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The Workload (Virtual Waiting Time) at One Queue

standard G/G/1 reverse-time construction:

Let Z(t) be the workload at time 0, starting empty at time −t. Let A(s) count

the arrivals over [−s, 0] and index the service times Vk backwards from time

0. Then the input, net-input and workload processes are, respectively,

Y(s) ≡
A(s)∑
k=1

Vk, N(s) ≡ Y(s)− s, s ≥ 0, and

Z(t) ≡ sup
0≤s≤t

{N(s)}, t ≥ 0. (a supremum)

→ Z ≡ sup
s≥0
{N(s)} as t→∞ (a random variable).
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The Stationary Workload with Scaling

For {Vk} stationary with E[Vk] = 1, A(t) a stationary point process on R with

E[A(t)] = 1, and 0 < ρ < 1, let

(Aρ(s),Yρ(s),Nρ(s)) ≡ (A(ρs),Y(ρs),Y(ρs)− s), s ≥ 0,

Zρ ≡ sup
s≥0
{Nρ(s)}. (a random variable)

robust approximation for E[Zρ]: (Below we will use b =
√

2.)

Z∗ρ ≡ sup
s≥0
{x : [0,∞)→ R : x(s) ≤ E[Nρ(s)] + b

√
Var(Nρ(s))}

= sup
s≥0
{−(1− ρ)s + b

√
Var(Nρ(s))}

for M/G/1: = sup
s≥0
{−(1− ρ)s + b

√
ρs(1 + c2

s )} =
b2ρ(1 + c2

s )

4(1− ρ)
.
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Partially Characterizing Variability Independent of Scale

for a nonnegative random variable X: mean E[X] and scv

c2
X ≡

Var(X)

E[X]2
(c2

bX = c2
X for b > 0)

for a stationary point process A(t): mean and IDC

Ic(t) ≡ Ic,A(t) ≡ Var(A(t))
E[A(t)]

(Ic,bA(t) = Ic,A(t) for b > 0)

for the input process Y(t) ≡
∑A(t)

k=1 Vk: mean and IDW

Iw(t) ≡ Iw,A,V(t) ≡ Var(Y(t))
E[Vk]E[Y(t)]

(Iw,b1A,b2V(t) = Iw,A,V(t) for bi > 0)
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Fendick&WW(1989): Relating the IDW to the Workload

normalized mean workload

c2
Z(ρ) ≡ E[Zρ]

E[Zρ; M/D/1]
=

2(1− ρ)E[Zρ]
ρ

(scaled to have nondegenerate limit as ρ ↓ 0 and as ρ ↑ 1

Key Idea: c2
Z(ρ) ≈ Iw(tρ),

where the time tρ might possibly (unresolved) satisfy a variability

fixed-point equation, e.g. from (15) of KW89,

tρ =
ρ2Iw(tρ)
(1− ρ)2 .
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Robust Approximation in terms of the IDW and IDC

robust approximation for E[Zρ]:

Z∗ρ = sup
s≥0
{−(1− ρ)s +

√
2Var(Nρ(s))} (b =

√
2)

= sup
x≥0
{−(1− ρ)x/ρ+

√
2xIw(x)} (x ≡ ρs)

=
ρv

2(1− ρ)
for Iw(x) = v, x ≥ 0 (for some constant v).

For G/GI/1 model, the indices of dispersion are related by

Iw(x) = Ic(x) + c2
s where Ic is IDC of A(t), which is 1 if Poisson.

Hence, we focus on ways to calculate and approximate the IDC.
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The Queueing Network Analyzer (QNA)

WW, The Queueing Network Analyzer, Bell System Tech. J. 62, 9

(1983) 2779-2815.
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QNA Model Assumptions (restricted)

1 single-server FIFO queues with unlimited waiting space

2 mutually independent exogenous arrival processes, one per queue

3 mutually independent sequences of i.i.d. service times, one per queue

4 Markovian routing (with eventual departure)

5 arrival processes, service times and routing mutually independent

6 service times at queue j have finite mean mj and scv c2
s,j

7 stationary arrival process at queue j with rate λ0,j

8 arrival process at queue j satisfying a FCLT with Brownian limit

arrival processes could be renewal, but need not be. 11



The Three Network Operations
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The Three NEW Network Operations
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The Network Operations (two are exact)

1 Superposition of Independent Streams:

Ia,i(t) =

k∑
j=0

(λa,j,i/λi)Ia,j,i(t), t ≥ 0.

2 Independent Splitting

Ia,j,i(t) = pj,iId,j(t) + (1− pj,i), t ≥ 0.
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Approximating the Departure IDC

Id(t) ≈ wρ(t)Ia(t) + (1− wρ(t))Is(t), where

wρ(t) ≡ w∗((1− ρ)2λt/ρc2
x), t ≥ 0, and

w∗(t) ≡ 1− 1− c∗(t)
2t

for c∗(t) ≡ cov(Re(0),Re(t))

=
1
2t

((
t2 + 2t − 1

) (
1− 2Φc(

√
t)
)

+ 2φ(
√

t)
√

t (1 + t)− t2)
for c2

x ≡ c2
a + c2

s , Re(t) stationary canonical (drift −1, variance 1) RBM, Φ is

cdf and φ pdf of N(0, 1).

Based on HT FCLT for stationary departure process from a GI/GI/1 queue.
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The Departure Process IDC: Comparison with Simulation

10-2 100 102 104

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ID
C

Departure IDC from H
2
(4)/E

2
/1,  = 2, various 

Simulation:  = 0.95
Simulation:  = 0.8
Simulation:  = 0.5
E

2
 renewal,  = 2

H
2
(4) renewal,  = 2

Approx.:  = 0.95
Approx.:  = 0.8
Approx.:  = 0.5

10-2 100 102 104

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ID
C

Departure IDC from E
2
/H

2
(4)/1,  = 2, various 

Arrival at Queue 4
Arrival at Queue 4
Arrival at Queue 4
H

2
(4) renewal,  = 2

E
2
 renewal,  = 2

Approx.:  = 0.95
Approx.:  = 0.8
Approx.:  = 0.5

Figure: The departure IDC from H2(4)/E2/1 (left) and E2/H2(4)/1 (right) with

λ = 2 and ρ = 0.5, 0.8, 0.95 together with reference IDCs for the H2(4) and E2

renewal processes, in broken black lines.
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Five Queues in Series: Comparison with Simulation

0 0.5 1 1.5 2 2.5 3

- log
10

(1- )

0

1

2

3

4

5

6

N
or

m
al

iz
ed

 m
ea

n 
w

or
kl

oa
d

RQ
Simulation

10-2 100 102 104 106

time

0

1

2

3

4

5

6

ID
W

Figure: Simulation estimate of the normalized workload c2
Z(ρ) at the last queue

compared to the RQ approximation c2
Z∗(ρ) (left) and the IDW at the last queue over

the interval [10−2, 105] in log scale (right).
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The Example with Four Internal Modes

There are five queues in series, denoted by

E10/H2(10)/1→ ·/E10/1→ ·/H2(10)/1→ ·/E10/1→ ·/M/1,

where E10 is Erlang (sum of 10 i.i.d. exponentials) having scv 1/10, while

H2(10) is a hyperexponential (mixture of two exponentials) with scv c2 = 10

and balanced means. The traffic intensities decrease:

ρ1 = 0.99 > ρ2 = 0.98 > ρ3 = 0.70 > ρ4 = 0.50.

The external arrival rate is set as λ1 = 1, so at queue k, E[V(k)] = ρk. We look

at the IDC of the arrival process at the last M queue and the performance there

as a function of the mean service time ρ there, 0 < ρ < 1. 18
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Traffic Rate Equations (exact)

λi = λo,i +
J∑

j=1

λj,i = λo,i +

J∑
i=1

λjpj,i,
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Explaining the IDW scaling, I: M/GI/1

for the input process Y(t) ≡
∑A(t)

k=1 Vk: mean and IDW

Iw(t) ≡ Iw,A,V(t) ≡ Var(Y(t))
E[Vk]E[Y(t)]

(Iw,b1A,b2V(t) = Iw,A,V(t))

random sum, where A is Poisson and independent of i.i.d. {Vk}:

E[Y(t)] = E[

A(t)∑
k=1

Vk] = E[A(t)]E[V]

Var(Y(t)) = E[A(t)]E[V2] = E[A(t)]E[V]2(c2
V + 1)

Iw(t) = c2
V + 1 = c2

V + Ic(t).
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Explaining the IDW scaling, II: G/GI/1

Assuming that {Vk} is i.i.d. and independent of general stationary A(t), by the

conditional variance formula,

Var(Y(t)) = λtVar(V) + E[V]2Var(A(t))

= λtE[V]2c2
V + E[V]2λtIc,A(t).

By the stationarity, E[Y(t)] = λE[V]t and

Iw(t) ≡ Var(Y(t))
E[Y(t)]E[V]

= c2
V + Ic,A(t) (Iw,b1A,b2V(t) = Iw,A,V(t))
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Explaining the IDW scaling, III (i): FCLT for random sums

Let random elements in the function space D2 be defined for the partial sums

on interarrival and service times by

(
Ŝa

n(t), Ŝs
n(t)
)
≡ n−1/2

([
Sa
bntc − λ

−1nt
]
,
[
Ss
bntc − mnt

])
, t ≥ 0.

As in Donsker’s theorem (Thm 4.3.2 of WW02), we assume that

(
Ŝa

n, Ŝ
s
n

)
⇒ (σaBa, σsBs) =

(
λ−1caBa,mcsBs

)
in D2 as n→∞,

where Ba and Bs are (possibly dependent) standard BMs.
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Explaining the IDW scaling, III (ii): FCLT for random sums

Let random elements in the function space D2 be defined by

(
N̂n(t), Ŷn(t)

)
≡ n−1/2 ([N(nt)− λnt] , [Y(nt)− λmnt]) , t ≥ 0.

Then, by Corollaries 7.3.1 and 13.3.2 in WW02,

(
Ŝa

n, Ŝ
s
n, N̂n, Ŷn

)
⇒
(
λ−1caBa,mcsBs,

√
λcsBa,

√
λm(caBa + csBs)

)

in D4 as n→∞ for Ba and Bs above.
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Explaining the IDW scaling, III (iii): random sums

Under associated uniform integrability, as n→∞,

Var(Ŷn(t)) → λm2Var(caBa(t) + csBs(t))

= λm2t(c2
a + c2

s + 2t−1cacsCov(Ba(t),Bs(t)))

so
Var(Ŷn(t))
λm2t

→ c2
a + c2

s + 2t−1cacsCov(Ba(t),Bs(t)),

which is independent of λ and m. Thus, in a stationary setting,

Iw,n(t)→ Iw(t), where Iw,b1A,b2V(t) = Iw,A,V(t) for bi > 0, i = 1, 2.
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