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Abstract We establish heavy-traffic limits for stationary waiting times and other per-
formance measures in Gn/Gn/1 queues, where Gn indicates that an original point
process is modified by cyclic thinning of order n, i.e., the thinned process contains
every nth point from the original point process. The classical example is the Er-
lang En/En/1 queue, where cyclic thinning of order n is applied to both the interar-
rival times and the service times, starting from a “base” M/M/1 model. The models
Gn/D/1 and D/Gn/1 are special cases of Gn/Gn/1. Since waiting times before
starting service in the G/D/n queue are equivalent to waiting times in an associated
Gn/D/1 model, where the interarrival times are the sum of n consecutive interarrival
times in the original model, the G/D/n model is a special case as well. As n → ∞,
the Gn/Gn/1 models approach the deterministic D/D/1 model. We obtain revealing
limits by letting ρn ↑ 1 as n → ∞, where ρn is the traffic intensity in model n.

Keywords Heavy traffic · Nearly deterministic queues · Cyclic thinning · Point
processes · Stationary waiting times · Many-server queues · Deterministic service
times · Gaussian random walk · Nearly deterministic queues · Limit interchange
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1 Introduction

This paper is a sequel to [21], in which we established heavy-traffic (HT) stochastic-
process limits for Gn/Gn/1 queues, where Gn indicates that an original point process
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is modified by cyclic thinning of order n, i.e., the thinned process contains every nth
point from the original point process. More precisely, with Sk denoting the kth point
of a general (G) point process, for k ≥ 0 with S0 ≡ 0, Snk/n is the kth point in the
associated Gn point process. (We divide by n to keep the intensity unchanged.)

For large n, the Gn/Gn/1 queues are nearly deterministic queues because, under
regularity conditions, the Gn/Gn/1 queues approach the deterministic D/D/1 queue
as n → ∞, by virtue of the law of large numbers. Consequently, for any fixed traffic
intensity ρ < 1, the congestion is asymptotically negligible as n → ∞. In [21], we
obtained interesting nondegenerate limits as n → ∞ by letting ρn ↑ 1 as n → ∞,
where ρn is the traffic intensity as a function of n. In Sects. 1–2 of [21], we discussed
motivation for considering these models.

In [21], we obtained HT limits with two different scalings:

(1 − ρn)
√

n → β as n → ∞, (1)

(1 − ρn)n → β as n → ∞, (2)

where β is a finite positive constant in each case. Let Wc
n,k be the waiting time of

arrival k in the Gn/Gn/1 queue, where the superscript c indicates that cyclic thinning
of order n is applied to a base G/G/1 model. In case (1), we obtained a limit for
the spatially-scaled waiting times

√
nWc

n,k ; in case (2), we obtained a limit for the
temporally-scaled waiting times Wc

n,nk .
We now want to consider associated stationary waiting times. Under regularity

conditions, the waiting times Wc
n,k converge to stationary waiting times Wc

n,∞ as
k → ∞ for each n. We can apply [21] to generate approximations for those stationary
waiting times by considering the iterated limit in which first n → ∞ and then k → ∞.
We now provide conditions under which the limit interchange is valid. In particular,
we provide conditions under which

√
nWc

n,∞ and Wc
n,∞ converge in distribution to

proper limits as n → ∞ in cases (1) and (2), respectively, and identify the limits with
the iterated limits already established.

Special cases of the two limits were established previously. First, in Example 3.1
of [1], exploiting the known Laplace transform of the stationary waiting time, the
authors showed in case (2) that Wc

n,∞ → Wc∞ as n → ∞, where Wc∞ is an exponential
random variable, when the Gn/Gn/1 model is En/En/1, i.e., when the base model
is M/M/1. Second, in [13] the authors showed in case (1) that

√
nWc

n,∞ → W̃ c∞ as

n → ∞, where W̃ c∞ is the maximum of a Gaussian random walk with negative drift,
when the Gn/Gn/1 model is GIn/D/1. In [13], the authors actually considered the
G/D/n model, but they analyzed it by exploiting the fact that the waiting times are
the same as in the associated GIn/D/1 model. Our results here are extensions of
those two results. We obtain some results for general Gn/Gn/1 models, but most of
our results are for the special case GIn/GIn/1 in which the base model is GI/GI/1.

The two different scalings in (1) and (2) indicate that high-order cyclic thinning
produces some interesting behavior. To a large extent, this phenomenon can be ex-
plained by the fact that two parts of the distribution of Wc

n,∞ tend to have different
asymptotic behavior. Paralleling the relatively well understood many-server queue
(for example, see [25]), the delay probability P(Wc

n,∞ > 0) and the conditional de-
lay distribution P(Wc

n,∞ > t |Wc
n,∞ > 0) behave differently. In case (1), the delay
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probability P(Wc
n,∞ > 0) has a nondegenerate limit α (with 0 < α < 1) as n → ∞,

without scaling, while Wc
n,∞ ⇒ 0, i.e., P(Wc

n,∞ > t |Wc
n,∞ > 0) → 0 as n → ∞ for

each t ≥ 0. On the other hand, in case (2), P(Wc
n,∞ > 0) → 1, a degenerate limit,

while P(Wc
n,∞ > t |Wc

n,∞ > 0) has a nondegenerate limit as n → ∞ for each t . This
will be a unifying theme throughout the paper.

We first address a foundational issue. We show that stationary waiting times are
well defined by placing the Gn/Gn/1 model in a stationary framework. To do so,
we show that stationarity and ergodicity assumed for a point process are inherited by
the new point process created by cyclic thinning. We postpone that discussion until
Sect. 6, but we apply the conclusion in the rest of the paper. Afterwards, in Sect. 7 we
combine Sect. 6 with Sect. 5 of [21] in order to establish limits for stochastic point
processes modified by cyclic thinning. In Sect. 5 of [21] we showed that counting
processes created by cyclic thinning do not have the same relatively simple asymp-
totic behavior as the associated partial sums. (The continuous mapping theorem with
the inverse map discussed in Sect. 13 of [26] does not apply in the usual way.)

Here is how the rest of this paper is organized. In Sect. 2 we establish HT limits
for stationary waiting times for general Gn/Gn/1 queues in case (1). In Sect. 3 we
extract the consequences for the special case of GIn/GIn/1 queues, when all the
models are GI/GI/1 queues. Sections 2 and 3 extend [13] and use similar reasoning.

In Sect. 4 we establish HT limits for the stationary waiting times in GIn/GIn/1
models in case (2). In Sect. 5 we examine the quality of the approximations for
steady-state distributions in the GIn/GIn/1 model. In Sect. 6 we show that stationar-
ity and ergodicity assumed for a point process are inherited by the new point process
created by cyclic thinning. Afterwards, in Sect. 7 we combine Sect. 6 with Sect. 5
of [21] in order to establish limits for stochastic point processes modified by cyclic
thinning.

In Sect. 8 we obtain HT limits for stationary queue lengths in GIn/GIn/1 models.
The renewal arrival process allows us to apply the distributional version of Little’s
law. In Sect. 9 we establish HT limits for the stationary queue lengths in the GI/D/n

model. In Sect. 10 we discuss implications for staffing in the GI/D/n model, based
on steady-state performance constraints, relating to [13]. We show that there is a case
for staffing in case (2) instead of in case (1). This parallels previous conclusions in
[15, 25].

2 Heavy traffic limit in case (1): (1 − ρ)
√

n → β

In this section we supplement the stochastic-process HT limit for Gn/Gn/1 models
in case (1) provided by Theorem 4.1 of [21] by establishing an HT limit for associ-
ated stationary waiting time processes, assuming additional stationarity for the base
G/G/1 model. As in [21], we primarily work in a single-sequence framework, but
we initially consider a more general double-sequence framework. In each case, we
assume that a FCLT holds jointly for the arrival and service processes.

2.1 The double-sequence framework

We consider general single-server queues with unlimited waiting room and the FCFS
service discipline. For each n ≥ 1, there is a base G/G/1 model specified by a se-
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quence {(Un,k,Vn,k−1) : k ≥ 1}, where Un,k represents the interarrival time between
customers k −1 and k and Vn,k represents the service time of customer k. We assume
that a 0th customer arrives at time 0 and experiences an initial wait Wn,0. (That is due
to customers initially in the system at time 0. To describe the waiting times of new
customers, we do not need to identify these old customers and their service times.)

Let Wn,k be the waiting time (before beginning service) of customer k in model n.
The waiting times can be defined recursively by

Wn,k ≡ [Wn,k−1 + Vn,k−1 − Un,k]+, k ≥ 1, (3)

where [x]+ ≡ max {x,0} and Wn,0 is the initial wait. As a consequence, the waiting
times can be expressed directly in terms of the initial waiting time Wn,0 and the partial
sums via

Wn,k ≡ Wn,0 + Sn,k − min
0≤j≤k

{
(Wn,0 + Sn,j ) ∧ 0

}
, k ≥ 0, (4)

where a ∧ b ≡ min {a, b},
Sn,k ≡ Xn,1 + · · · + Xn,k for Xn,k ≡ Vn,k−1 − Un,k, k ≥ 1, (5)

with Sn,0 ≡ 0, so that Sn,k = Sv
n,k −Su

n,k with Su
n,k ≡ Un,1 +· · ·+Un,k , Sv

n,k ≡ Vn,0 +
· · · + Vn,k−1, k ≥ 1, Sv

n,0 ≡ 0 and Su
n,0 ≡ 0; see Sect. 9.2 of [26].

Formula (4) constitutes a discrete reflection map, mapping the space R
∞ of se-

quences x ≡ {xk : k ≥ 0} into itself; i.e., Wn = φ̃(Wn,0 +Sn) for Wn ≡ {Wn,k : k ≥ 0},
Sn ≡ {Sn,k : k ≥ 0} and Wn,0 + Sn ≡ {Wn,0 + Sn,k : k ≥ 0}, where φ̃ : R

∞ → R
∞ is

defined by

φ̃(x)(k) ≡ xk − min
0≤j≤k

{xj ∧ 0}, k ≥ 0. (6)

We now introduce an associated sequence of Gn/Gn/1 models by applying cyclic
thinning of order n to both the arrival and service processes in model n. Specifically,
we replace the partial sums Su

n,k and Sv
n,k with new partial sums S

c,u
n,k and S

c,v
n,k defined

by

S
c,u
n,k ≡ Su

n,kn/n and S
c,v
n,k ≡ Sv

n,kn/n for all n ≥ 1 and k ≥ 1. (7)

Then let the associated interarrival times and service times be defined in terms of the
increments by

Uc
n,k ≡ S

c,u
n,k − S

c,u
n,k−1 and V c

n,k−1 ≡ S
c,v
n,k − S

c,v
n,k−1. (8)

From (7) and (8), we see that each new interarrival time is the sum of n of the original
interarrival times in model n, but we also divide the sums by n to leave the means
unchanged (in the case of identically distributed random variables).

We now review Theorem 4.1 of [21]. For that purpose, let D ≡ D([0,∞),R) be
the function space of all right-continuous real-valued functions on the positive half
line with limits from the left everywhere (except at 0), endowed with the standard
Skorohod (J1) topology; see [3, 26]. Let Dk ≡ D × · · · × D be the k-fold product
space of D with itself, endowed with the usual product topology; let C and Ck be the

Author's personal copy



Queueing Syst (2011) 69:145–173 149

subsets of continuous functions in D and Dk , respectively. Let ⇒ denote convergence
in distribution.

Let random elements associated with the sequence of base G/G/1 models be
defined by

Su
n(t) ≡ Su

n,�nt� − �nt�√
n

, Sv
n(t) ≡ Sv

n,�nt� − �nt�√
n

, t ≥ 0, (9)

where �t� is the greatest integer less than or equal to t .
We now introduce associated random elements of the space R

∞ for the Gn/Gn/1
models constructed above. For n ≥ 1, let

S̃c,u
n (k) ≡ √

n
(
S

c,u
n,k − k

)
, S̃c,v

n (k) ≡ √
n
(
S

c,v
n,k − k

)
,

(10)
S̃c

n(k) ≡ √
nSc

n,k, and W̃ c
n(k) ≡ √

nWc
n,k, k ≥ 1, n ≥ 1,

with S̃c
n(0) ≡ √

nSn,0 ≡ 0, where (S
c,u
n,k , S

c,v
n,k) is defined in (7), Sc

n,k ≡ S
c,v
n,k −S

c,u
n,k and

Wc
n,k is defined in terms of {Sc

n,k : k ≥ 0} as in (3).

Theorem 1 (HT stochastic-process limit from [21]) Consider a sequence of
Gn/Gn/1 models associated with a sequence of base G/G/1 models and initial
waiting times Wc

n,0, where

(√
nWc

n,0,Su
n,Sv

n

) ⇒ (
W̃ (0),Lu,Lv

)
in R × D2, (11)

where P((Lu,Lv) ∈ C2) = 1. Then

(
W̃ c

n(0), S̃c,u
n , S̃c,v

n , S̃c
n, W̃

c
n

) ⇒ (
W̃ (0), L̃u, L̃v, L̃, W̃

)
in R × (

R
∞)4

, (12)

where W̃ ≡ φ̃(W̃ (0) + L̃) for φ̃ defined in (6), L̃ = L̃v − L̃u, L̃u(k) ≡ Lu(k) and
L̃v(k) ≡ Lv(k), k ≥ 1.

We now proceed to our new result for stationary waiting time processes in the
Gn/Gn/1 models. First, assume that sequences {(Un,k,Vn,k−1) : k ≥ 1}, n ≥ 1, in the
base G/G/1 models are strictly stationary and ergodic for each n, with finite means
satisfying E[Vn,k−1] < E[Un,k]. By Sect. 6, this stationary (and ergodic) framework
carries over to the basic sequences {(Uc

n,k,V
c
n,k−1) : k ≥ 1}, n ≥ 1, in the Gn/Gn/1

models with cyclic thinning. It is well known that stationary waiting time processes
exist under these assumptions; see Chap. 6 of [20]. We will use the same notation to
refer to the stationary processes.

As is customary, for example, as on p. 207 of [4], we consider associated two-
sided stationary infinite sequences {(Uc

n,k,V
c
n,k−1) : −∞ < k < ∞} for each n. (The

extension to two-sided stationary sequences can always be constructed; see, for ex-
ample, [5].) Let Xc

n,k ≡ V c
n,k−1 −Uc

n,k and let the reverse-time partial sums be defined
by S

c,r
n,j,k ≡ Xc

n,j−1 + · · · + Xc
n,j−k . By the stationarity, S

c,r
n,j,k is distributed the same

as Sc
n,j,k ≡ Xc

n,j+1 + · · · + Xc
n,j+k for each n, j and k, but the finite-dimensional

distributions as a function of j and k are in general different for each n.
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With this reverse-time framework, the stationary waiting times can be expressed
as simple maxima, i.e., for each n ≥ 1,

Wc
n,j ≡ max

k≥0

{
S

c,r
n,j,k

}
, j ≥ 1 and n ≥ 1. (13)

For GI/GI/1 models, we can exploit the independence to obtain the same relation
for the one-dimensional marginal distributions using the forward partial sums, but
not more generally.

In this stationary framework, scale all the random variables as in (10), using the

same notation. Let X̃c
n(k) ≡ S̃c

n(k) − S̃c
n(k − 1) for S̃c

n(k) in (10). Let
d= mean equal

in distribution.
The following result extends Theorem 1 of [13] and is proved the same way, by

applying the model stability result on p. 207 of Borovkov [4].

Theorem 2 (HT limit for the scaled stationary waiting times) Consider a sequence
of Gn/Gn/1 models associated with a sequence of base G/G/1 models for which the
sequences {(Un,k,Vn,k−1) : −∞ < k < ∞}, n ≥ 1, are strictly stationary and ergodic
for each n, with finite means satisfying E[Vn,k−1] < E[Un,k]. Let the conditions of
Theorem 1 be satisfied. Then there exists a process Y ≡ {Y(j) : −∞ < j < ∞} with

Y(j)
d= Lv(1) − Lu(1) for each j , for (Lv,Lu) in Theorem 1, such that, as n → ∞,

{
X̃c

n(k) : −∞ < k < ∞} ⇒ {
Y(k) : −∞ < k < ∞}

in R
∞. (14)

Assume that the (necessarily stationary) sequence {Y(k) : −∞ < k < ∞} is also
ergodic with E[Y(1)] < 0. If, in addition,

E
[
X̃c

n(1)1{X̃c
n(1)>0}

] → E
[
Y(1)1{Y(1)>0}

]
< ∞ as n → ∞, (15)

then
{
W̃ c

n(j) : j ≥ 0
} ⇒ {

W̃ (j) : j ≥ 0
}

in R
∞ as n → ∞, (16)

where

W̃ (j) ≡ max
k≥0

{
Y(j − 1) + · · · + Y(j − k)

}
, j ≥ 1. (17)

Condition (15) is satisfied if P(Y (1) > 0) > 0, 0 is a continuity point of the cdf
P(Y (1) ≤ x) and

E
[
X̃c

n(1)
] → E

[
Y(1)

]
< ∞ as n → ∞. (18)

In turn, condition (18) is satisfied if

sup
n≥1

{
E

[
X̃c

n(1)2]} < ∞. (19)

Proof We apply the model continuity (or stability) result on p. 207 of [4], which
has three conditions. Condition I there requires that the limit process {Y(k) :
−∞ < k < ∞} be stationary and ergodic with E[Y(1)] < 0. Stationarity follows
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by the convergence discussed below; we have directly assumed the ergodicity. Con-
dition II in [4] requires convergence of the finite dimensional distributions as stated
in (14), which we now justify. We first apply Theorem 1 to get the limit in (12), which
extends immediately to two-sided sequences. (Here we are only concerned with the
partial sums; we are not concerned with the initial conditions.) That implies the re-
quired convergence of the finite-dimensional distributions in (14). The final technical
condition III in [4] is equivalent to condition (15). In turn, condition (15) holds if
condition (18) holds, P(Y (1) > 0) > 0 and

P
(
X̃c

n(1) > 0
) → P

(
Y(1) > 0

)
> 0 as n → ∞. (20)

However, we can apply the conditions of Theorem 1 to deduce that condition (20) is
satisfied, provided that 0 is a continuity point of the cdf P(Y (1) ≤ x). In particular,
by Theorem 1,

P
(
X̃c

n(1) > 0
) = P(Sn/

√
n > 0) → P

((
Lv − Lu

)
(1)

) = P
(
Y(1) > 0

)
. (21)

Finally, (19) plus the convergence in distribution in (14) implies uniform integrability,
which in turn implies (18). In conclusion, we remark that in the i.i.d. case it suffices
to apply Theorem X.6.1 in [2], which has an easier proof than the theorem in [4]. �

2.2 The single-sequence framework

We now simplify the setting somewhat and exhibit quite general conditions under
which all the conditions of Theorem 2 are satisfied, with the limit process being a
tractable Gaussian random walk, for which explicit expressions are available.

For simplicity, and without practical loss of generality, we can construct the se-
quence of sequences {{(Un,k,Vn,k−1) : k ≥ 1} : n ≥ 1} specifying the sequence of
base queueing models starting from a single sequence of ordered pairs of random
variables {(Uk,Vk−1) : k ≥ 1}.

Let the associated sequences of partial sums be

Su
k ≡ U1 + · · · + Uk, and Sv

k ≡ V0 + · · · + Vk−1, k ≥ 1, (22)

Sv
0 ≡ 0 and Su

0 ≡ 0. Introduce the usual sequence (Ŝu, Ŝv) ≡ {(Ŝu
k , Ŝv

k) : k ≥ 0} of
random elements of D associated by

Ŝu
n(t) ≡ Su�nt� − �nt�√

n
, and Ŝv

n(t) ≡ Sv�nt� − �nt�√
n

, t ≥ 0. (23)

In this context, our basic assumption is that the sequence {(Ŝu
n, Ŝv

n) : n ≥ 1} converges,
i.e., the partial sums satisfy a joint FCLT.

To construct a sequence of G/G/1 models in which the arrival rate and, thus, the
traffic intensity are ρn in model n, where ρn ↑ 1 as n → ∞, we use the given service-
time sequence for all n and introduce extra scaling in the interarrival times, i.e., we
let

Vn,k ≡ Vk and Un,k ≡ Uk

ρn

for all n, k ≥ 1, (24)
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with the understanding that 0 < ρn < 1 and that we intend to let ρn ↑ 1 as n → ∞.
We have thus defined a sequence of queueing models as in Sect. 2.

Theorems 1 and 2 imply the following corollary. Let N(m,σ 2) denote a normally
distributed random variable with mean m and variance σ 2.

Corollary 1 (More detail in Theorems 1 and 2) Consider a sequence of Gn/Gn/1
models constructed from a single base G/G/1 model as indicated above. Let e be
the identity map on D, i.e., (e(t) = t , t ≥ 0).

(a) Suppose that

(√
nWn,0, Ŝu

n, Ŝv
n

) ⇒ (
W̃ (0), L̂u, L̂v

)
in R × D2 (25)

for (Ŝu
n, Ŝv

n) in (23), where P((L̂u, L̂v) ∈ C2) = 1. If (1 − ρn)
√

n → β ,
0 < β < ∞ as n → ∞, as in (1), then the limit in (12) holds with Lu = L̂u + βe

and Lv = L̂v .
(b) If, in addition,

(
L̂u, L̂v

) = (σuBu,σvBv), (26)

where W̃ (0), Bu and Bv are mutually independent, and Bu and Bv are standard

Brownian motions, then L ≡ Lv −Lu d= σB −βe, where B is a standard BM and
σ 2 ≡ σ 2

u + σ 2
v , so that W̃ ≡ φ̃(W̃ (0) + L̃) becomes a reflected Gaussian random

walk with i.i.d. steps distributed as N(−β,σ 2), starting at the independent initial
state W̃ (0), in particular,

W̃ ≡ {
W̃ (k) : k ≥ 0

} = {
φ̃
(
W̃ (0) + σB − βe

)
(k) : k ≥ 1

}
in R

∞. (27)

(c) If, in addition, the sequence {(Uk,Vk−1) : k ≥ 1} in the base model is stationary
and ergodic with E[Uk] = E[Vk] = 1, which is consistent with the other assump-
tions above, then all the conditions of Theorem 2 are satisfied, with the limit of
the scaled stationary waiting time processes being as in (27) above, where the
initial value W̃ (0) is distributed as the stationary value.

Proof When we add the extra regularity in Corollary 1 we see that the conditions
in Theorems 1 and 2 are satisfied. For Theorem 2, the limit process Y becomes a
stationary Gaussian random walk, which is necessarily ergodic as well as stationary.
In addition, it follows that P(Y (1) > 0) > 0 and 0 is a continuity point of the cdf
P(Y (1) ≤ x). Thus, in order to establish the desired limit (16) given (a) and (b), it
suffices to establish the convergence of means in (18). That holds under (c):

E
[
X̃n(1)

] = E

[
Sv

n√
n

− Su
n

ρn

√
n

]
= (1 − ρn)

√
n

ρn

→ −β = E
[
Y(1)

]
(28)

as n → ∞. �
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3 The special case of a GI/GI/1 base queue

We now restrict attention to GI/GI/1 queues in the single-sequence framework. The
following follows quite directly from Theorems 1 and 2 and Corollary 1.

Theorem 3 (GI/GI/1 queues) Consider a sequence of GIn/GIn/1 models con-
structed from a single base GI/GI/1 model as indicated above; i.e., suppose that
{Uk : k ≥ 1} and {Vk : k ≥ 0} are sequences of i.i.d. random variables with mean 1
and variances σ 2

u ≡ Var(Uk) < ∞, σ 2
v ≡ Var(Vk) < ∞. Suppose that {(Uk,Vk−1) :

k ≥ 1} is independent of {Wn,0 : n ≥ 1} and
√

nWn,0 ⇒ W̃ (0) in R as n → ∞. If
(1 − ρn)

√
n → β , 0 < β < ∞ as n → ∞, as in (1), then the conditions and con-

clusions of Theorem 1 and Corollary 1(a) and (b) are satisfied. If, instead, we focus
on the stationary waiting time processes, which is achieved by changing the initial
conditions, then the conditions and conclusions of Theorem 2 hold with the limiting
sequence {W̃ (j) : j ≥ 0} being a reflected stationary Gaussian random walk; i.e.,

with {Y(j)} being a sequence of i.i.d. random variables with Y(k)
d= N(−β,σ 2).

If, instead, (1 − ρn)
√

n → ∞, then the stationary waiting times are asymptotically
negligible, i.e., W̃ c

n(j) ⇒ 0; if, instead, (1 − ρn)
√

n → 0, then W̃ c
n(j) ⇒ ∞.

Proof First, the GI assumptions here directly imply that the FCLT for the sequence
{(Ŝu

n, Ŝv
n) : n ≥ 1} in (23), by virtue of Donsker’s theorem [3, 26], which in turn im-

plies the FCLT for the partial sums in (9). Hence, the conditions of Theorems 1 and 2
and Corollary 1 are satisfied for the associated double sequence. Finally, the last state-
ments follow from the main result, because W̃ c

n(j) is clearly stochastically increasing
in ρn; for example, see [16]. �

Remark 1 Theorem 3 only uses the GI framework to justify the extra conditions
of Corollary 1. As usual with HT limits, we could have the same FCLT in (25) for
various dependent sequences; see Sect. 4.4 of [26] for examples. Even in the GI
case, Theorem 3 does not quite imply Theorem 1 of [13] as stated, because that
stated result is in the more general double-sequence framework of Sect. 2. However,
an extra condition, such as the Lindeberg condition or the Lyapounov condition, is
needed in [13] in order for the CLT used in the proof of Theorem 1 in [13] to be
valid. Theorem 1 of [13] is fine if this condition is added. Theorem 3 does extend to
the more general double-sequence framework of Sect. 2 if such a condition is added
here too; then it implies the GIn/D/1 result in Theorem 1 of [13].

Remark 2 The limit W̃ (j) in (27) and Theorem 3 is the maximum of a Gaussian ran-
dom walk. For more on this limit, see [10, 11] and references therein. For refinements
to the approximation provided in the En/D/1 (or M/D/n) case, see [12].

In applications, it is natural to use performance measures such as the probability of
delay P(W > 0) and the mean delay E[W ]. It is significant that convergence of these
quantities is not yet covered by the results above. First, observe that convergence in
distribution Zn ⇒ Z as n → ∞ for nonnegative random variables does not imply that
P(Zn > 0) → P(Z > 0) as n → ∞; for example, let P(Zn = 1/n,n ≥ 1,Z = 0)=1.
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Second, for the mean values, we need uniform integrability as well as convergence
in distribution. Nevertheless, we can establish these important additional results. For
these results, we do use the GI property more critically. Our next two results extend
Corollary 1 of [13] from GI/D/n ≡ GIn/D/1 to GIn/GIn/1, and provide alternative
proofs. Let the standard normal cdf be Φ(x) ≡ P(N(0,1) ≤ x) and let φ be the
associated density.

Theorem 4 (Stationary delay probabilities in the GIn/GIn/1 models) In the setting
of Theorem 3,

P
(
Wc

n,∞ > 0
) = e

−∑∞
k=1(1/k)P (Sc

n,k>0) → e−∑∞
k=1(1/k)Φ(−√

kβ/σ) ≡ α (29)

as n → ∞ for 0 < α < 1 if and only if

(1 − ρn)
√

n → β, 0 < β < ∞, (30)

where α ≡ α(β) is given on the right in (29).

Proof For most of the proof we can follow [13]. First, as noted in [13], it is easy
to see that 0 < α < 1 in (29) using basic properties of the normal distribution. Next
assume that (30) holds. Reasoning as in Theorem 1 and Corollary 1, for each fixed k,
we can apply the CLT and LLN to get

P
(
Sc

n,k > 0
) = P

(
Sv

nk

n
− Su

nk

nρn

> 0

)
= P

(
Sv

nk − Su
nk√

n
>

Su
nk

n

(
β + o(1)

))

→ P
(
N

(
0, kσ 2) > kβ

) = Φ(−√
kβ/σ) as n → ∞. (31)

The key technical step is to show that the infinite series in k, as a function of n, on
the left in (29), converges uniformly in n. (Such a step seems to be needed in [13];
as it stands, the proof of (2) in [13] seems incomplete; for example, see the example
before the theorem.) In particular, we will show that it is possible to choose a constant
c and an integer n0 such that P(Sc

n,k > 0) < c/k for all k ≥ 1 and all n ≥ n0, which

will imply that the terms in the series are bounded above by c/k2 for n ≥ n0. Choose
n0 so that 1/2 ≤ ρn ≤ 1 and (1 − ρn)

√
n ≥ β/2 for all n ≥ n0, which can be done

because of (30). Then we can apply Chebychev’s theorem to get:

P
(
Sc

n,k > 0
) = P

(
Sc

n,k − E[Sc
n,k]√

Var(Sc
n,k)

>
−E[Sc

n,k]√
Var(Sc

n,k)

)

≤ Var(Sc
n,k)

(E[Sc
n,k])2

≤ 8σ 2

kβ2
for all n ≥ n0 and k ≥ 1, (32)

because Var(Sc
n,k) ≤ 2kσ 2/n for all n ≥ n0 and k, (E[Sc

n,k])2 = [k(ρ−1
n − 1)]2 ≥

[(k/
√

n)(1 − ρn)
√

n]2 and [(1 − ρn)
√

n]2 ≥ β2/4 for all n ≥ n0. As a consequence,
there is a constant c such that the terms of the sum on the left are bounded by c/k2

for all n and k. Hence, the tails of the infinite series are uniformly negligible. Finally,
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to obtain the “only if” part, we exploit the monotonicity of P(Wc
n,∞ > 0) in ρn.

We can use bounding arguments from the established “if” part for high and low β .
Hence there cannot be a subsequence such that (1 − ρn)

√
n converges to either 0

or ∞. Hence, the sequence must have a convergent subsequence, with all limits β ′
satisfying 0 < β ′ < ∞. However, the limit along any such subsequence is determined
by (29). �

We now establish a limit for the mean waiting times.

Theorem 5 (Mean stationary waiting times in the GIn/GIn/1 models) In the setting
of Theorem 3, if (30) holds, E[U2] < ∞ and E[V 2] < ∞, then

E
[
W̃ c

n,∞
] =

∞∑

k=1

√
nE[(Sc

n,k)
+]

k
→

∞∑

k=1

E[N(−kβ, kσ 2)+]
k

= E
[
W̃ c∞

]
. (33)

The limit can be expressed as

E
[
W̃ c∞

] =
∞∑

k=1

βη(β
√

k/σ)

k
< ∞, where η(x) ≡ φ(x)

x
− Φ(−x). (34)

Proof First, the series expressions on the left and right in (33) are established rep-
resentations for the expected value of the maximum of a random walk with negative
drift; see Proposition VIII.4.5 of [2]. Formula (34) follows from writing

E
[
N

(−kβ, kσ 2)+]

= E
[
N

(−kβ, kσ 2)∣∣N
(−kβ, kσ 2) > 0

]
P

(
N

(−kβ, kσ 2) > 0
)
.

The (known) formula for the conditional mean is given in (18.29) of [6]. The task
is to prove convergence. The convergence would follow from the limit in (16) via
Theorem 3 plus uniform integrability, but it remains to establish uniform integrability.
We establish convergence of the moments directly (and consequently the uniform
integrability) by showing that the series on the left in (33) converges to the series on
the right as n → ∞. We do so by exploiting the tail integral representation of the
mean and the (Lebesgue) dominated convergence theorem. Since

E
[
W̃ c

n,∞
] =

∞∑

k=1

∫ ∞

0

P(
√

nSc
n,k > x)dx

k
, (35)

and a similar expression exists for the limit, it suffices to show that

∞∑

k=1

∫ ∞

0

P(
√

nSc
n,k > x)dx

k
→

∞∑

k=1

P(N(−kβ, kσ 2) > x)dx

k
(36)
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as n → ∞. First, by the CLT, we have P(
√

nSc
n,k > x) → P(N(−kβ, kσ 2) > x) for

all x, because of the representation

P
(√

nSc
n,k > x

) = P

(
Sv

nk − Su
nk√

n
> x + Su

nk(1 − ρn)
√

n

nρn

)
. (37)

(The final term on the right in the probability converges to βk.)
The proof is completed by bounding P(

√
nSc

n,k > x) above by a quantity for
which the iterated sum and integral is bounded uniformly in n, allowing us to apply
the dominated convergence theorem. For this step, we apply an inequality for partial
sums in Corollary 1.11 of [17]: For a sum Sn of n i.i.d. random variables distributed
as X, having mean 0 and finite variance σ 2,

P(Sn > y) ≤ C(r)

(
nσ 2

y2

)r

+ nP (X > y/r) (38)

for all y > 0 and r > 0, where we use C for a generic constant independent of n, here
depending on r . We will be applying (38) with r > 1. We consider two cases, first
focusing on the integrals from 0 to k and then focusing on the integrals from k to ∞.
As an alternative to (37), we write

P
(√

nSc
n,k > x

) = P
(
Sn,nk > xρn

√
n + (1 − ρn)nk

)
, (39)

where Sn,nk is the partial sum of nk i.i.d. random variables distributed as Xn,j =
ρnVj − Uj + 1 − ρn. (There is still dependence on n here, but we will show how it
can be controlled.) Applying inequality (38) with representation (39), we get

∫ k

0
P

(
Sn,nk > xρn

√
n + (1 − ρn)nk

)
dx

≤
∫ k

0
P

(
Sn,nk > (1 − ρn)nk

)
dx

≤ kP
(
Sn,nk > (1 − ρn)nk

)

≤ C(r)
(√

n(1 − ρn)
)−2r

k1−r + nk2P
(
Xn,1 > (1 − ρn)nk/r

)
. (40)

From (40), we get the bound

∞∑

k=1

1

k

∫ k

0
P

(
Sn,nk > xρn

√
n + (1 − ρn)nk

)
dx

≤ C1(r, β)

∞∑

k=1

k−r +
∞∑

k=1

nkP (Xn,1 > β
√

nk/r). (41)

The first sum in (41) is finite for all r > 1, independent of n, so it remains to treat the
second sum, showing uniformity in n. To estimate the second sum, we use the simple
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inequality

∫ b

a

xP (X > x)dx ≥ (b − a)aP (X > b) for all 0 < a < b. (42)

We apply (42) to write, for k ≥ 2,

nkP (Xn,1 > β
√

nk/r) ≤ C2(r, β)

∫ √
nβk/r

√
nβ(k−1)/r

xP (Xn,1 > x)dx, (43)

replacing k/(k − 1) by its upper bound 2 in the constant C(r,β). We treat the term
for k = 1 directly by Markov’s inequality:

nP (Xn,1 > β
√

n/r) ≤ E[X2
n,1]

(β
√

n/r)2
≤ C1 < ∞, (44)

uniformly in n. Hence,

∞∑

k=1

nkP (Xn,1 > β
√

nk/r) ≤ C1 + C2(r, β)

∫ ∞

0
xP (Xn,1 > x)dx

≤ C2 < ∞, (45)

where C2 is independent of n.
We now turn to the integrals over the tail intervals [k,∞). From (38) and (39)

again, we have
∫ ∞

k

P
(
Sn,nk > xρn

√
n + (1 − ρn)nk

)
dx

≤
∫ ∞

k

P (Sn,nk > xρn

√
n)dx

≤ C(r)ρ−2r
n

∫ ∞

k

x−2r dx + nk

∫ ∞

k

P (Xn,1 > xρn

√
n/r) dx. (46)

Hence,

∞∑

k=1

1

k

∫ ∞

k

P
(
Sn,nk > xρn

√
n + (1 − ρn)nk

)
dx

≤ C(r)

∞∑

k=1

k−(2r−1) + n

∞∑

k=1

∫ ∞

k

P (Xn,1 > β
√

nk/r) dx. (47)

It now only remains to treat the second term in (47). To do so, we apply Tonelli’s
theorem to write

n

∞∑

k=1

∫ ∞

k

P (Xn,1 > β
√

nk/r) dx
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≤ n

∫ ∞

1
xP (Xn,1 > β

√
nk/r) dx

≤ ρ−2
n r2

∫ ∞

0
xP (Xn,1 ≥ x)dx, (48)

which is uniformly bounded in n by virtue of the second moment condition. �

Remark 3 The limit is the same as for the GIn/D/1 model stated in Corollary 1
of [13]. The proof in [13] relies on uniform integrability, but contrary to the claim
on p. 58 of [13], for uniform integrability, given convergence in distribution of non-
negative random variables, it does not suffice to show that the means are bounded
above; we need some higher moment bounded above. The convergence in distribu-
tion and the convergence of moments we have established directly do imply uniform
integrability.

4 Heavy traffic limit in case (2): (1 − ρ)n → β

We first review the stochastic process limit that holds with condition (2). For that
purpose, we introduce the following random elements of D terms of random elements
of D. For that purpose, let

Sc,u
n (t) ≡ S

c,u
n,�nt� − �nt� = Su

n�nt�
ρnn

− �nt�,

Sc,v
n (t) ≡ S

c,v
n,�nt� − �nt� = Sv

n,n�nt� − n�nt�
n

= Sv
n�nt� − n�nt�

n
,

Sc
n(t) ≡ Sc

n,�nt� = Sv
n,n�nt�

n
− Su

n,n�nt�
ρnn

= (
Sc,v

n − Sc,u
n

)
(t),

Wc
n(t) ≡ Wc

n,�nt� = Wn,n�nt�
n

= φ
(
Wc

n(0) + Sc
n

)
(t). (49)

Let φ : D → D be the one-dimensional reflection map, defined by

φ(x)(t) ≡ x(t) − inf
0≤s≤t

{
x(s) ∧ 0

}
, t ≥ 0; (50)

see Sects. 3.5 and 13.5 of [26]. The following is Theorem 4.2 of [21].

Theorem 6 (HT stochastic-process limit from [21]) Consider a sequence of
Gn/Gn/1 models associated with a single base G/G/1 model satisfying

(
Wn,0, Ŝu

n, Ŝv
n

) ⇒ (
Wc(0), L̂u, L̂v

)
in R × D2 (51)

for (Ŝu
n, Ŝv

n) in (23), where P((L̂u, L̂v) ∈ C2) = 1. If

(1 − ρn)n → β, 0 < β < ∞, as n → ∞, (52)
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as in case (2), then, as n → ∞,
(
Sc

n(0),Sc,u
n ,Sc,v

n ,Sc
n,Wc

n

) ⇒ (
Wc(0), L̂u + βe, L̂v,L,Wc

)
in R × D4,

(53)
where Wc ≡ φ(Wc(0)+L), φ is given in (50) and L ≡ L̂v − L̂u −βe. If, in addition,
(26) holds, where Wc(0), Bu and Bv are mutually independent, and Bu and Bv are

standard Brownian motions, then L
d= σB −βe and Wc(0) is independent of B where

B is a standard BM and σ 2 = σ 2
u + σ 2

v .

We now establish a corresponding limit for stationary waiting times limit in the
GI/GI/1 setting. For the base GI/GI/1 model, HT limits for stationary waiting times
are given in Sect. X.7 of [2]. The following result for the GIn/GIn/1 models ex-
tends the result for the special case of En/En/1 Erlang queues (having M/M/1 base
model) in Sect. 3 of [1].

Theorem 7 (HT limit for unscaled stationary waiting times) Consider a base
GI/GI/1 queueing model with E[Uk] = E[Vk] = 1, Var(Uk) ≡ σ 2

u and Var(Vk) ≡ σ 2
v ,

where 0 < σ 2 ≡ σ 2
u +σ 2

v < ∞. Consider the associated sequence of GIn/GIn/1 mod-
els with scaling in (24) and (1 − ρn)n → β , 0 < β < ∞, constructed according to
the cyclic thinning for each n as in (7). Let Wc

n(0) be the independent initial wait
in model n and assume that Wc

n(0) ⇒ Wc(0) Then the conditions of Theorem 6 are
satisfied, including (26), so that Wc

n ⇒ φ(Wc(0) + σB − βe) in D as n → ∞. In
addition, for each n ≥ 1, there exists a limiting stationary waiting time Wc

n,∞ in the
GIn/GIn/1 model having finite mean E[Wc

n,∞]. As n → ∞,

Wc
n,∞ ⇒ Wc∞, (54)

where Wc∞ is an exponential random variable with E[Wc∞] = σ 2/2β and φ(Wc(0)+
σB − βe)(t) ⇒ Wc∞ as t → ∞. Finally, the sequence {Wc

n,∞ : n ≥ 1} is uniformly
integrable, and

E
[
Wc

n,∞
] → E

[
Wc∞

] = σ 2

2β
as n → ∞. (55)

Proof For each n ≥ 1, the GIn/GIn/1 model is itself a GI/GI/1 queue with finite
mean service time and interarrival time, and traffic intensity ρn < 1. It is well known
that a steady state waiting time exists and coincides with the overall maximum of
the partial sums; see Chap. 10 of [2]. So the stationary waiting time random variable
Wc

n,∞ is well defined for each n. By Kingman’s bound in Theorem 2 of [14],

E
[
Wc

n,∞
] ≤ Var(Su

n/nρn) + Var(Sv
n/n)

2(1 − ρn)

= (σ 2
u /nρ2

n) + (σ 2
v /n)

2(1 − ρn)
→ (σ 2

u + σ 2
v )

2β
(56)

as n → ∞ Hence the sequence of stationary waiting times {Wc
n,∞ : n ≥ 1} is stochas-

tically bounded or tight. Consequently, there is a converging subsequence. Now con-
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sider the associated sequence of stationary waiting time processes, obtained by let-
ting the initial waiting time Wc

n,0 be distributed as Wc
n,∞ for each n with indices in

the convergent subsequence. We obtain a stationary sequence by that simple initial-
ization because the sequence of waiting times in the GIn/GIn/1 model is a Markov
chain. Since these initial distributions converge as n → ∞, the full processes satisfy
the HT limit theorem in Theorem 6. Since each of these converging processes is sta-
tionary, the limiting reflecting Brownian motion must also be stationary, but it has the
unique stationary exponential distribution of Wc∞. Hence the limit of the convergent
subsequence must in fact be Wc∞. Since every convergent subsequence must have
this same limit, the entire sequence must converge to that same limit; i.e., we have
shown (54). By Fatou’s lemma, E[Wc∞] ≤ lim infn→∞ E[Wc

n,∞]. However, by (56),
lim supn→∞ E[Wc

n,∞] ≤ E[Wc∞]. Hence, E[Wc
n,∞] → E[Wc∞] as n → ∞. Since

these are nonnegative random variables, that implies that the sequence {Wn,∞ : n ≥ 1}
is uniformly integrable. �

Without the GI independence conditions, HT limits for stationary waiting times
are much more difficult to prove. For a single G/G/1 model, HT limits were estab-
lished in [22, 23].

5 Evaluating the approximations for stationary waiting times

We suggest using the exact results for the stationary distributions of the GIn/GIn/1
model in Theorems 4, 5 and 7 as the basis for approximations for Gn/Gn/1 models
more generally, provided that these limits hold in the Brownian case, for example,
the conditions of Corollary 1(b) hold. That is supported by the process limits in The-
orems 1 and 6, which in fact hold more generally than GI. We would then use the
same approximations derived for GIn/GIn/1, with the exception that the parame-
ters σ 2

u and σ 2
v would be obtained from the FCLT, and would not necessarily be the

variances of the individual interarrival times and service times.
However, even for GIn/GIn/1 models with high ρn and n, we should not expect

too much from these approximations, because these GIn/GIn/1 models are highly
sensitive to small perturbations in the model. Small changes in the interarrival times
or service times significantly alter the performance. For example, an increase of the
traffic intensity by only 1 − ρn will make the model unstable.

The problematic nature of the approximations is well illustrated by the E100/D/1
model with traffic intensity ρ = 0.99. Sample paths from simulation runs for this
model were shown in Fig. 1 of [21]. This model can be regarded as the nth
term in the sequence of En/D/1 models in Theorems 6 and 7 with n = 100 and
(1 − ρn)n = β = 1. Those theorems suggest approximating the steady-state waiting-
time distribution by an exponential random variable with mean 1/2.

Interestingly, that is the identical approximation we obtain from the conventional
HT limit, assuming that n is fixed and ρ ↑ 1. The conventional HT approximation is
again exponential with the mean

E[W ] ≈ E[V ](c2
u + c2

v)

2(1 − ρ)
= (σ 2

u + σ 2
v )

2(1 − ρ)
= (0.01)

2(0.01)
= 1

2
. (57)
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Table 1 A comparison of the approximations with exact numerical values computed using the numerical
algorithm from [1] for three steady-state performance measures in the Erlang Ek/El/1 model for k = 10j ,
1 ≤ j ≤ 4, in case (1) (approx(

√
n)) and case (2) (approx(n))

Ek/Ek/1 queue with mean service time 1 and ρk ≡ 1 − (1/k)

k = 10 k = 100 k = 1000 k = 10,000

P(W > 0) exact 0.7102 0.9036 0.9688 0.9900

Approx (
√

n) 0.6279 0.8666 0.9561 0.9843

Approx (n) 1.0000 1.0000 1.0000 1.0000

E[W |W > 0] exact 1.054 1.0175 1.0055 1.0018

Approx (
√

n) 1.216 1.0265 1.0189 1.0076

Approx (n) 1.000 1.0000 1.0000 1.0000

E[W ] exact 0.7484 0.9195 0.97417 0.99018

Approx (
√

n) 0.7635 0.9201 0.9742 0.99018

Approx (n) 1.0000 1.0000 1.0000 1.00000

It is common to refine the approximation in (57) by adding ρ in the numerator, as in
(44) of [24], but in this case that only changes the approximate mean to 0.495. The
cancelation of the two 0.01 terms in the numerator and denominator of (57) is the
basis for the high sensitivity to model perturbations.

We employed simulation to evaluate the accuracy of the approximations. A sim-
ulation run for a time interval of length 500,000, divided into 10 batches, yields an
estimated 95% confidence interval for the mean of 0.4354 ± 0.0226.

The Kraemer-and-Langenbach-Belz (KL) approximation for the mean waiting
time in a GI/GI/1 queue, given in (45) of [24], is known to perform remarkably well,
but it too breaks down in this challenging E100/D/1 model. It yields the approximate
value of E[W ] ≈ 0.256. The basic HT approximation 0.500, the refinement 0.495
and the KL approximation 0.256 thus have relative errors (|approx − exact|/exact)
of 14.8%, 13.7% and 41.2%, respectively, but at least all are of the right order. A sim-
ple M/M/1 approximation, obtained by using exponential random variables with the
same means as the interarrival time and service time random variables, would be
E[W ] ≈ 99.0, which overestimates by a factor of 227 (off by two orders of magni-
tude).

In fact, we have two candidate approximations for the stationary waiting time dis-
tribution provided by the HT limits in the two cases (1) and (2). We investigated the
approximations for the mean and the probability of delay by comparing the HT ap-
proximations to exact numerical results from [1] and from simulation estimates for
the Ek/El/1 high-order Erlang model.

Table 1 compares the approximations for the Ek/Ek/1 model with ρk = 1− (1/k)

to the exact numerical results in Table 1 of [1]. The scaling here is naturally in
case (2), because (1 − ρk)k = 1 for all k, but we considered both cases (1) and (2). In
case (1) we evaluated formulas (29) for the delay probability and (34) for the mean
using Matlab. In case (2), the approximate delay probability is 1, while the mean wait
is given in (55).
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Table 2 A comparison of approximations with simulation for high-order Erlang Ek/El/1 queues. The
case D is represented as k or l being ∞; β(np) ≡ (1 − ρ)np and ap(np) is the approximation based on
scaling by np , with p = 0.5 in (1) and p = 1 in (2)

Steady-state performance in the Ek/El/1 queue with mean service time 1

Parameters E[W |W > 0] P(W > 0)

k l ρ β(n) β(
√

n) SIM ap(
√

n) ap(n) SIM ap(
√

n)

(1 − ρ)n (1 − ρ)
√

n (55) (29)

100 100 0.99 1.0 0.1 0.9991 1.012 1.000 0.9038 0.9037

±.055 ±.0048

0.90 10.0 1.0 0.1199 0.1187 0.1000 0.3119 0.3345

±.0024 ±.0025

100 ∞ 0.99 1.0 0.1 0.5039 0.513 0.500 0.8688 0.866

±.026 ±.0060

0.90 10.0 1.0 0.0632 0.0632 0.050 0.1945 0.1995

±.0010 ±.0010

∞ 100 0.99 1.0 0.1 0.4998 0.513 0.500 0.8597 0.866

±.022 ±.0037

0.90 10.0 1.0 0.00655 0.0632 0.050 0.1658 0.1995

±.0013 ±.0013

Even though the scaling puts these examples naturally in the domain of case (2),
we find that the approximations based on case (1), referred to as approx (

√
n), con-

sistently perform better than the approximations based on case (2), referred to as
approx (n). Case (2) becomes competitive and even preferred to case (1) when we
focus on the expected conditional delay, given that the wait is positive E[W |W > 0].
For case (2), the approximation for the mean and the conditional mean agree, but they
do not for case (1). Overall, we find these approximations remarkably effective, given
the huge error using a simple M/M/1 approximation. For example, for k = 100, the
M/M/1 approximation yields P(W > 0) = 0.99 and E[W ] = 99.

We made additional comparisons for the Ek/El/1 high-order Erlang model, where
k and l are either 100 or ∞, with ∞ corresponding to deterministic (D). We consid-
ered the three models E100/E100/1, E100/D/1 and D/E100/1 with two different
traffic intensities: ρ = 0.99 and ρ = 0.90. For ρ = 0.99, we have (1 − ρ)k = 1, but
(1−ρ)

√
k = 0.1; for ρ = 0.90, we have (1−ρ)k = 10, but (1−ρ)

√
k = 1.0. Thus, it

is natural to regard ρ = 0.99 as case (2) and ρ = 0.90 as case (1). For this experiment
we used simulation to estimate the exact values. We based our simulation estimates
on 10 independent replications of 50,000 arrivals. The results are shown in Table 2.

The case k = l = 100 and ρ = 0.99 in Table 2 repeats the case k = 100 in Table 1,
so that the simulation and numerical algorithm validate each other. In Table 2 we see
that each approximation method works better for the conditional wait E[W |W > 0]
in the expected case with β = 1.0. Overall, the approximations are impressively ac-
curate.

Table 3 contains additional comparisons with simulations. Two cases with k = 400
and k = 1600 are chosen to be in case (1) with (1 − ρ)

√
k = β = 1 but have larger
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Table 3 A comparison of the approximations with exact numerical values computed using the numerical
algorithm from [1] for three steady-state performance measures in the Erlang Ek/El/1 model for k = 10j ,
1 ≤ j ≤ 4, in case (1) (approx(

√
n)) and case (2) (approx(n))

Ek/D/1 queue with mean service time 1

k = 400 k = 1600 k = 100

ρ = 0.95 ρ = 0.975 ρ = 0.995

P(W > 0) simul. 0.19652 0.19927 0.93406

±4.92e–06 ±4.29e–06 ±2.85e–05

Approx (
√

n) 0.1995 0.1995 0.9313

Approx (n) 1.0000 1.0000 1.0000

E[W |W > 0] simul. 0.0316 0.0158 0.9659

±1.0e–04 ±5.3e–05 ±0.06

Approx (
√

n) 0.03168 0.01583 1.0872

Approx (n) 0.025000 0.0125 1.0000

E[W ] simul. 0.00621 0.00316 0.90217

±9.7e–05 ±5.3e–05 ±0.06

Approx (
√

n) 0.00632 0.00316 1.0125

Approx (n) 0.0250 0.0125 1.0000

sample size. As expected, the Gaussian random walk approximations in case (1) are
clearly superior. The other case with k = 100 is chosen to have even higher traffic
intensity ρ, so that it is even more clearly in case (2). In these more extreme cases, the
approximation we expect to perform better clearly does so for the conditional mean
wait and even for the unconditional mean wait. The performance of the approximation
for the probability of delay in case (1) is consistently good.

In conclusion, we remark that in our numerical results we found that the approxi-
mate value for the mean wait in (34) in case (1) consistently was an upper bound for
the exact mean waiting time. Thus, we conjecture that to be valid.

6 Stationary point processes with cyclic thinning

We now establish stationarity properties of a single point process modified by cyclic
thinning, using the notation in [20]; see [20] for background.

6.1 Preliminaries

Suppose that ψ ≡ {ti : i ≥ 0} is a point-stationary ergodic simple point process with
counting process N(t) ≡ max{n ≥ 1 : tn ≤ t}, t ≥ 0, N(0) ≡ 0. This means that the
interarrival time sequence Ti ≡ ti − ti−1, i ≥ 1 is a stationary ergodic sequence and
P(t0 = 0) = 1. We assume that 0 < 1/λ ≡ E(Ti) < ∞; the arrival rate is λ.

It follows that for any q ≥ 2 an integer, the thinned point process ψq ≡ {ti (q) :
i ≥ 0} = {tiq : i ≥ 0} is point-stationary too (with respect to its own points), since
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its interarrival times Ti(q) = ∑iq

m=(i−1)q+1 Tm, i ≥ 1, form a stationary sequence,
and t0(q) = t0 = 0, w.p.1. Let Nq(t) ≡ max{k ≥ 1 : tkq ≤ t} be the counting process
for ψq . Let θsψ denote the shifted point process from time s onwards with s relabeled
as the origin, i.e., its points are given by tk(s) ≡ tN(s)+k − s, k ≥ 1). Let θ(i) ≡ θti (q),
the shifts using s = ti (q). Then, the pair (ψ,ψq) is jointly invariant in distribution
under these shifts; (θ(i)ψ, θ(i)ψq) jointly has the same distribution for all i ≥ 0.
(However, they are not jointly invariant under the shifts using the single points s = ti ,
because ψq is not invariant under them.)

We refer to ψq as a q-cyclic thinning of ψ . Given one of its interarrival times
Ti(q), we refer to the q variables Tm being added as its q phases. This is in keeping
in the spirit of the special case when ψ is a Poisson process at rate λ and ψq is thus a
renewal process with an Erlang(q,λ) interarrival time distribution with q exponential
phases each at rate λ. The arrival rate of ψq is λ/q . Let J (t) ≡ N(t) mod q be the
number of completed phases at time t ≥ 0 for the current interarrival time of ψq ;
J (t) ∈ {0,1,2, . . . , q −1}. For t ∈ [t(i−1)q , tiq), during the ith interarrival time, Ti(q),
we have J (t) = 0 for t(i−1)q ≤ t < t(i−1)q+1; J (t) = 1 for t(i−1)q+1 ≤ t < t(i−1)q+2;
. . . , J (t) = q − 1 for tiq−1 ≤ t < tiq .

6.2 Marked point process approach

Given the framework of the previous section, we wish to proceed to jointly construct
time-stationary versions of (ψ,ψq) and {J (t) : t ≥ 0}. To do so, we will use a marked
point process approach. Starting with our point-stationary ψ = {ti : i ≥ 0}, we add
marks {Mi : i ≥ 0} to obtain a random marked point process (rmpp), ψM = {(ti ,Mi) :
i ≥ 0} where Mi = 1 iff i = 0 mod q; 0 otherwise. Thus (starting with t0 = 0), every
qth point has a mark of M = 1, all others a mark of M = 0. Thus, ψq is the thinning
of the points of ψM obtained by choosing only points for which Mi = 1. Let

t0(q) ≡ min{tk : Mk = 1},
(58)

ti (q) ≡ min
{
tk : tk > ti−1(q),Mk = 1

}
, i ≥ 1.

(Note that here, since t0 = 0, we have t0(q) = 0.) Then Nq(t) is the counting process
of the number of points of ψM that have marks of size 1, i.e.,

Nq(t) =
N(t)∑

i=1

I {Mi = 1}, t ≥ 0. (59)

Letting θtψM denote the marked point process shifted by t , and {Mi(t) : i ≥ 1} its
associated marks (Mi(t) = the mark of the ith point to the right of t), we now have

J (t) = q − min
{
i ≥ 1 : Mi(t) = 1

}
. (60)

We let J ≡ {J (t) : t ≥ 0}. Note that the pair (ψq, J ) jointly is a function of ψM .
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6.3 Stationary versions

Now observe that the rmpp ψM is neither point nor time stationary, but it is invari-
ant under the θ(i) ≡ θti (q) shifts; θ(i)ψM has the same distribution for all i ≥ 0.
Moreover, the cycle-length sequence {Ti(q) : i ≥ 1} is a stationary and ergodic se-
quence by the assumption that ψ is a point-stationary ergodic point process. Thus
the rmpp ψM has the structure of a positive recurrent synchronous process, as in the
Appendix in [7]. Consequently, ψM is time asymptotically stationary (TAS) with a
time-stationary ergodic version, denoted by ψ∗

M :

P(ψ∗
M ∈ ·) ≡ lim

t→∞
1

t

∫ t

0
P(θsψM ∈ ·) ds = E{∫ T1(q)

0 I {θsψM ∈ ·}ds}
E(T1(q))

. (61)

Intuitively, this time-stationary version is obtained by choosing the origin to be a
randomly chosen time t way out in the infinite future. The rmpp θtψ

∗
M has the same

distribution for all t ≥ 0.
It thus also follows that ψM is event asymptotically stationary (EAS) (see [20]);

there exists a point-stationary and ergodic version of ψM , denoted by ψ0
M , such that

θti ψ
0
M has the same distribution for all i ≥ 0. Intuitively, a point-stationary version is

obtained by choosing the origin to be a randomly chosen arrival point ti way out in
the infinite future.

We let ψ∗
q , N∗

q (t), and J ∗ denote the corresponding processes constructed

from ψ∗
M , and we let ψ0

q , N0
q (t), and J 0 denote the corresponding processes con-

structed from ψ0
M . (We explicitly use (58)–(60) in our constructions.)

From the construction (58)–(60) and the fact that θtψ
∗
M has the same distribution

for all t ≥ 0, we deduce that θtψ
∗
q and θtJ

∗ also have the same distribution for all t

jointly along with θtψ
∗
M . (Recall that the pair (ψ∗

q , J ∗) jointly is a function of ψ∗
M .)

Thus the triple (ψ∗
M,ψ∗

q , J ∗) is jointly time-stationary. Consequently, ψ∗ = {t∗i }, the
points without marks, is also time stationary; the 4-tuple (ψ∗

M,ψ∗
q , J ∗,ψ∗) is jointly

time-stationary.
Clearly, J ∗(0) has the discrete uniform distribution on {0,1,2, . . . , q − 1}, since

P(J ∗(0) = j) is the long-run proportion of time that phase j + 1 of a “cycle” (e.g.,
an interarrival time) is in progress; P(J ∗(0) = j) = E(Tj+1)/E(T1(q)) = 1/q, j ∈
{0,1,2, . . . , q − 1}. (Formally, we are using (61).)

Note that if we only were to observe the points of ψ∗ themselves, we would not be
able to figure out where the marks are, because we have no idea what phase we are in.
The following theorem makes this precise, and summarizes what we have observed
above.

Theorem 8 The four-tuple (ψ∗
M,ψ∗

q , J ∗,ψ∗) is a jointly time stationary process.
In addition, J ∗(0) has the discrete uniform distribution on {0,1,2, . . . , q − 1}, and
J ∗(t) = (J ∗(0) + N∗(t)) mod q, t ≥ 0. Furthermore ψ∗ = {t∗n : n ≥ 1} is indepen-
dent of J ∗(0).

Proof Only the last statement needs clarification. We will use (61). We must show
that P(J ∗(0) = j,ψ∗ ∈ ·) = (1/q)P (ψ∗ ∈ ·), j ∈ {0,1,2, . . . , q − 1}. The amount of
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time during T1(q) that J (s) = j and that ψs ∈ · is given by the integral

I =
∫ T1(q)

0
I
{
J (s) = j, ψs ∈ ·}ds =

∫ tj+1

tj

I {ψs ∈ ·}ds. (62)

But ψ is also invariant under its own point shifts ti by the assumption that ψ is
point-stationary. Thus, by the Palm inverse formula for ψ , we already know that
P(ψ∗ ∈ ·) = λE(I). Since E(T1(q)) = q/λ we conclude that E(I)/E(T1(q)) =
(1/q)P (ψ∗ ∈ ·) as was to be shown. �

We also can consider the point-stationary analog. (Note that ψ0 by itself has the
same point-stationary distribution as the original ψ .) The following (and its proof) is
analogous to Theorem 8, we omit the proof.

Theorem 9 The four-tuple (ψ0
M,ψ0

q , J 0,ψ0) is a jointly point stationary process.

In addition, J 0(0) has the discrete uniform distribution on {0,1,2, . . . , q − 1}, and
J 0(t) = (J 0(0) + N0(t)) mod q, t ≥ 0. Furthermore, ψ0 = {t0

n : n ≥ 1} is indepen-
dent of J 0(0).

7 Limits for a stationary point process with cyclic thinning

We now exploit the stationarity to extend Theorem 5.1 of [21] to include a FWLLN
for the time stationary versions of the counting processes with cyclic thinning. For
this, we return to the notation of Sect. 2. As in Sect. 5 of [21], let the counting pro-
cesses be defined as

Nu
n (t) ≡ max

{
k ≥ 0 : Su

n,k ≤ t
}
, Nv

n (t) ≡ max
{
k ≥ 0 : Sv

n,k ≤ t
}
,

(63)
Nc,u

n (t) ≡ max
{
k ≥ 0 : Sc,u

n,k ≤ t
}

and Nc,v
n (t) ≡ max

{
k ≥ 0 : Sc,v

n,k ≤ t
}

for t ≥ 0. For simplicity, now assume in addition that P(Un,k > 0) = 1 and
P(Vn,k > 0) = 1 for all n and k, so that all these counting processes increase by
unit jumps. By our initial conditions in Sect. 2, we have Nu

n (0) = 1 and Nv
n (0) = 0.

Recall the key relations given in (5.44) of [21], namely,

Nu
n (nt) = 1 + n

(
Nc,u

n (t) − 1
) + J c,u

n (t) and
(64)

Nv
n (nt) = nNc,v

n (t) + J c,v
n (t),

where J
c,u
n (t) counts the number of interarrival time phases completed in the interar-

rival time in progress at time t , while J
c,v
n (t) counts the number of service time phases

completed in the service time in progress at time t . By our assumed initial conditions,
J

c,u
n (0) = J

c,v
n (0) = 0 for all n ≥ 1. Clearly, 0 ≤ J

c,u
n (t) < n and 0 ≤ J

c,v
n (t) < n for

all t ≥ 0 and n ≥ 1. We can then rewrite the relations in (2) as

Nc,u
n (t) = 1 + Nu

n (nt) − 1

n
− J

c,u
n (t)

n
= 1 + ⌊(

Nu
n (nt) − 1

)
/n

⌋
and

(65)

Nc,v
n (t) = Nv

n (nt)

n
− J

c,v
n (t)

n
= ⌊

Nv
n (nt)/n

⌋
,
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where �t� is again the floor function, which is right continuous and thus an element
of D.

We next review Theorem 5.1 of [21]. To state the results, define the following
random elements in D:

N̄u
n(t) ≡ Nu

n (nt)

n
, N̄v

n(t) ≡ Nv
n (nt)

n
,

(66)

J̄c,u
n ≡ J

c,u
n (t)

n
, J̄c,v

n ≡ J
c,v
n (t)

n
.

Theorem 10 (FWLLN for the counting processes from [21]) Consider a sequence
of Gn/Gn/1 models associated with a single base G/G/1 model satisfying

(
Ŝu

n, Ŝv
n

) ⇒ (
L̂u, L̂v

)
in D2 (67)

for (Ŝu
n, Ŝv

n) in (23), where P((L̂u, L̂v) ∈ C2) = 1, as in Corollary 1(a). If either (1)
or (2) holds, then

(
N̄u

n, J̄c,u
n ,Nc,u

n , N̄v
n, J̄c,v

n ,Nc,v
n

) ⇒ (
e, J,1 + �e�, e, J, �e�)

in D6 as n → ∞, (68)

where e is the identity map in D, �e�(t) ≡ �t� and J = e − �e�.

Now we introduce the stationarity assumption: Assume that Nu,∗ is the arrival
counting process associated with a time stationary point process, and let N̄u,∗

n be
the scaled version, defined as in (66). Let N

c,u,∗
n be the associated (unscaled) arrival

counting process of the time stationary point process after cyclic thinning of order n

to Nu. We can combine Sect. 6 with Theorem 10 to obtain

Theorem 11 Under the conditions of Theorem 10, allowing either (1) or (2), if the
base sequence {Uk : k ≥ 1} is stationary, then there are time stationary versions of
the sequences {Uc

n,k : k ≥ 1} for each n ≥ 1 and

(
N̄u,∗

n ,Nc,u,∗
n

) ⇒ (
e, �Y + e�) in D2 as n → ∞, (69)

where Y is a random variable uniformly distributed on the interval [0,1]. As a con-
sequence,

(
N̄u,∗

n (t),Nc,u,∗
n (t)

) ⇒ (
t, �t + Y �) in R

2 as n → ∞ (70)

for each t , with �t + Y � being a random variable with the two-point distribution

P
(�t + Y � = �t�) = 1 − P

(�t + Y � = �t� + 1
) = 1 + �t� − t. (71)
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8 Other processes

Let Qc
n(∞) the stationary queue length (number in system) and let Rc

n(∞) the sta-
tionary remaining work in the system (the continuous-time workload), both at an
arbitrary continuous time in the nth GIn/GIn/1 model. By Little’s law, we know that

P
(
Qc

n(∞) = 0
) = P

(
Rc

n(∞) = 0
) = 1 − ρn for all n ≥ 1. (72)

For the GIn/GIn/1 model, we have the explicit formulas for the distributions of
Rc

n(∞) and Qc
n(∞) in Theorems X.3.4 and X.4.2 in [2]. By Theorem X.3.4 in [2],

for the GIn/GIn/1 model, we have

P
(
Rc

n(∞) ≤ x
) = 1 − ρn + ρnP

(
Wc

n,∞ + V c
n,e ≤ x

)
, (73)

where V c
n,e is a random variable with the stationary excess (or residual lifetime) dis-

tribution associated with V c
n,1, i.e.,

P
(
V c

n,e ≤ x
) ≡ 1

E[V c
n,1]

∫ x

0
P

(
V c

n,1 > y
)
dy, x ≥ 0. (74)

Since V c
n,1 ⇒ D as n → ∞, with E[V c

n,1] = 1 for all n, we have V c
n,e ⇒ Y as n → ∞,

where Y is uniformly distributed on [0,1].
By Theorem X.4.2 in [2] (the distributional version of Little’s law, [8]), for the

GIn/GIn/1 model, we have

Qc
n(∞)

d= Nc,u,∗
n

(
Wc

n,∞ + V c
n,1

)
for all n ≥ 1, (75)

where {Nc,u,∗
n (t) : t ≥ 0} is a time stationary version of the arrival counting process

independent of (Wc
n,∞,V c

n,1) and the random variables Wc
n,∞ and V c

n,1 are indepen-
dent.

We can thus combine Theorems 11, 2 and 7 to obtain the following result.

Corollary 2 (HT limit for the stationary workloads and queue length in GIn/GIn/1
models) Consider a sequence of GIn/GIn/1 models obtained from a base GI/GI/1
model.

(a) If (1 − ρn)
√

n → β as n → ∞ for 0 < β < ∞, then Wc
n(∞) ⇒ 0 and

(
Rc

n(∞),Qc
n(∞)

) ⇒ (Y,1) in R
2 as n → ∞, (76)

where Y has the uniform distribution on [0,1].
(b) If (1 − ρn)n → β as n → ∞ for 0 < β < ∞, then Wc

n,∞ ⇒ Wc∞, where Wc∞ is
an exponential random variable with mean σ 2/2β ,

Rc
n(∞) ⇒ Y + Wc∞ and Qc

n(∞) ⇒ �Y + Wc∞ + 1� as n → ∞,

(77)
where Y has the uniform distribution on [0,1] and is independent of Wc∞.
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Notice that, with Y uniformly distributed on[0,1], Y ≤ �Y + 1� = 1 ≤ Y + 1 in
(76) and

Y + Wc∞ ≤ ⌊
Y + Wc∞ + 1

⌋ ≤ Y + Wc∞ + 1

in (77), consistent with (6.75) and (6.76) of [21]. Consistent with (72), Corollary 2
implies that P(Rc

n(∞) = 0) → 0 and P(Qc
n(∞) = 0) → 0 as n → ∞ in both cases

(a) and (b).

9 Heavy-traffic limits for stationary queue lengths in GI/D/n

We now apply the results in previous sections to obtain HT limits for the stationary
queue length (number in system) in the GI/D/n model. As in Sect. 8, we do so by
applying the distributional version of Little’s law. Here this approach follows Corol-
lary 2 in [13]. As noted in [13], for the queue length we cannot directly exploit the
reduction to Gn/D/1.

Consider a sequence of GI/D/n models with unit service times. Let the arrival
processes be defined as in Sect. 3 in terms of a rate-1 renewal process by scaling
time. Let the base unit mean interarrival times have finite variance σ 2

u . Let the time-
stationary arrival counting process in system n be N

u,∗
n . These counting process obey

an FCLT, i.e., Nu,∗
n ⇒ σuB in D as n → ∞, where B is Brownian motion and

Nu,∗
n (t) ≡ N

u,∗
n (t) − ρnnt√

n
, t ≥ 0. (78)

(If either a point stationary or time stationary point process satisfies an FCLT, then
they both do, with common limit; see [18]. This is elementary for a renewal process.)
Let N(m,σ 2) denote a normal random variable with mean m and variance σ 2. Let
Wn,∞ denote the stationary waiting time in the GI/D/n model, which coincides with
Wc

n(∞) in the GIn/D/1 model.

Theorem 12 (HT limit for the stationary queue lengths in GI/D/n models) Consider
the sequence of GI/D/n queueing models above, where Nu,∗

n ⇒ σuB for Nu,∗
n in

(78).

(a) (From [13]) If (1 − ρn)
√

n → β as n → ∞ for 0 < β < ∞, then the as-
sumptions of Theorems 1 and 2 are satisfied, so that

√
nWn,∞ ⇒ W̃∞, where

W̃∞
d= max {(σuB − βe)(k) : k ≥ 0} and

Qn(∞) − n√
n

⇒ Q̃(∞) ≡ N
(−β,σ 2

u

) + W̃∞ in R as n → ∞, (79)

where the two limiting random variables on the right in (79) are independent. In

addition, Q̃(∞)
d= max {L̃(k) : k ≥ 1} and W̃∞

d= Q̃(∞)+.
(b) If (1−ρn)n → β as n → ∞ for 0 < β < ∞, then the assumptions of Theorems

6 and 7 are satisfied, so that Wn,∞ ⇒ W∞, where W∞ is an exponential random

Author's personal copy



170 Queueing Syst (2011) 69:145–173

variable with E[W∞] = σ 2
u /2β , and

Qn(∞)

n
⇒ W∞ + 1 in R as n → ∞. (80)

Proof Given the assumed and established convergence, both (a) and (b) are proved
by applications of the continuous mapping theorem with the composition map, in

order to capture the random change. For both (a) and (b), we start with Qn(∞)
d=

N
u,∗
n (Wn,∞ + 1).
For (a), by the independence in the distributional version of Little’s law, we can

start with the joint convergence (Nu,∗
n ,

√
nWn,∞) ⇒ (σuB, W̃∞) in D×R as n → ∞,

which is important for applying the continuous mapping with the composition map in
order to treat a random time change. The established limit

√
nWn,∞ ⇒ W̃∞ implies

that Wn,∞ +1 ⇒ 1. The limits (1−ρn)
√

n → β and Nu,∗
n ⇒ σuB imply that Ñu,∗

n ⇒
σuB − βe, where Ñu,∗

n (t) ≡ (N
u,∗
n − nt)/

√
n, which has a different translation term.

Then we have

Qn(∞) − n√
n

d= N
u,∗
n (Wn,∞ + 1) − n√

n

= N
u,∗
n (Wn,∞ + 1) − n(Wn,∞ + 1)√

n
+ √

n
(
(Wn,∞ + 1) − 1

)

= Ñu,∗
n (Wn,∞ + 1) + √

nWn,∞

⇒ (σuB − βe)(1) + W̃∞. (81)

For the concluding statement, since L̃(1)
d= N(−β,σ 2

u ), we have W̃∞
d=

max {L̃(k) : k ≥ 0}, with L̃(0) ≡ 0 and Q̃(∞)
d= max {L̃(k) : k ≥ 1}, so that W̃∞

d=
Q̃(∞)+.

For (b), the limit Nu,∗
n ⇒ σuB implies that N̄u,∗

n ⇒ e, where N̄u,∗
n (t) ≡ N

u,∗
n (t)/n,

t ≥ 0. Then the established limit Wn,∞ ⇒ W∞ implies that

Qn(∞)

n

d= N
u,∗
n (Wn,∞ + 1)

n
= N̄u,∗

n (Wn,∞ + 1) ⇒ W∞ + 1. (82)

�

Intuitively, Theorem 12 makes sense, because with n servers we expect to have
Wn,∞ ≈ (Qn(∞) − n)+/n, so that in case (a) where Wn,∞ = O(1/

√
n), we expect

to have Qn(∞) − n = O(
√

n), while in case (b) where Wn,∞ = O(1), we expect to
have Qn(∞) − n = O(n).

10 Implications for staffing in the GI/D/n system

In this section we discuss the implications of the waiting time limits in Sects. 2–4
for staffing in the GI/D/n model. The queue-length limits in Sect. 9 provide an-
other perspective, but here we focus on waiting times. As in the previous section, let
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Wn,∞ denote the stationary waiting time in the GI/D/n model, which coincides with
Wc

n(∞) in the GIn/D/1 model.
By Corollary 1 of [13] and Theorem 4, for any α, 0 < α < 1,

P(Wn,∞ > 0) → α as n → ∞ (83)

if and only if

(1 − ρn)
√

n → β, 0 < β < ∞, (84)

where β ≡ β(α) can be obtained by inverting the function α(β) in (29). This closely
parallels Proposition 1 of [9] for the corresponding M/M/n model.

Theorem 4 would seem to justify once again staffing by setting n so that
ρn ≈ 1 − β/

√
n for appropriate β , and that is one possibility. However, a more com-

mon constraint in service-level agreements in practice is

P(Wn,∞ > τ) ≤ α (85)

for some pair (τ,α) with 0 < τ < ∞ and 0 < α < 1. Thus we might seek asymptotics
of the form P(Wn,∞ > τ) → α as n → ∞. Indeed, the consequence of the alterna-
tive (customary) staffing constraint (85) in M/M/n + GI models upon asymptotics
is studied in [15]. However, the consequence is different in our nearly-deterministic
setting.

One might suspect that we could actually achieve higher server utilization with the
nearly deterministic model. In fact, we show that we can staff so that ρn ≈ 1 − β/n

for appropriate β if our target is (85). The following is a consequence of Theorem 7.

Theorem 13 (Asymptotically nondegenerate tail probabilities) Consider a sequence
of GI/D/n models indexed by n with unit deterministic service times and interar-
rival times having variances σ 2

n → σ 2, 0 < σ 2 < ∞. Then, for any pair (τ,α) with
0 < τ < ∞ and 0 < α < 1,

P(Wn,∞ > τ) → α and E[Wn,∞] → τ

− loge (α)
as n → ∞ (86)

if and only if

(1 − ρn)n → β, 0 < β < ∞, (87)

where

β ≡ β(τ,α) ≡ − loge (α)σ 2

2τ
. (88)

As a consequence, in this setting,

Wn,∞ ⇒ 0 and E[Wn,∞] → 0 as n → ∞ (89)

if and only if (1 − ρn)n → ∞.
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Proof The implication (87) → (86) is implied by Theorem 7. The same will be true
along any subsequence for which (87) holds. Hence, suppose that there is a subse-
quence for which (1 − ρn) → ∞. We can show that the limit in (86) cannot hold,
because we can apply the result for very large finite β . Similarly, suppose that there
is a subsequence for which (1 − ρn) → 0. We can again show that (86) cannot hold
by comparing to the case in which (87) holds for very small β . The stochastic com-
parison is valid because in the general Gn/Gn/1 model, for fixed n and k, Wc

n,k is
increasing in ρn, under (24), (7) and (8). The final conclusion (89) is obtained along
the way. �

We obtain the simple formula for the quality-of-service parameter β in (87) and
(88) because the Wn,∞ converges in distribution, without spatial scaling, to an ex-
ponential random variable with mean σ 2/2β under condition (87). From (86), we
see that the asymptotics for the mean are determined by the asymptotics for the tail
probability: Given the pair (τ,α), the asymptotics for the mean are determined. On
the other hand, given a target for the mean, there is a one parameter family of pairs
(τ,α) yielding that same constraint on the mean. In other words, there is more free-
dom with the tail probability constraints. However, we can always change the tail
probability constraint, without changing the staffing, provided that we keep the ratio
− loge (α)/τ fixed.

Note that we can simultaneously have both P(Wn,∞ > 0) → α > 0 and
Wn,∞ ⇒ 0. In particular, Theorems 4 and 13 imply that these both occur if and
only if (1 − ρn)

√
n → β , 0 < β < ∞. We include the final (89) to contrast with

Theorem 4. We regard Theorem 13 as providing strong support for staffing so that
1 − ρn = O(1/n). However, if the model were not actually nearly deterministic, for
example, if the model were GIn/GI/1 where the GI service is neither D nor GIn, so
that the model would not be nearly deterministic, then the relevant HT regime would
be the usual one, suggesting 1 − ρn = O(1/

√
n). The risk of service interruptions

also cautions against trying to extract maximal economies of scale; see [19].
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