and arrival rates are fixed, time-independent
functions.

4.1. Simulations of Oscillating Systems with
Inefficient Sharing

The oscillatory behavior occurs for systems with
abandonment, but it is often hard to detect, because
the abandonment ensures that the stationary stochas-
tic system after the overload has ended is stable and
it dampens any oscillatory behavior. To demonstrate
dramatically, we simulated a system with extreme
and unrealistic parameters. (We show a realistic exam-
ple below.) In this extreme example, we let �111 =

�212 = 1, �112 = �211 = 001, and �1 = �2 = 0001. We take
ratio parameters ri1 j , activation thresholds kni1 j = 10,
and RTs �n

i1 j = 1 for i1 j = 112 and i 6= j . We start the
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Figure 3 (Color online) Oscillations of Z̄n
112 in the Extreme Example

system with both pools busy serving their own class,
but no queues, i.e., Zn

111405=Zn
212405= 100 and Qn

1 405=

Qn
2 405 = 0. Figures 3 and 4 show that the oscillatory

behavior remains. Moreover, Figure 4 suggests that
Qn

2 (and, by symmetry, also Qn
1 ) stabilizes at an over-

loaded oscillatory equilibrium. The oscillatory behav-
ior in Figures 3–4 may be surprising at first, because
the underlying (time-homogeneous) CTMC after the
overload has ended is ergodic, as we previously men-
tioned. Fortunately, the fluid model provides valuable
insight, as we explain in §4.2.

We now consider a less extreme, more realistic
example in which the sharing service and abandon-
ment rates are changed to �112 = �211 = �1 = �2 = 005.
First, Figure 5 shows the proportion of shared cus-
tomers over time with the previously specified acti-
vation thresholds of kni1 j = 10, but we now consider a
system that is recovering from an overload in which

0 500 1,000 1,500
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Time

Figure 4 (Color online) Oscillating Stable Behavior of Q̄n
2 in the

Extreme Example
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Figure 5 (Color online) Oscillations of Z̄n
112 in the

More Realistic Example with kn
i1 j = 10

pool 1 was helping class-2 customers. In particular,
there are initially 20 type-1 agents helping class-2 cus-
tomers. By taking this initial condition, we are con-
sidering a system that starts “worse off” than before,
because it is initially overloaded. (In the other two
examples, the systems were initialized empty.) We
consider the time interval 6011007 to make the figures
clear, but the behavior shown in the figures below
remained for the whole duration of the simulation
(which lasted for 1,500 time units).

In this case, substantial customer abandonment sig-
nificantly dampens the sharing oscillations seen pre-
viously. Nevertheless, Figure 5 shows that the pools
share repeatedly in an oscillating manner over the
time interval 6011007. Although the long-run aver-
age number of agents that are helping the other class
is not significant, this oscillatory behavior, is clearly
undesirable. We do not show figures of the queues
because they are uninformative (the oscillations are
insignificant). Hence the bad behavior in a system
with a relative substantial customer abandonment
may be hard to detect by only observing the queues,
so that a system with no abandonment or low aban-
donment rate, gives important insights.

To remedy the problem in Figure 5, we propose
increasing the activation thresholds. With larger acti-
vation thresholds, the increased stochastic fluctua-
tions due to having some shared customers in both
pools do not initiate undesirable sharing. We again
refer to Perry and Whitt (2015) for detailed analysis.
To illustrate the potential benefit, Figure 6 shows the
sharing when the activation thresholds are increased
to kni1 j = 35, i1 j = 112 with all other parameters
kept the same. Even though some customers are
shared occasionally, especially just after the overload
is over, the oscillatory behavior is minimal and decays
quickly.
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Figure 6 (Color online) Fewer Oscillations in Z̄n
112 in the More Realistic

Example with kn
i1 j = 35

4.2. Insight from the Deterministic Fluid Model
In the examples we have just considered, the six-
dimensional stochastic process Xn in (2) describing
the system performance after the overload incident
has ended is a stationary CTMC. With customer
abandonment, that CTMC is necessarily stable, so
that with FQR-ART and any parameter setting, the
stochastic process Xn in (2) necessarily has a unique
steady-state distribution. Nevertheless, we have just
seen that the system can exhibit quite complex unde-
sirable behavior for some initial conditions if the con-
trol parameters are not set properly.

Fortunately, the fluid model we develop provides
an effective means to study the complex system per-
formance and set the control parameters. The oscillat-
ing behavior we see in the simulations looks periodic,
but it is not quite; it is nearly periodic, like in Liu and
Whitt (2011). The system becomes more nearly peri-
odic as the scale increases. In the many-server heavy
traffic limit, the stochastic process Xn approaches the
deterministic solution of the fluid model we introduce
next to serve as an approximation. From the algorithm
for that fluid model, we see that it possesses a peri-
odic equilibrium for some initial conditions.

As a consequence, the fluid model can be bistable;
it can have a periodic equilibrium in addition to a
stable equilibrium, depending on the initial condi-
tions. Consequently, the order in which two differ-
ent limits occur leads to different stories. As time
increases, for any fixed scale, the stochastic pro-
cess approaches its unique steady-state distribution.
In contrast, as the scale increases, a properly scaled
version of the stochastic process approaches a deter-
ministic function, which can be periodic. Thus the
fluid model provides important insight: an oscilla-
tory fluid approximation implies that a corresponding

large system experiences oscillatory behavior for pro-
hibitively large time intervals, even though it is essen-
tially a stationary CTMC. In Perry and Whitt (2015),
we prove that the fluid models can exhibit this bista-
bility. Here, it is verified numerically by applying the
fluid algorithm.

5. The Fluid Model
The fluid model approximating the stochastic sys-
tem Xn under FQR-ART is described as the solu-
tion to an ordinary differential equation (ODE), but
that ODE depends on a stochastic averaging princi-
ple (AP). In this section, we derive that ODE via a
heuristic representation of the inhomogeneous CTMC
in (2). The reasoning in the justification of the fluid
model approximation parallels the heuristic engineer-
ing discussion in Perry and Whitt (2011a), to which we
refer for more discussion. For mathematical support
for that reasoning, see Perry and Whitt (2011b, 2013).

5.1. Representation of the Stochastic System
During Overloads

The sample paths of the queueing system can be
represented in terms of its primitive processes, i.e.,
the arrival, abandonment, and service processes, as a
function of the control. Unlike traditional fluid mod-
els, in which the primitive stochastic processes are
replaced by their long-run rates, the deterministic
fluid model here is more involved and includes a
stochastic ingredient in the form of a stochastic AP,
which we describe in detail in §5.2.

Even though we are not proving that the fluid
model arises as a weak limit of the fluid-scaled
stochastic system, we need to take asymptotic consid-
erations to develop the fluid approximation. We thus
start with a representation of the stochastic system
during overloads, assuming that both service pools
are full over an interval 601T 7, i.e.,

Zn
1114t5+Zn

2114t5 = mn
14t5 and

Zn
2124t5+Zn

1124t5 = mn
24t51 t ∈ 601T 70 (10)

During the time interval 601T 7 no customers can enter
service immediately upon arrival, and so all cus-
tomers are delayed in queue. For simplicity, we first
consider intervals over which the staffing functions
are continuous and differentiable everywhere. In the
online supplement (Figure 13), we give an example of
a staffing function with discontinuity.

We represent the sample paths of Xn as random
time changes of independent unit rate Poisson pro-
cesses, as reviewed in Pang et al. (2007). Let

An
1124s5 ≡

{

8Dn
1124s5>09∩8Zn

2114s5≤�n
2119

}

and

An
2114s5 ≡

{

8Dn
2114s5>09∩8Zn

1124s5≤�n
1129

}

1 (11)
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the representation of Qn
1 over 601T 7 is

Qn
1 4t5 = N a

1

(

∫ t

0
�n

14s5 ds

)

−N u
1

(

�1

∫ t

0
Qn

1 4s5 ds

)

−N+

1

(

∫ t

0
1An

1124s5
4�111Z

n
1114s5+�112Z

n
1124s5

+�211Z
n
2114s5+�212Z

n
2124s55 ds

)

−N−

1

(

∫ t

0
41 − 1An

1124s5
− 1An

2114s5
5

· 4�111Z
n
1114s5+�211Z

n
2114s55 ds

)

1

where N a
1 1N

u
1 1N

+

1 , and N−
1 are mutually independent

unit rate (homogeneous) Poisson processes, and 1A is
the indicator function that is equal to 1 if event A
occurs, and 0 otherwise.

Note that the representation of Qn
1 is essentially a

flow conservation equation (based on the memoryless
property of the exponential distribution). That is, the
queue at time t is all those customers who arrived by
that time, captured by the Poisson process N a

1 , minus
all the customers who abandoned, captured by the
Poisson process N u

1 , minus all those who were routed
into service, as captured by the last two Poisson pro-
cesses in the expression. Similar expressions hold for
the other processes in Xn.

We elaborate on how the intensities of the last two
Poisson processes in the right-hand side (RHS) of
the representation were obtained. First, if at time s ∈

601T 7, the event An
1124s5 in (11) holds, then any

newly available agent in the system will take his
next customer from the head of queue 1. Because
agents become available at an instantaneous rate
∑

i1 j �i1 jZ
n
i1 j4s5 at time s, we get the third component in

the RHS of Qn
1 4t5. Next, we recall that, by the routing

rule of FQR-ART, if at a time s ∈ 601T 7 An
2114s5 in (11)

holds, then any newly available agent takes his next
customer from queue 2, in which case queue 1 will not
decrease due to a service completion. If neither of the
events An

1124s5 or An
2114s5 holds at a time s, then only

service completions at pool 1 will cause a decrease
at queue 1 due to a customer from that queue being
routed to service. That explains the last term in the
RHS of the representation.

Next, we exploit the fact that each of the Pois-
son processes in the representation minus its random
intensity constitutes a martingale; again, see Pang
et al. (2007) and Perry and Whitt (2013); e.g.,

Mn1u
1 ≡N u

1

(

�1

∫ t

0
Qn

1 4s5 ds

)

− �1

∫ t

0
Qn

1 4s5 ds

is a martingale. Thus, subtracting and then adding
all the random intensities, and using the fact that
a sum of martingales is again a martingale, we get

the following representation for the processes Qn
11Q

n
21

Zn
1121Z

n
211 (the remaining two processes Zn

111 and Zn
212

are determined by (10)):

Qn
1 4t5 = Mn

1 4t5+
∫ t

0
�n

14s5ds−
∫ t

0
�1Q

n
1 4s5ds

−

∫ t

0
1An

1124s5

(

�111Z
n
1114s5+�112Z

n
1124s5

+�211Z
n
2114s5+�212Z

n
2124s5

)

ds

−

∫ t

0

(

1−1An
1124s5

−1An
2114s5

)

·
(

�111Z
n
1114s5+�211Z

n
2114s5

)

ds1

Qn
2 4t5 = Mn

2 4t5+
∫ t

0
�n

24s5ds−
∫ t

0
�2Q

n
2 4s5ds

−

∫ t

0
1An

2114s5

(

�111Z
n
1114s5+�112Z

n
1124s5

+�211Z
n
2114s5+�212Z

n
2124s5

)

ds

−

∫ t

0

(

1−1An
1124s5

−1An
2114s5

)

·
(

�212Z
n
2124s5+�112Z

n
1124s5

)

ds1

Zn
1124t5 = Mn

1124t5+
∫ t

0
1An

1124s5
�212Z

n
2124s5ds

−

∫ t

0
41−1An

1124s5
5�112Z

n
1124s5ds1

Zn
2114t5 = Mn

2114t5+
∫ t

0
1An

2114s5
�111Z

n
1114s5ds

−

∫ t

0
41−1An

2114s5
5�211Z

n
2114s5ds1 (12)

where Mn
1 1M

n
2 1M

n
112, and Mn

211 are the martingale
terms alluded to above. It is not hard to show that
those martingales are negligible in the fluid scaling
(divided by n, e.g., M̄n

i ≡ n−1Mn
i ), i.e., that M̄n

i ⇒ 0
and M̄n

i1 j ⇒ 0 as n → �, uniformly over 601T 7, i1 j =

112; see, e.g., Perry and Whitt (2013, Lemma 6.1).
Hence we consider those martingales like a negligible
stochastic noise that can be ignored for the purpose
of developing the fluid approximation for (12). The
resulting fluid approximation is for the fluid-scaled
process X̄n ≡ n−1Xn, applying as n gets large.

When we let n→ �, we want to replace the stochas-
tic integral representation in (12) with a determinis-
tic one. To do that, we need to replace the indica-
tor functions with smooth functions. This is where
the AP comes in. What we do is replace the term
18Dn

1124t5>09 by the steady-state probability that an asso-
ciated fast-time-scale process (FTSP) is greater than or
equal to 0, denoted by �1124x4t55, which is a function
of the fluid state at time t, x4t5. Both x4t5 and �4x4t55
turn out to be a continuous function of t. This compli-
cated step requires more explanation and justification,
which again was the subject of our previous papers.
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We give a brief account in the rest of this section
and the following one. We start by assuming that
there is a fluid limit X̄n ⇒ x as n → � for Xn in (12),
where the limit x is a deterministic function that is
continuous and differentiable. (This fact can be shown
to hold by a minor modification of Perry and Whitt
2013, Corollary 5.1.) For any fluid point x4t5, let

d1124x4t55 ≡ q14t5− r112q24t5− k112 and

d2114x4t55 ≡ r211q24t5− q14t5− k2110

We first observe that, if di1 j4x4t55 > 0, then since di1 j4 · 5
is a continuous function, di1 j is strictly positive over
an interval, and similarly if di1 j < 0, i1 j = 112. In
such cases, the indicator functions are easy to deal
with because each is a constant over the interval, and
equals either 1 or 0. For example, if d1124x4t55 > 0
for t ∈ 6s11 s25 for some 0 ≤ s1 < s2 < �, and in addi-
tion, Zn

2114t5 ≤ �n
211 over that interval for all n large

enough, then

1An
1124t5

≡ 188Dn
1124t5>09∩8Zn

2114t5≤�n21199

= 16s21 s25
4t51 for all n large enough0 (13)

Hence, a careful study is required for all x4t5 = � in
the boundary sets defined by

�112 ≡ 8� ∈�62 d1124�5= 09 and

�211 ≡ 8� ∈�62 d2114�5= 090

FQR-ART aims to “pull” the fluid model to one
of these two boundary sets during overloads, when
sharing is actively taking place, i.e., �i1 j is the region
of the state space where we aim the fluid model to be
when pool j helps class i, i1 j = 112.

Unfortunately, there is no straightforward fluid
counterpart to the stochastic processes Dn

112 and Dn
211

when the fluid is in the boundary sets. More specif-
ically, if x4t5 ∈ �112 for all t in some time interval
6s11 s25, then Dn

112 will fluctuate about the thresh-
old kn112 over that time interval for all n ≥ 1. In that
case, the indicator function in the RHS of (13) can-
not be replaced by 1 or 0 in the fluid model, because
the probability that Dn

112 ≥ kn112 does not converge to 0
or 1 as n→ � over 6s11 s25. The fluid dynamics in the
boundary set �i1 j require a refined analysis of the cor-
responding difference process Dn

i1 j , which takes into
account asymptotic reasonings, as we explain later.

5.2. A Stochastic Averaging Principle
For the discussion now, assume that the fluid limit
function x is at the boundary set �112 over an interval,
i.e., x ∈ �112 over some interval 6t11 t27, and consider
the prelimit process Dn

112 over that time interval. As
explained in the paragraph above, this implies that
Dn

112/n⇒ d112 ≡ 0 as n→ �, where 0 denotes here the

function that is identically 0, so that it is not imme-
diately clear what is the limit of the indicator func-
tions 1An

i1 j
, i1 j = 112. To determine the fluid limit of

X̄n in that case, we must consider the behavior of
the unscaled process Dn

112 over 6t11 t27, paralleling the
analysis in Perry and Whitt (2013).

Specifically, to apply the results in Perry and Whitt
(2013), we assume (for now) that the arrival rates are
fixed (the arrival processes are homogeneous Poisson
processes) and that Zn

211 < �n
211, so that routing is deter-

mined solely on the value of Dn
112. In particular, shar-

ing can take place if Dn
1124t5 > 0. Then, by Perry and

Whitt (2013, Theorem 4.5),

Dn
1124t5⇒D1124x4t51�51 in � as n→ �1 (14)

where t is fixed (the convergence holds in �), and
D1124�1 ·5 ≡ 8D1124�1 s52 s ≥ 09 is a CTMC associated
with � ∈ �6 whose distribution is determined by the
value �. (There is a different process for each �.)

An analogous result holds for Dn
211 when the fluid

limit satisfies x ∈ �211 over an interval. The nota-
tion Di1 j4�1�5 stands for a random variable that has
the steady-state distribution of the CTMC Di1 j4�1 ·5.
Loosely speaking, Dn

i1 j moves so fast when x is in �i1 j ,
that it reaches its steady state instantaneously as
n→ �. Hence we call the limiting process Di1 j4�1 ·5
the FTSP associated with the point �, or simply the
FTSP. Since we are interested in analyzing the indica-
tor functions in (12), we first define for all � ∈�6

Di1 j4�1 ·5 ≡ +� if di1 j4�5 > 0 and

Di1 j4�1 ·5 ≡ −� if di1 j4�5 < 00

Next, for � ∈�112 and � ∈�211, respectively, we define

�1124�5 ≡ P4D1124�1�5 > 05 and

�2114�5 ≡ P4D2114�1�5 > 050 (15)

Now, by Perry and Whitt (2013, Theorem 4.1), which
was proved for the process Dn

112 when x ∈ �112, and
assuming that Zn

2114s5≤ �n
211 over 6t11 t27 for all n large

enough, we have that, as n→ �,

∫ t2

t1

1An
1124s5

ds ≡

∫ t2

t1

188Dn
1124s5>09∩8Zn

2114s5≤�n21199
ds

⇒

∫ t2

t1

�1124x4s55 ds0

Similarly, if x ∈ �211 over an interval 6t31 t47, and
Zn

1124s5 ≤ �n
112 for all n large enough over that inter-

val, we have
∫ t4
t3

1An
2114s5

ds ⇒
∫ t4
t3
�2114x4s55 ds. The con-

vergence in both equations holds uniform. We called
these limits a “stochastic averaging principle,” or sim-
ply an AP, since the process Dn

i1 j4t5 is replaced by the
long-run average behavior of the corresponding FTSP
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Di1 j4x4t51 ·5 for each time t over the appropriate inter-
val. If the family of FTSP’s Di1 j4x4t51 ·5 is positive
recurrent for all t ∈ I ≡ 6t11 t25, then the AP implies
that SSC holds over the time interval I , because
the stochastic fluctuations of the FTSP, and therefore
of its prelimit Dn

i1 j4t5, t ∈ I , are oP 4n5, where oP 4n5
denotes a random variable satisfying oP 4n5/n⇒ 0 as
n→ �; see Perry and Whitt (2013, Theorem 4.5 and
Corollary 4.1).

In the FQR-ART settings, the AP holds under the
assumption that Zn

i1 j lies below the appropriate RT
over the interval 6t11 t27 for all n large enough (i.e.,
with probability converging to 1 as n → �). If Zn

i1 j is
larger than the appropriate RT for all n large enough
(again, with probability converging to 1) over 6t11 t27,
then the limit of the integral considered above is
clearly the 0 function. It remains to rigorously prove
convergence theorems at points at which Zn

i1 j4t5 =

�n
i1 j +oP 4n5. However, it is not hard to determine what

the dynamics of the limit should be at such points if
the limit exists, as shown in the following heuristic
fluid approximation.

5.3. Representation via an ODE
The heuristic limiting arguments lead to the fol-
lowing fluid approximation for the X system under
FQR-ART during overload periods. Considering an
interval 601T 7 for which z1114t5 + z2114t5 = m14t5 and
z2124t5+ z2124t5 = m24t5 for all t ∈ 601T 7, together with
an initial condition x405, the fluid model of Xn is the
solution x ≡ 8x4t52 t ≥ 09 over 601T 7 to the ODE:

q̇14t5 = �14t5− �1q14t5−ç1124x4t55

·
(

�111z1114t5+�112z1124t5

+�211z2114t5+�212z2124t5
)

−
(

1 −ç1124x4t55−ç2114x4t55
)

·
(

�111z1114t5+�211z2114t5
)

1

q̇24t5 = �24t5− �2q24t5−ç2114x4t55

·
(

�111z1114t5+�112z1124t5

+�211z2114t5+�212z2124t5
)

−
(

1 −ç1124x4t55−ç2114x4t55
)

·
(

�212z2124t5+�112z1124t5
)

1

ż1124t5 = ç1124x4t55�212z2124t5

−
(

1 −ç1124x4t55
)

�112z1124t51

ż2114t5 = ç2114x4t55�111z1114t5

−
(

1 −ç2114x4t55
)

�211z2114t51

ṁ14t5 = ż1114t5+ ż2114t51

ṁ24t5 = ż2124t5+ ż1124t51 (16)

where, for �i1 j4x4t55 in (15), i1 j = 112,

çi1 j4x4t55 2=

{

�i1 j4x4t551 if zj1 i4t5≤ �j1 i3

01 otherwise.

We remark that the ODE (16) can be equivalently
represented by an integral equation resembling (12),
but with the negligible martingale terms omitted, all
the stochastic processes replaced by their fluid coun-
terparts, and the indicator functions replaced by the
appropriate çi1 j functions.

In practice, we do not a priori know the value of T ,
and there is a need to make sure that the ODE is
a valid approximation for the stochastic system. We
consider the ODE (16) valid (i.e., a legitimate repre-
sentation of the evolution of the system) as long as
the following two conditions are satisfied: (i) the two
queues are strictly positive and (ii) if a queue is equal
to 0 at some time t ≥ 0, then the derivative of that
queue is nonnegative at time t (so that the queue is
nondecreasing at this time). When the ODE (16) is not
valid, then other fluid models should be employed to
approximate the system. We discuss such scenarios in
the online supplement.

We elaborate on condition (ii). Consider, for exam-
ple, the ODE for q1 and assume that q14t5 = 0 and
q̇14t5 < 0 for some t ≥ 0. Necessarily ç1124x4t55 = 0,
because d1124x4t55 ≤ 0, and the assumption that
q̇14t5 < 0 implies that

�14t5−41−ç2114x4t5554�111z1114t5+�211z2114t55<00 (17)

In addition, since all the class-1 arrivals must imme-
diately enter service (for otherwise, the queue will
be increasing), it also holds that ż1114t5 = �14t5 −

�111z1114t50 Hence

ż1114t5+ ż2114t5

=�14t5−�111z1114t5+ç2114x4t55�111z1114t5

−
(

1−ç2114x4t55
)

�211z2114t5

=�14t5−
(

1−ç2114x4t55
)(

�111z1114t5+�211z2114t5
)

(18)

so that, by (17), ż1114t5+ ż2114t5 < 0.
Now, since ṁ14t5 = ż1114t5 + ż2114t5, we see that

pool 1 can remain full just after time t only if m14t5
happens to decrease exactly as in (18). However, q1 is
becoming negative, so that the ODE is not valid. In
contrast, if (18) holds (which ODE (16) enforces to be
equal to ṁ14t5) and q14t5= 0, then necessarily q̇14t5 < 0,
so that the queue is becoming negative. In either case,
we see that the ODE is valid as an approximation for
the stochastic system when q14t5= 0 only if pool 1 can
be kept full without enforcing q1 to become negative.
Similar reasonings hold for the q2 and m2 processes.
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Remark 1. A proof of existence of a unique solu-
tion to the ODE (16) following the lines of Perry and
Whitt (2011b) requires showing that the RHS is a
local Lipschitz continuous function of x and is piece-
wise continuous in t. We do not prove such a result
here, but it is important to consider arrival rates and
staffing functions that ensure that the right side of
the ODE satisfies the piecewise continuity condition
in the time argument.

6. Solving the ODE
To appreciate that the algorithm cannot be a routine
solution of an ODE, observe that computing the solu-
tion to (16) requires computing the two steady-state
probabilities, �1124x4t55 and �2114x4t55, for all times t
and states x4t5 ∈ �6. Simplification is achieved when
r112 = r211 = 1, because the FTSP’s Di1 j4x4t51 ·5, i1 j =

112, become simple birth-and-death (BD) processes. To
facilitate the discussion, we thus consider this simpler
case and refer to Perry and Whitt (2011b, §6.2) for the
treatment of the FTSP D112 as a quasi-birth-and-death
process (QBD) when the ratio parameters are not equal
to 1. See also Remark 3 and the online supplement.

For simplicity, we again start by assuming that the
arrival processes are homogeneous Poisson processes,
having constant arrival rates �1 and �2 over 601T 7,
and that the staffing functions are also fixed over that
time interval at m1 and m2. Recall that Di1 j4�1 ·5 ≡

� if di1 j4�5 > 0 and Di1 j4�1 ·5 ≡ −� if di1 j4�5 < 0,
and let �112 and �211 be the subsets of �6 in which
the FTSP’s D1124�1 ·5 and D2114�1 ·5 are positive recur-
rent, i.e.,

�112 ≡ 8� ∈�1122 0 <�1124�5 < 19 and

�211 ≡ 8� ∈�2112 0 <�2114�5 < 190 (19)

By definition, if the fluid model at time t is in �i1j , i.e.,
x4t5∈�i1j , then di1j4x4t55=0. However, if di1j4x4t55=0,
then x4t5 is not necessarily in �i1 j , because the FTSP
Di1 j4x4t51 ·5 may be transient (drift to +� or −�) or
null recurrent; in particular, the evolution of the fluid
model is determined by the distributional characteris-
tics of the FTSPs D112 and D211. Hence, even before we
try to compute �i1 j4x4t55, which is necessary to solve
the ODE (16), there is a need to determine whether
x4t5 is in one of the sets �112 or �211. We focus on D112
with the analysis of D211 being similar.

To determine the behavior of the FTSP D112, it
is again helpful to think of x as a fluid limit of
the fluid-scaled sequence 8X̄n2 n ≥ 19 and to recall
that D112 was achieved from Dn

112 in the limit without
any scaling; see (14). (See also Perry and Whitt 2013,
Theorem 4, which provides a process-level limit relat-
ing D112 and Dn

112.) Hence, both processes are defined
on the same state space, which for r112 = 1, is � ≡

80 0 0 1−110111 0 0 0 9.

Let s ≥ 0 denote the fast-time scale, so that for each
fixed x4t5, 8D1124x4t51 s52 s ≥ 09 is a BD process. The
BD rates of the FTSP associated with the point x4t5,
D1124x4t51 · 5, can be inferred from the value of x4t5
and the instantaneous random rates of the prelimit
process Dn

112: If at a time s ≥ 0 D1124x4t51 s5 = m > 0,
the BD rates of the FTSP are, respectively,

�+4x4t51m5 ≡ �1 + �2q24t51

�+4x4t51m5 ≡ �2 +�111z1114t5+�112z1124t5

+�211z2114t5+�212z2124t5+ �1q14t50

In analogy to the (non-Markov) process Dn
112 = Qn

1 −

Qn
2 − kn112, �+4x4t51m5 corresponds to an increase of

D112 due to arrival to queue 1 plus an abandonment
from queue 2 (since either one of these two events
cause an increase by 1 of Dn

112 in the stochastic sys-
tem). Because any other event causes Dn

112 to decrease
by 1, due to the scheduling rules of FQR-ART, we get
the expression for �+4x4t51m5.

Next, if at time s ≥ 0, D1124x4t51 s5 = m ≤ 0, the BD
rates are, respectively,

�−4x4t51m5 ≡ �1 +�212z2124t5+�112z1124t5+ �2q24t51

�−4x4t51m5 ≡ �2 +�111z1114t5+�211z2114t5+ �1q14t50

Again, whenever Dn
112 is nonpositive and sharing is

taking place with pool 2 helping class 1, a “birth”
occurs if there is an arrival to queue 1 or an abandon-
ment from queue 2, or if there is a service completion
in pool 2 (since then, a newly available type-2 agent
takes his next customer from queue 2). Similarly, a
“death” occurs if there is an arrival to class 2, an aban-
donment from queue 1, or a service completion in
pool 1.

We see that the FTSP D1124x4t51 ·5 is a two-sided
M/M/1 queue, i.e., it behaves like an M/M/1 queue
with “arrival rate” �+4x4t51m5 and “service rate”
�+4x4t51m5 for all m > 0, and behaves like a differ-
ent M/M/1 queue with “arrival rate” �−4x4t51m5 and
“service rate” �−4x4t51m5 for all m≤ 0. Thus, for

�+4�5≡ �+4�1 ·5−�+4�1 ·5 and

�−4�5≡ �−4�1 ·5−�−4�1 ·51 � ∈�1121

the set �112 can be characterized via �112 ≡ 8� ∈ �112:
�+4�5 < 0 < �−4�590 Next, letting T +4�5 and T −4�5
denote, respectively, the busy period of the M/M/1 in
the positive region and the busy period of the M/M/1
in the negative region, and using simple alternating
renewal arguments for the renewal process D1124�1 ·5,
we have

�1124�5=
E6T +4�57

E6T +4�57+E6T −4�57
1 (20)
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where from basic M/M/1 theory, E6T ±4�57 =

1/4�±4�5−�±4�550 Note that if d1124�5= 0 but � y�112,
then �1124�5 is equal to either 1 or 0. In particular,

if �+4�5≥ 01 then �1124�5= 1 and

if �−4�5≤ 01 then �1124�5= 00 (21)

There are no other options, because for any � = x4t5
for which both pools are full (as is required for the
ODE (16) to be valid), it holds that

�−4x4t55− �+4x4t55= 2
(

�112z1124t5+�212z2124t5
)

> 01

where the inequality above follows from the fact that
z1124t5+ z2124t5=m24t5 > 0.

We see that the sets �i1 j and the computation of
�i1 j4 · 5 are completely determined by the staffing,
arrival rates, service, and abandonment rates for any
given point � ∈�6, where the only points that require
careful analysis are those in one of the two sets �i1 j .
However, recall that we have assumed for simplicity
that the arrival rates and staffing functions are not
time dependent. If, instead, the arrival rates or the
staffing functions are time dependent, then the dis-
tribution of the FTSP Di1 j4x4t51 ·5 is also time depen-
dent. In particular, given a � ∈ �6, we cannot deter-
mine whether D1124�1 ·5 is positive recurrent, because
that may depend on the time t ∈ 601T 7. Thus the sets
at which the FTSPs are ergodic are themselves time
dependent. Hence, for a full analysis, we would need
to consider sets of the form 8�i1 j4t52 t ∈ 601T 79, where

�i1j4t5 ≡
{

4�1t5∈�i1j ×�+2 �
+4�1t5<0<�−4�1t5

}

1 (22)

where �+4�1 t5 and �−4�1 t5 are the drifts of the FTSP
D1124�1 ·5 at the point � at time t. Fortunately, for the
purpose of solving the ODE, we do not actually need
to characterize the sets 8�i1 j4t52 t ∈ 601T 79, because we
can determine whether Di1 j4x4t51 ·5 is ergodic at each
time t as we solve the ODE.

6.1. A Numerical Algorithm to Solve the ODE
Given the ODE in (16) with a fully specified RHS
at each t, we compute the solution x over an inter-
val 601T 7 by employing the classical Euler method,
combined with the AP. Given a step size h and the
time T , the number of iterations needed is N ≡ T /h.
Let ẋ =ë4x5, where ë4x5 is the RHS of the appropri-
ate ODE, e.g., if both pools are full, then ë4x5 is the
RHS of (16). Given x405, we can compute x4h5 using
the first Euler step: x4h5= x405+hë4x4055. Given x4h5,
we can compute ç1124x4h55 and ç2114x4h55, if needed,
and then compute x42h5 using the second Euler step.
In general, the solution to the ODE is computed via

x44k+ 15h5= x4kh5+hë4x4kh551 0 ≤ k ≤N1

where at each step, if x4kh5 ∈ �112 or x4kh5 ∈ �211,
we can compute ç1124kh5 and ç2114kh5 as explained
earlier.

The algorithm just described remains unchanged
when the ratio parameters are general (not equal to 1),
except that the sets �i1 j and the computations of �i1 j

are more complicated (the FTSPs are no longer BD
processes). We refer to Perry and Whitt (2011b) for
these more complicated settings.

To evaluate the RHS in each step, we use the analy-
sis in §6, starting at a given initial condition x405, since
we can now determine the value of çi1 j4x4t55 for each
t ≥ 0. For example, if at a time t ≥ 0 d1124x4t55= 0, then
we check whether (22) holds, so that x4t5 ∈ �1124t5. If
z2114t5≤ �211, then ç1124x4t55=�1124x4t55 and it can be
computed using (20). If z2114t5 > �211, then ç2114t5= 0.
If d1124x4t55 = 0 but x4t5 y �1124t5, i.e., if (22) does not
hold, then we can determine the value of �1124x4t55,
and thus of ç1124x4t55, by computing the drifts of the
FTSP and employing (21) (replacing the drifts in (21)
with the time-dependent drifts as in (22)). Similarly,
we can compute the value of ç2114x4t55 whenever
d2114x4t55= 0.

In all other regions of the state space for which
both pools are full, i.e., zi1 j4t5 + zj1 i4t5 = mj4t5, i 6= j ,
we can easily determine the value of �1124x4t55 by
considering whether di1 j4x4t55 is bigger or smaller
than 0. For example, if at time t ≥ 0 d1124x4t55 > 0, then
�1124x4t55 = 1 and if d1124x4t55 < 0, then �1124x4t55 = 0.
This, together with the value of z2114t5, immediately
gives the value of ç1124x4t55.

We need to use other fluid equations when at least
one of the two pools is not full. If, for example, z1114t5+
z2114t5<m14t5, then necessarily q14t5=0<k112, so that
ż1124t5=−�112z1124t5 and ż1114t5=�14t5−�111z1114t50 The
evolution of z211 in this case is determined by whether
q24t5<k211 or q24t5≥k211. In the first case, z2114t5 must
be strictly decreasing at time t if it is positive,
or remain at 0 otherwise. In the latter case, when
q24t5≥ k211, the excess fluid—that is not routed to
pool 2 and does not abandon, if such excess fluid
exists—is flowing to pool 1. We thus have ż2114t5 is
equal to

−�211z2114t51 if q24t5<k2111

−�211z2114t5+
(

�24t5−�212z2124t5−�112z1124t5−�2k211

)+

if q24t5≥k2110

Similar reasonings lead to the fluid model of z112
when pool 1 is full, but pool 2 has spare capacity.

If both pools have spare capacity at time t, then
q14t5 = q24t5 = 0 and żi1 j4t5 = −�i1 jzi1 j4t5 and żi1 i4t5 =

�i −�i1 izi1 i4t5, i1 j = 1121 i 6= j0

Remark 2. If at iteration k≥0, the solution lies out-
side the set �112 ∪�211, then due to the discreteness
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of the algorithm, there is a need to ensure that the
boundary is not missed in the following iterations.
Hence, if in the kth iteration d1124x4kh55>0 (<0) and in
the 4k+15st iteration d11244x4k+15h55<0 (>0), then the
boundary d112 necessarily was missed, because the fluid
is continuous, thereforewe set d11244x4k+15h55=0. We
then check whether x44k+ 15h5 ∈ �11244k+ 15h5, com-
pute �1124x4k+ 15h5 and use its value to compute the
value in the 4k+ 25nd iteration. It is significant that
we do not force the solution to be on the boundary,
e.g., we do not compute q144k+ 15h5 and use its value
to compute q244k+ 15h5 via

q244k+ 15h5= q144k+ 15h5− k1120 (23)

We solve the six-dimensional ODE in (16), and if
indeed (23) holds whenever it should, then we have
a good indication that the algorithm works. That is,
we can check at which iteration the boundary �112

was hit, and then observe if q14t5 − q24t5 = k112 over
an interval for which we have indication that this
should hold. (Of course, the solution to the algorithm
might leave the boundary for legitimate reasons, i.e.,
because the fluid model leaves it.)

Remark 3. When ri1 j 6= 1, the FTSP Di1 j4�1 ·5,
� ∈�i1 j , can be represented as a QBD. The only dif-
ference in the algorithm is that �i1 j4�5 does not have
an explicit representation, as in (20). In that case, we
use matrix-geometric methods in each iteration of the
algorithm to numerically compute the value of �i1 j

in that iteration. See the online supplement for an
elaboration.

7. Conclusions
In this paper, we studied a time-varying X model
experiencing periods of overloads. Although our pre-
vious FQR-T control is effective in automatically
responding quickly to unexpected overloads, the
examples in §§3 and 4 show that it needs to be mod-
ified to recover rapidly after the overload is over,
due to either a return to normal loading or a sudden
change in the direction of the overload. We thus pro-
posed the FQR-ART control. With FQR-ART, the one-
way sharing rule is relaxed by adding the lower RTs.
To avoid oscillations of the service process, which, in
turn, can cause congestion collapse, we indicated that
the activation thresholds also need to be increased,
being asymptotically of order O4n5 as in (6) instead
of o4n5, as in (5) with FQR-T.

We then extended the fluid model developed in
Perry and Whitt (2011a, b, 2013) based on the stochas-
tic averaging principle to cover a more general
time-varying environment, and developed the cor-
responding algorithm to numerically compute the

performance functions in that fluid model. Simula-
tion experiments indicate that this fluid model cap-
tures the main dynamics of the system, even in very
extreme cases; see the online supplement. Thus the
fluid model can be used to ensure that the control
parameters of FQR-ART are properly set .

There are many directions for future research. First,
it remains to investigate the performance of FQR-
ART in more complex time-varying scenarios. Sec-
ond, it remains to establish theoretical properties of
the new fluid model, paralleling Perry and Whitt
(2011b). Third, it remains to establish many-server
heavy-traffic limits in this more general setting, par-
alleling Perry and Whitt (2013, 2014).

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/ijoc.2015.0642.
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