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TRANSIENT BEHAVIOR OF THE M/M/1 QUEUE
VIA LAPLACE TRANSFORMS

JOSEPH ABATE* AND
WARD WHITT,** AT & T Bell Laboratories

Abstract

This paper shows how the Laplace transform analysis of Bailey (1954), (1957) can
be continued to yield additional insights about the time-dependent behavior of the
queue-length process in the M/M/1 model. A transform factorization is established
that leads to a decomposition of the first moment as a function of time into two
monotone components. This factorization facilitates developing approximations for
the moments and determining their asymptotic behavior as t— «. All descriptions of
the transient behavior are expressed in terms of basic building blocks such as the
first-passage-time distributions. The analysis is facilitated by appropriate scaling of
space and time so that regulated or reflected Brownian motion (RBM) appears as the
special case in which the traffic intensity p equals the critical value 1. An operational
calculus is developed for obtaining M/M/1 results directly from corresponding RBM
results as well as vice versa. The analysis thus provides useful insight about RBM
approximations for queues.

APPROACH TO STEADY STATE; RELAXATION TIMES; BIRTH-AND-DEATH PROCESSES;
QUEUES; BROWNIAN MOTION; FIRST-PASSAGE TIMES; BUSY PERIOD; MOMENTS

1. Introduction

Bailey (1954), (1957), (1964) showed that the transient behavior of the queue-
length process in the M/M/1 model can be described using double transforms (with
respect to space and time). This analysis is described in many textbooks and is now
quite familiar. In this paper we show that this analysis can be continued to obtain
additional interesting and useful descriptions of the transient behavior. Our overall
goal is to develop a better understanding of the transient behavior of queues and
related stochastic flow systems, so that we can provide relatively simple descriptions
suitable for engineering purposes.

Here are the main ideas. First, many transient results for the queue-length process
can be obtained quite easily without deriving or applying the entire probability
transition function (the usual first step). Second, a special role is played by the zero
initial condition; it can be exploited to obtain useful results even for the case of
general initial conditions (a new factorization in Section 2 with applications to
moments in Sections 5 and 6). Third, appropriate scaling of time and space
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146 JOSEPH ABATE AND WARD WHITT

(especially time) reveals the close connection to regulated or reflecting Brownian
motion (RBM); with the scaling it is easy to see that the M/M/1 queue-length
process is the discrete analog of RBM. Finally, many descriptions of the transient
behavior can be expressed solely in terms of relatively simple building blocks such as
first-passage-time distributions. In fact, many characteristics can be expressed solely
in terms of the probability transition function in the associated unrestricted process
on the integers (with the barrier at zero removed).

Our work here complements Abate and Whitt (1987a, b) henceforth referred to as
AWa and AWb, in which we describe the transient behavior of RBM and the
M/M/1 queue-length process. Many result here are analogs of the transform results
for RBM in Sections 1.3, 4, 5 and 9 of AWa. Some proofs here also represent
alternate derivations of M/M/1 results in AWDb. As shown in these previous papers,
these results provide a basis for developing simple approximations to describe the
moments of the queue length as functions of time. Our approach is to decompose
the moments into two monotone pieces that can be normalized to obtain cumulative
distribution functions (c.d.f.’s). We then approximate each c.d.f. by more con-
venient c.d.f.’s by matching the first three moments. As a basis for this procedure,
we determine simple closed-form (exact) expressions for the first three moments of
these c.d.f.’s. For the first-moment function in the M/M/1 queue, this program is
completed here in Section 6 by calculating the first three moments of the second
component, the first-moment-difference c.d.f.; the other component was treated in
AWD. It is often appropriate to approximate each component c.d.f. by a mixture of
two exponentials, so that the overall moment with general initial condition is
approximated by the linear combination of four exponentials. In many regions of
interest, one exponential component dominates, so that the approach to steady state
can reasonably be described by a simple exponential; e.g., (2.1) of AWb.

The approximations for the M/M/1 model are important not only to describe the
transient behavior of M/M/1 models but also to approximately describe the
behavior of general GI/G/m models. In a forthcoming paper we apply our M/M/1
results for this purpose (using heavy-traffic limit theorems, as indicated in AWb). In
addition to the approximations for the time-dependent moments described above,
we develop relatively simple normal approximations for the time-dependent c.d.f.
based on Corollary 4.2.5; see Remark 4.5. Since approximations are considered at
length in AWab, we do not dwell on them here. Related work is contained in Gaver
and Jacobs (1986), Kelton (1985), Kelton and Law (1985), Lee (1985), Middleton
(1979), Odoni and Roth (1983), Pegden and Rosenshine (1982), Roth (1981), Lee
and Roth (1986) and references cited in these sources.

In addition to developing supporting theory for simple approximations, we
uncover interesting relationships about the transient behavior of the M/M/1 queue,
e.g., Corollary 4.2.3. In fact, some of these relationships do not yet have a
satisfactory simple probabilistic interpretation, e.g., Theorems 9.1-9.3. Of particu-
lar interest for understanding RBM approximations for queues is an operational
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calculus developed in Section 10 to obtain M/M/1 queue-length formulas directly
from corresponding RBM formulas. Obtaining RBM formulas from M/M/1
queue-length formulas is achieved via heavy-traffic limit theorems; going the other
way is sometimes possible because the M/M/1 queue-length process is the discrete
analog of RBM. A brief summary of the paper appears at the end in Section 11.
We conclude this introduction by mentioning that a similar theory exists for the
workload or virtual waiting-time process (to some extent, even for the M/G/1
model). Moreover, the autocorrelation functions of stationary versions of all the
basic M/M/1 processes can be expressed directly in terms of the moment c.d.f.’s;
see Abate and Whitt (1987c), which we abbreviate to AWc. These related results
supplement Ott (1977a, b), Cox and Isham (1986) and references cited there.

2. A transform factorization

Let Q(¢) represent the queue length (including the customer in service, if any) at
time ¢ in the M/M/1 model. Without loss of generality, let the service rate be 1, so
that the arrival rate coincides with the traffic intensity p. Assume that p <1, so that
the system is stable with Q(#) converging in distribution to Q(«) where P(Q(x) =)
= P(») = (1 — p)p’ for j 0. (Transient results can also be obtained for p Z1, but
we will only consider the case p <1.)

We begin by establishing a factorization for the double transform of the
probability mass function (p.m.f.) of Q(¢). This transform factorization is closely
related to the stochastic process decomposition in Section 2 of AWa. The transform
factorization here is the discrete analog of Theorem 9.1 of AWa for RBM. The
analysis is faciliated by scaling time in a manner consistent with the heavy-traffic
limit to RBM as p— 1; see Section 2.2 of AWb. We scale time but not space here,
so a further space scaling is necessary to connect the result here to RBM; see
Section 10.

Let P;(t) be the probability transition function of the M/M/1 queue-length
process with scaled time, i.e.,

21 Pi()=P(QQ>1-p) ) =j]Q(0)=1)
and let P(z, s) be the double transform, defined by

(2.2) P(z,5)= i Z/Py(s) and PBy(s)= r exp (—st)P;(¢) dt.

The standard formula for P,(z, s) due to Bailey (1954) that is given in the textbooks,
e.g., p- 8 of Prabhu (1965) and p. 79 of Cohen (1982), is (after adjustment for the
scaling)

20721 — (1= 2)Py(s)

- ) = o)
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using the definitions
0=(1-p)/2, W=[1+2(1-0)s+ (65,
(2.4) n=%¥+(1-6s), n=¥-—(1-6s),
pz;=1—0r, and pz,=1+06r,
and the relations
(2.5) nr=2, pzz=1 and p(l—z)(z,—1)=26%.

The functions z, =z,(s) and z,=2z,(s) are the two roots of the basic quadratic
equation pz®>—(1+p +26%)z +1=0, as can be verified by elementary algebra.
Additional discussion of the time scaling appears in the Appendix.

Since the denominator of (2.3) has only one zero in the unit circle (by Rouché)
and the double transform needs to be analytic in the unit circle, the numerator of
(2.3) must be 0 when z = z;, so that

R 20%z4*Y Orz4
2.6 Py(s) =
(2.6) o(s) -2, "
and
292 i+1 _ 1- 0 i —1
@.7) P(z,5)= 227 —(1=2)0nzss

p(z —z)(z2—2)

This is where the standard transform argument stops. For example, following
Bailey (1954), Cohen (1982) next expands (2.7) in powers of z to identify B;(s) as
the coefficient of z/, which yields an expression I3ij(s) as the sum of six terms, (4.28)
on p. 80, each of which can be inverted to obtain the standard expression for P;(t)
involving modified Bessel functions of the first kind. This approach is of course
effective, but as an alternative we suggest continuing to work with the double
transform Py(z, s). In particular, we find that P,(z, s) can be factored in a useful way.
(This is not difficult to check; we frequently omit routine algebraic proofs.)

Theorem 2.1. The double transform (2.7) can be factored as P(z,5)=
Py(z, 5)0i(z, 5), where

-1  (1-pz)

(2.8) Pz, 5) =s(zz—2)_s(1 - pz2)
and ‘ .
2.9) 0z, )= 172"~ = 2)h

(z—2)

with Py(1, s)=s""and Q,(1,s)=1.
Theorem 2.1 does not seem to help determine the transition function P;(¢) for all i
and j, but as in Section 9 of AWa, we can obtain the time-transformed moments

(2.10) (s, i) = Im exp (—st)my(t, i) dt
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where

(2.11) mi(t, i) = E(Q2A - p) 7] | Q(0) = 1)

by differentiating P,(z, s) with respect to z and setting z = 1. The factorization leads
to the moment decomposition

(2.12) my(t, i) = my(t, 0) + di (2, i)

where d(t, i) =m,(t, i) —m;(¢, 0). From the resulting transforms, which we will
examine in Sections 5 and 6, or from Theorems 7.3, 11.1 and 1.3 of AWa, we know
that m, (¢, 0) and d, (¢, i) are monotone functions of ¢t for all i and k =1 and 2. This
decomposition is particularly convenient for describing the moment functions
m,(t, i). For example, the decomposition yields a much easier derivation of the
asymptotic behavior of m,(t, i) as t— « than the standard direct method; compare
p- 180 of Cohen (1982) with Corollaries 5.2.3 and 6.1.2 and Theorems 3.1 and 6.2
here. This simplification occurs because the components m;,(t, 0) and d,(¢, i) of
my(t, i) can be very simply expressed in terms of the busy-period distribution. To set
the stage, we treat the busy period and related first-passage times next.

3. First-passage times

As with RBM, everything can be expressed in terms of the first-passage times. For
the M/M/1 queue, this primarily means the busy-period distribution. Let T; be the
(time-scaled) first-passage time from i to j in the M/M/1 queue and let f(t; 1, j) be
its density and F(t;i, ) its c.d.f. Let f and F denote the corresponding Laplace
transforms with respect to time. Let b(t) be the density of the (time-scaled) busy
period Ty, and let b(s) be its Laplace transform. Let B(t) be the associated c.d.f.
and B(s) its transform. Let f ~ g mean f(0)/g(t)>1ast— . Let 7= (1+Vp)*/2 be
the time-scaled relaxation time; I(v) the modified Bessel function (p. 377 of
Abramowitz and Stegun (1972)), v = t0~2p? and

(3.1) L(t, p) = 2mpit®) " 1exp (—t/7).

The form (3.1) is convenient for seeing the connection to RBM; note that

7=(1+Vp)*/2—2, the relaxation time for RBM, as p—1 and L(t, 1)= t7 1y (t)

where y(¢) is the gamma density with mean 1 and shape parameter 3, as in (4.2) of

AWa; y(r) itself coincides with the density of BM (unregulated) at 0 starting at 0,

ie., y(t)=Qat) texp(~t/2). Also L(t, 1) is the limit of x~'f(¢;x, 0) as x—0,

where f(t; x, 0) is the inverse Gaussian first-passage-time density in (1.5) of AWa.
The following theorem expresses well-known results of Bailey (1957).

Theorem 3.1 (Bailey). (a) f(s;i, 0)=b(s)' = z};
(b) £(t;4, 0) = (i/1)p~2 exp (~t/7)[exp (—v)L(v)] ~ iBp~E~12 Lt p);
(¢) 1=F(t;i, 0) ~ ti6p~ =D (¢, p).

Proof. Part (a) comes from Section 3 of Bailey (1954) or Section 6 of Bailey
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(1957); & in (39) becomes z,. The idea is to carry out an analysis as in (2.1)—(2.7)
using a modified process that ceases when it reaches the origin. However, a separate
argument is really not needed; we can directly apply P(s) in (2.6). From first
principles (to go from i to 0 you must do so for a first time), P,(t)=
5 (u; i, 0)Poo(t — u) du, so that Po(s) = Py(s)f (s; i, 0), from which we immediately
get (a). It is elementary that T}, can be represented as the sum of i i.i.d. copies of
Tyo- The first part of (b) is (40) on p. 332 of Bailey (1957) in our time scale. For the
second part of (b), use 9.7.1 on p. 377 of Abramowitz and Stegun (1972):
e "I(v) ~ (2nv)~% independent of i. For (c), apply an asymptotic theorem for
integration, e.g., p. 17 of Erdélyi (1956), using |7 L(x, p) dx ~ tL(t, p), which we
prove below in Corollary 5.2.3.

Corollary 3.1.1. In terms p and 6 =(1— p)/2, (a) the first five moments of the
busy period Ty are m;=m, =0, m3;=30(1—6), m,;=36[1+3p + p*] and ms=
156(1 — 0)[1+5p + p*] and (b) the first three moments of T, are m,=i6,
m,=1i6([i — 1]6 + 1) and m;=i6[(i6)* + 3i60(1 — 0) + 3p + 267].

In fact, all moments of the M/M/1 busy period Ty,, and thus all moments of T,
can be found from a basic recursion due to Riordan (1962). (Riordan’s result (70) on
p. 107 is stated only for the conditional waiting time in the M/M/1 model with
LCFS (last-come first-served) discipline. It is necessary to observe that this coincides
with the ordinary M/M/1 busy-period c.d.f.; see Remark 4.1 below.)

Theorem 3.2 (Riordan). The moments m, of T, satisfy the recurrence relation
myo=(2n+ 1)(1 - 0)m, . — (n2 - l)ezmn

for my=1 and m; = 6.

Remark 3.1. An explicit expression for the moments is given on pp. 231-233 of
Takdcs (1967). However, it is not necessarily more useful than the recursion above.

An important role will be played by the equilibrium time to emptiness T, which
is the first-passage time to 0 starting with the equilibrium geometric stationary
distribution. (See Corollaries 4.1.1 and 5.2.1.) Let f.o(f) and F(t) be the density
and c.d.f. of T,,. This involves a slight abuse of terminology because T, has an
atom with mass (1—p) at 0, so that it does not have a proper density. The
transform f.o(s) should thus be interpreted as the Laplace-Stieltjes transform
- exp (—st) dF,o(t). The following result follows easily from Theorem 3.1.

Theorem 3.3. The equilibrium time to emptiness 7, has Laplace-Stieljes
transform

S i 1— 2 n np+2
ﬁ(’(s)=;,(1—p)p’z'1= P _z_ b _hre

1—p21 r1 N 7‘1+s’
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moments m,, = p/2 and m,,=p(1 — 0) and squared coefficient of variation cZ=
(me; —m?)/mZi, =1+2/p.

Corollary 3.3.1. As p— 1, T, converges in distribution to the equilibrium time to
emptiness for RBM, which has transform 2/r, where r, is the RBM quantity; see
Corollary 1.3.1 and (1.10) of AWa and Section 10 here.

Following Bailey (1957), we can also describe the first-passage time upward
from 0.

Theorem 3.4 (Bailey). For the time-scaled M/M/1 queue,

n+rn _(n+n)(pz))
nzi+nzh  npzi+n

3.2) F(s;0, )=

for r,, r,, z; and z, in (2.4), so that

(3.3) E(Ty)=2""[p™ —1-26]]
and
(3.4 Var (Ty) =47'[p™7 = 1-4j6(1 — 6) + 4p 7 (p — 26j) — 4p].

Proof. Formula (45) on p. 333 of Bailey (1957) becomes (3.2) by using
pz;=1—6r, and pz,=1+ 6r, in (2.4). Bailey’s (46) is (3.3). We know of no
reference for (3.4), which is obtained by further differentiation and algebra.

Note that E(T;)— 0 in (3.3) as p— 1. This is a consequence of the time scaling
(2.1). As a direct consequence of Theorems 3.1 and 3.4, we obtain the correspond-

ing results for RBM, originally due to Darling and Siegert (1953). The time scaling
helps make the connections clear.

Corollary 3.4.1 (Darling and Siegert). For RBM,

(3.5) F(s;x, 0) =exp (—xr,)
and
(3.6) F(s;0,x)= nir

ry exp (—xr,) + r, exp (xry)

for r, and r, in Section 1.3 of AWa, so that

(37  E(Lo)=x, E(T)=2"'[exp(2x)—1-2¢], Var(Lo)=x,
(3.8) Var (Tp,,) = 4 '[exp (4x) — 1 — 4x + 4 exp (2x)(1 — 2x) — 4].

Proof. By the heavy-traffic limit theorem in Iglehart and Whitt (1970) or Stone
(1963) and the continuous mapping theorem (Theorem 5.1 of Billingsley (1968)) to
treat the first-passage-time functional (Section 7 of Whitt (1980)), T(.e-1},(y6-1 for
M/M/1 converges in distribution to T,, for RBM as p— 1. By direct calculation,

2071 exp (—xr,) and z° *1— exp (xr,) as p— 1, where r, and r, for RBM are the
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obvious limits from (2.4) as p— 1. The moments converge too by an additional
uniform integrability argument; p. 32 of Billingsley (1968).

Formula (3.6) is a variant of (9-138) on p. 358 of Heyman and Sobel (1982).
Their counterpart to (3.7), (9-140) on p. 359, seems to be in error, however. We
know of no reference for the variance in (3.8). For further discussion about the
relation between M/M/1 and RBM, see Section 10.

Corollary 3.4.1 is of interest not only as a description of RBM but also for the
convergence of M/M/1 as p— 1 described in the proof. We can also apply Theorem
3.1 to obtain another heavy-traffic limit theorem for the first-passage-time distribu-
tions. Of course, for i =1 this is the busy-period distribution. (We are unaware of
any previous heavy-traffic limit theorem for a busy-period distribution.)

Theorem 3.5. For each positive ¢ and i,
(@) lim 67 (t;i, 0) = i(2mt?) "2 exp (—t/2) =iL(t, 1)
p—1
and

(6) lim (1-p)"'[1=F (50, 0)] =it () ~ [1 = D).

Proof. (a) Apply Theorem 3.1(b) noting that v =t6~2p2— o as 8— 0 as well as
when t— . (b) Apply part (a) together with the Lebesgue dominated convergence
theorem; from 9.7.1 on p. 377 of Abramowitz and Stegun (1972), Vve “I(v) =
(27)~ for all sufficiently large v. By differentiating the limit in (b), it is easy to
verify that it is the integral over (¢, ®) of the limit in (a).

The form of the limit in Theorem 3.5(b) will be explained by Corollary 4.2.3 and
Section 10. For a closely related result, see Corollary 5.2.3.

4. The probability mass function

In this section we develop new representations for the p.m.f. P;(¢) in (2.1), which
have special appeal when i =0 or j=0. We show how P,(f) can be represented
solely in terms of the first-passage-time densities f(¢; i, 0) and f(¢; 0, j) described in
Section 3.

A key property of RBM is that the time-transformed density of the state at time ¢
starting at the origin has a simple exponential form; (2.11) of Gaver (1968) and (1.8)
of AWa. It is significant that a discrete analog, a simple geometric form, holds for
the M/M/1 queue. Our new geometric representation for Poj(s) can be obtained
directly from Theorem 2.1 by algebraic manipulations, but it can also be obtained
from a fundamental relationship that is valid for any reversible Markov process; see
Keilson (1979) or Kelly (1979). Let * denote convolution.

Theorem 4.1. f.o(t) * Po;(t) = P(®)F(t; ], 0).
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Proof. Note that {Q(t):t = 0} starting in equilibrium is a reversible process. The
left side is the probability of hitting 0 somewhere in the interval (0, ¢) and ending up
at j at time ¢, starting in equilibrium. The right side is the equilibrium probability of
initially being at j and hitting 0 somewhere in the interval (0, t). By reversibility,
these two probabilities are equal.

With transforms, the convolution in Theorem 4.1 can be represented as simple
product, so that we can divide by the transform of f,(¢) to obtain an expression for
the transform of Fy(t).

Corollary 4.1.1. Poj(s) = Pj(OO)F(s;j, 0)/f.o(s).

We apply Theorem 2.1 (alternatively Theorem 4.1 and Corollary 3.1.2) to obtain
the following expressions for Poj(s).

Theorem 4.2. The double transform Py(z, s) can be represented as

1 — Pz 9r1 <0r1) et Lo
= == 1— 6r Yz’
s(—pzz) sA—(1-6m)z) \s ;0( n)'z
which can be immediately inverted to express the time-transformed p.m.f. as (the
simple geometric form being the first relation)

4.1) Py(z,5)=

2y5) = ()1 - ny = (22) oy = [(1- ) (2224

. . (1—pz .
@2) = Bl (s3], O/B(=) = o/ =L s 0)
= p/[F (535, 0) = pF(s;j +1,0)] = p'F(s;), 0) = p"'F(s;/ + 1, 0).
From the geometric form we can easily go the steady-state limit as t— .

Corollary 4.2.1. The steady-state limit is
P() =lim Py(t) = lim sPy(s) = lin; Or(1—6r)Y =20(1-260Y =(1 - p)p’.
t—x s—0 s—>

It is significant that the final form of (4.2) can be immediately inverted.
Corollary 4.2.2. Py(t) = p’F(t;], 0) — o 'F(¢t;j + 1, 0).

The case j =0 in Corollary 4.2.2 is particularly interesting.

Corollary 4.2.3. Py(t) =1— pB(t).

Remarks 4.1. Surprisingly, Corollary 4.2.3 is not well known, although it is
implicit in (27) of Bailey (1954) and appears at the bottom of p. 25 of Bene§ (1963).
Kosten (1973) established the connection for the transforms in (5.3.25) on p. 85, but
he only relates Py(t) to the conditional expected waiting time with the last-come
first-served discipline. (Recall the comment about Theorem 3.2.) This in turn is
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connected to the busy period on p. 786 of Riordan (1961), p. 221 of Cooper (1972)
and p. 438 of Cohen (1982). Corollary 4.2.3 was also discovered independently by
our colleagues A. Kumar and W. S. Wong (1987).

4.2. If we only wanted Corollary 4.2.3, then a very quick proof is possible.
Indeed, given (2.6) and Theorem 3.1(a), Corollary 4.2.3 is already contained in the
relation pz; =1— 6r, in (2.4).

4.3. D. R. Smith (personal communication) has provided the following probabil-
istic proof of Corollary 4.2.3. (A similar argument using reversibility yields
Corollary 4.2.2.) Consider the M/M/1 model in equilibrium and note that the flow
of probability mass from state 0 to all other states in the time interval [0, ¢] equals
the flow in the other direction in the same time interval. The first is obviously
Py()(1 — Pyo(t)), while the second can be shown to be (1 — Py(®))B(t)Py(x). The
first term in the second expression is the equilibrium probability of starting above 0.
The rest is the equilibrium conditional probability of being at 0 at time ¢ given that
the initial state is greater than 0. The conditioning means that there is at least one
customer in the system at time 0. In order to be at 0 at time ¢, the busy period
generated by the first customer must end before time ¢. It ends at time s with density
b(s). At the instant the busy period ends, the additional customers begin to receive
service, but the number of additional customers has the equilibrium distribution, so
that the probability of being at 0 at times s and ¢ is Py(). Integrating from 0 to ¢
yields the second expression.

4.4. Erik van Doorn (personal communication) has observed that Corollary 4.2.3
also can be derived from (5.4) on p. 98 and p. 103 of Karlin and McGregor (1958).
From the perspective of the spectral representation, Py(f) plays a central role
because it is the Laplace—Stieltjes transform of the spectral measure.

From Corollary 4.2.2 and Theorem 3.1(c), we immediately obtain the asymptotic
behavior of Py(t), as given in (4.34) on p. 84 of Cohen (1982).

Corollary 4.2 .4.

B() = Py(t) = p/[1 = F(1;), 0)] = o' [1 = F(1;j +1, 0)]
~10p"°L(t, p)ljp? = (j + 1)p]

for L(t, p) in (3.1) and 7 the time-scaled relaxation time.

Corollary 4.2.4 indicates (but does not prove) that Py(t) is strictly increasing in ¢
for all ¢ if and only if jo?Z(j+ 1)p or, equivalently, if and only if j ZVp/(1—
Vp) = (1 + p~t)m; () where m;(») = p/(1 — p) is the steady-state mean. We prove
this in Section 8. The criterion is equivalent to j6 = (1 + Vp)Vpp/2, which reduces to
the criterion x =1 established for RBM in Theorem 1.9 of AWa as p— 1 with
jO—x. (For M/M/1 we scaled time but not space.)
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We can also apply Corollary 4.2.2 to obtain simple expressions for the
complementary c.d.f. and the first moment starting at 0, defined in (2.11). Part (c)
below constitutes an alternative proof of Corollary 3.2.1 of AWb.

Corollary 4.2.5. The complementary c.d.f. and moments can be expressed as
(a) Z Py(t)=p"F(t;n, 0)= Z P(»)F(t;n, 0)
j=n j=n

6 me0=3 3 k=3 pFen0),

n=1j=n

and

© e, 0)/mi()= 3, (1= p)p" F(ti, 0
= 3 PQ() =1 | Q) >O)P(T 1),

Remarks 4.5. Corollary 4.2.5(a) is the basis for a normal approximation for the
normalized complementary c.d.f. Since the first-passage time T, is distributed as the
sum of n i.i.d. copies of T}, with finite moments as in Corollary 3.1.1, T,, is
asymptotically normally distributed as n— «. Thus, for » not too small, we obtain
the approximation

P(Q(1)>n [ Q(0) =0) ~ P(Q(=) > n)®([t — n6]/VnO(1 - 6))
with time scaling (2.1) and

P(Q(1)>n | 0(0) = 0)~ P(Q(=) > n)®([t — n(1 - p)~'|/Vn(1 + p)/2(1 - p))

without time scaling. (Refinements also follow by applying the refinements to the
central limit theorem; e.g., Chapter XVI of Feller (1971).) These normal ap-
proximations can be viewed as large-deviation results (asymptotically correct as
n—x); see Asmussen and Thorisson (1986) and (8.3.4) of Siegmund (1985).
Corollary 4.2.5(a) provides a remarkably simple derivation for this case.

4.6. Corollaries 3.4.1 and 4.2.5 together imply corresponding results and as-
sociated normal approximations for RBM. Direct derivations appear in Section 1.7
of AWa.

Let Iy(t) be the cumulative idle time in [0, ¢] starting at the origin. Corollary 4.2.3
yields an interesting characterization of its mean. For any density g(¢) on [0, ©) with
mean m; and Laplace transform g(s), let g.(¢) be the associated stationary-excess
(or equilibrium-residual-life) density with transform g.(s) =[1 — £(s)]/m,s.

Corollary 4.2.6. The expected cumulative idle time in [0, ¢], first without time
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scaling, is

EUO] = [ Prow) = [ [1 = pB)] du = (1 = p)t+ m(<)B.()
=26t + my()B,(t)
and, second with time scaling, is
E[Iy(t)] = 26t + 26*m () B,(¢).

Proof. Apply Corollary 4.2.3 using B,(t) = (1 - p) [§[1 — B(u)] du without time
scaling.

To treat the general case F;(t), we apply reversibility again via the basic relation
(4.3) Fi()Py() = B(*) P:(t)

which for M/M/1 becomes P;(t) = p’~'P,(t). We can immediately combine (4.3) and
Corollary 4.2.4 to describe Py(t).

Corollary 4.2.7.
(1-p)—Po(t)=[1-F(t;i, 0)] - p[1 - F(t, i + 1, 0)]
~10p~“PL(t, p)ipt - (i + Dp].

For 0=i <j, we also have

44 PO =160, )+ Py = [ £6530, )P, —5) ds

because to get from 0 to j the process might pass through i, and to pass through i it
must do so for a first time. As a consequence, we have the following expression for
pij(s )-
Theorem 4.3. (a) For 0<i <j,
P'E(s;),0) = p" F(s3j+1,0)
f(550, 1) ’

Py(s) = Py(s)/f(s;0, i) =

(b) For i>j,

p JE(s;i,0)— o’ F(s;i+1,0
Pz‘j(s)=P'_'Pﬁ(S)=pl_'POi(S)/f(S;O, ]-)=P (s;1 )fA(SPJO ])(S 1+ )

It remains to determine if our approach has anything special to offer for
describing P;(¢t) in the time domain and its asymptotic behavior as t— o when
neither i = 0 nor j = 0; so far, the analysis we would suggest is essentially the same
as on p. 82 of Cohen (1982) or p. 12 of Prabhu (1965). The difficulty in treating Pj(t)
perhaps helps explain why the first moment function is so much easier to treat via
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the decomposition (2.12). We do apply Theorem 4.3 here in Section 10 to relate
M/M/1 to RBM.

5. Moment functions starting at the origin

We now discuss the moment functions and associated moment c.d.f.’s; for
additional discussion and motivation see AWab. Let m,(t, {) be the time-scaled kth
moment function in (2.11) and let 771, (s, i) be the associated Laplace transform with
respect to time in (2.10). Let m,(t, i) be the associated kth factorial moment
function, i.e., mg,(t, i) = E[X(X —1) - - - (X — k + 1)] where

X=(221-p)"|Q0)=1)

and let 71 (s, i) be the associated Laplace transform. We introduce these factorial
moments because they have nice structure, as illustrated by Corollary 5.2.1. below.
Additional insight into this structure is provided by the probabilistic proofs in
AWab.

As in AWDb, we first focus on the case i =0, but here we also treat the general
case in Section 6. Let H,(t) be the kth factorial-moment c.d.f. defined by
H, (1) = m(t, 0)/m) () with density h.(t) and associated transforms HA,(s) and
hi(s). (In Corollary 5.2.1 below we prove that H,(t) is a c.d.f. for each k.) We can
obtain #1,(s, 0) from Py(z, s) in (2.9) by differentiating, i.e.

pz,
s(1—-pz)
We then obtain the Laplace transform H,(s) by scaling space; i.e., let H;(s)=

20r1,(s, 0)/p. Finally, we can combine (5.1), (2.4) and (2.5) to obtain the
corresponding transform 4,(s) of the first-moment density A,(¢).

Theorem 5.1.
hy(s) =

A 5 .
(51) ml(s’ 0)=§Z_PO(Z’ s)'z=l=

26z, n 2 2 2
1—pz;, n+s 2+n n+20s n

We can also easily describe all the factorial moment functions using Theorem 4.2.
(Alternatively, we could differentiate further in (5.1).) Let (n),=n(n—1)---
(n—k+1).

Theorem 5.2.
. = . k' [ p\¥(2z\*
M (s, 0) = ngo (n)iPon(s) = 5 <%> (r_ll) .

Since m,)(*) = k! (p/26)*, see (3.5) of AWh. we immediately get expressions for
all factorial-moment c.d.f.’s and densities too. We apply Theorem 3.1(a) and
Corollary 3.1.2 (plus elementary algebra) to get a simple connection to the
busy-period distribution.
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Corollary 5.2.1.

2z)\k
hx6) = (Z2) = o6 =Bu(5) = hr(o)"
1
Corollary 5.2.1 implies that h,(¢) is simultaneously b.(t) and the convolution of
fo(?) and b(r), so that it is a proper density and we obtain new proofs of Corollaries
3.1.1 and 3.1.2 of AWb. Moreover, Corollary 5.2.1 shows that k() is the k-fold
convolution of A,(t), thus providing a new proof of Theorem 3.2 of AWb.

Alternate proof of Corollary 5.2.1 for k = 1. For the M/M/1 model without time
scaling, the expected queue length starting at the origin obviously coincides with the
expected virtual waiting time, say EW,y(¢), which in turn is equal to the expected
cumulative input of work in [0, ¢] minus ¢ plus the expected cumulative idle time in
[0, ¢]. We can thus invoke Corollary 4.2.6 to obtain

ma(t, 0) = EWy(t) = pt — t + EL(t) = my()B, (¢).

We can apply Theorem 5.2 to show that the kth-factorial-moment c.d.f H,(t)
converges in distribution to non-degenerate limits as p—1 and as p—0, by
invoking the continuity theorem for Laplace transforms. (This justifies a claim in
Section 2.2 of AWb.)

Corollary 5.2.2. (a) If p— 1, then 6—0 and r,— 1+ V1 + 25, so that
lim A (s) = 2[1 + (1 + 29)] 7%,
p—1

coinciding with the transform of the k-fold convolution of the first-moment density
of RBM in (1.10) of AWa.
(b) If p— 0, then 6— % and W(s)— 1+ 5/2, so that

lim A (s) =242 +5)7%,
p—0

coinciding with the transform of the k-fold convolution of an exponential density
with mean 1.

Remark 5.1. Since H(t)= B,.(t), Theorem 5.2.2(a) implies that B,(t), with our
time scaling, converges in distribution to a proper limit as p— 1; see also Corollary
3.3.1. This suggests that the busy-period stationary-excess c.d.f. B,(t) is in some
sense more robust than the busy-period c.d.f. B(¢) itself, e.g., for general queues it
might be easier to approximate B,(t) than B(t). This observation was previously
made by Delbrouck (1976); our analysis yields a possible explanation.

From Theorem 3.1(b) and Corollary 5.2.1 we can obtain the asymptotic behavior
of h,(t) and 1 — H,(¢t) as t— . The asymptotic relation in Corollary 5.2.3(a) below
is an improvement upon the heavy-traffic limit for the busy-period c¢.d.f. in Theorem
3.5(b). Here we obtain the asymptotic behavior of the busy-period c.d.f. as t— o« for
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each fixed p <1. (Because of the time scaling in (2.1), Theorem 3.5 involves both
t— and p— 1.) We obtain the limit in Theorem 3.5(b) from Corollary 5.2.3(a) by
letting p— 1 afterwards. The limit in Corollary 5.2.3(a) provides good approxima-
tions. (We intend to discuss approximations for busy-period distributions in another

paper.)
Corollary 5.2.3. As t—>»,

(@) hy(1)=b.() = 67'[1 - B(t)] ~2p [t 2p(V2t/7) — V2/[1 — @(V2t[7)]]
3/1\ 15/71\°
~L |1 (5)+ 7 (5) -]

T

(b) 1-H\(t)= [ohl(x) dx ~ TL(t, p)[l —? (i) +-.- ]

and

where 7 is the time-scaled relaxation time.

Proof. (a) From Theorem 3.1(b),
hy(t) = e-lf b(x)dx~f L(x, p)dx=(2np%)-%f x~dexp (—x/7) dx

where, after integrating by parts,

fwx‘% exp (—x/7) dx =2t 1 exp (—t/T) — r‘lrx‘% exp (—x/7) dx
=2V2a(t 3¢ (V2t/1) — V2/1[1 — ®(V21/7)))

(ol 040 2 -2 )

For part (b), apply p. 17 of Erdélyi (1956), getting

1— Hy(t) = fhl(x)dx ~ rfL(x, p)[l —g G) B (g)z] dx

b4

from which the result follows by integrating by parts twice.

Remark 5.2. Results for RBM follow from Corollary 5.2.3 by simply setting
p =1. The RBM versions of (a) and (b) are easily obtained directly from (4.3) and
(4.4) of AWa or, alternatively, Corollaries 1.1 and 1.2 there.

We can also combine Theorems 3.2 and 5.2 to obtain a recurrence relation to
obtain all moments of H,(t). (Specifically, we invoke Corollary 3.1.3 of AWb.) We
are interested in the moments, not only as summary measures, but also to develop
simple approximations by moment matching; see AWa, b, c.
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Corollary 5.2.4. The moments m,, of H,(t) satisfy the recurrence relation
n+1 )
My = (n . 2)[(2n +1)(1 = 8)m, — n(n —1)6%m,_,]

for mey=1 and m;=3; e.g., my=(1-6), my=3)[1+3p+p?*] and m,=
3(1-6)[1+5p + p?].
We now extend Corollary 5.2.3 to the second factorial moment function.

Corollary 5.2.5. The second factorial moment satisfies

hy(s) = hi(s)> = (2/p)[1 — Hy(s) — 6h(s)]
so that

hy(t) ~2(1 + p~D)hy(t) ~2(1 + p~2)TL(t, p) and 1— Hy(t) ~ thy(t).

Proof. For the first part, apply Theorem 5.1 and Corollary 5.2.1 to get

Bi(s)? = (—’1—)(2{—1) - (—2—)(1—_‘)—9’1) - % [1- Ai(s) - 6hi(s)].

n+s n+s

Then apply Corollary 5.2.3 to get

halt) = % (1= Hy(t) - 6, (0)] ~§ [L(t, p) - 0L, p)]

~21(1_

The argument for 1 — H,(¢) is just as in Corollary 5.2.3(b).

2)Lte )~ 201 + o).

In Theorem 5.2 and the corollaries above we treated the higher factorial
moments. We can apply these results to obtain descriptions of higher ordinary
moments, as we illustrate for the case kK =2. As before, let * denote convolution.
(For additional discussion, see Sections 3 and 4 of AWb.)

Corollary 5.2.6. The second-moment function satisfies

#y(s, 0) = riny(s, 0) + riigyy(s, 0) = ph, phi(s) | phi(s)®

206s Os
_(p(1-6) 6 2
'( 26? )(s(l—@)ﬁ s(l—B)ﬁ)
so that
(5.2) MO8 g+ L () < HO)]

my(®) ~ (1-6) ( 6)
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We can combine Corollaries 5.2.2 and 5.2.6 to describe how the second-moment
c.d.f. my(t, 0)/m,(x) behaves as p— 1 and as p— 0.

Corollary 5.2.7.
. (s, 0) A 1122
(@) lim ———="=1lim Ay(s) =4[1 + (1 + 2s)7]
p—1 My(®)  p—1
coinciding with the transform of the two-fold convolution of the first-moment
density of RBM in (1.10) of AWa.

. mZ(s s 0) : i -1
b) lim———==1imh,(s)=2(2+s
(b) lim =FP 0 lim iy (5) =2(2 +5)
coinciding with the transform of an exponential density with mean 3.

By Corollary 5.2.4 above or Corollary 3.1.3 of AWDb, we see that the first three
moments of the c.d.f H,(t) are m; =3, m,=(1— 6) and m; =3(1 — 6)* + 3p/4. Note
that the mean m, is independent of p, but the higher moments m, and m; depend
on p. Note that the squared coefficient of variation is ¢>=2p + 1, so that in some
sense the distribution H,(t) gets more variable (spread out) as p increases. In fact,
from Theorem 5.1 we can establish a stochastic comparison of this kind. We use the
Laplace transform ordering; p. 22 of Stoyan (1983). Let A,,(s) be A,(s) for a
given p.

Theorem 5.3. The moment c.d.f. H(¢) is monotone in p in the Laplace transform
stochastic ordering; i.e., A,,,(s) = A,,(s) for all s when p; < p,.

Proof. By Theorem 5.1, ﬁpl(s) is increasing in ri(s). By differentiating r,(s) in
(2.4) with respect to p, we see that it is increasing in p.

We conjecture that H,(f) is monotone in p in a stronger convex stochastic
ordering.

Conjecture 5.3.1. Whenever p,<p,, [5f(t)h, (t)dt=[5f(O)h,(t)dt for all
convex real-valued functions f for which the integrals are well defined.

By Corollary 3.3.1 of AWDb, H(t) is a mixture of exponential distributions. Since
a simple exponential distribution is the least element in the set of mixtures of
exponentials with a given mean in the convex ordering, Conjecture 5.3.1 is
established for the special case in which p; =0. Theorem 5.3 establishes Conjecture
5.3.1 for the subset of convex functions of the form f(¢) = exp (—st). Conjecture
5.3.1 is also consistent with our numerical results: In all observed cases the c.d.f.’s
crossed exactly once.

From Corollary 5.2.1, it is clear that orderings for H;(¢) in Theorem 5.3 and
Conjecture 5.3.1 immediately carry over to the factorial-moment c.d.f.’s. Corollary
5.2.7 suggests that something like this is also true for the ordinary second-moment
c.d.f., but we have not yet been able to prove it. By (5.2), the mean of H,t is
(1+3p)(2+2p).
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Conjecture 5.3.2. The ordering in Conjecture 5.3.1 for all increasing convex
functions applies to the second-moment c.d.f. in (5.2).

6. The first-moment-difference c.d.f.

As for RBM in Section 9 of AWa, we can also use transforms to describe the
difference component d,(t, i) of the first-moment function m;(t, i) in (2.12). Let
G (¢, i) be the first-moment-difference c.d.f., defined by Gy(¢, i) =i"'[1 —d (¢, i)],
with density g,(¢, i) and associated Laplace transforms G;(s, i) and g,(s, i).

Theorem 6.1. The time-transformed moment function satisfies

(s, l)— P(Z, s)|z L= 1iy(s, 0) + —=— 1(S i)

where d,(s, i) = Q/(1, s) from (2.9), so that

1-— i+1
di(s, ) =i+1-= 4

and

85, =1, Dfi=1 3 24 =1 3 7537, 0).

The representation in terms of the first-passage-time transforms f(s; j, 0) facilitates
calculating the moments of G,(t, i).

Corollary 6.1.1. The first three moments of G,(¢, i) are

0(1 +1)

m=0i+12  m=20D0i nersa-e) =is2029

0(1 +1)’

U)IH

and

ms = 9(' B D) (i -+ 1762 + 221 + 1)0(1 - 6) + 2(3p +267)]

As in Section 12 of AWa, Corollary 6.1.1 can be used to fit convenient
approximate c.d.f.’s. For (1-6)/6(i+1)Z3 or i=[3(1+p)/(1-p)]—1 or 6i=
3—46, ¢*=1 and an H, fit is possible; otherwise a SESE (stationary-excess of a
shifted exponential) fit can be considered.

We can also combine Theorems 3.1 and 6.1 to describe the asymptotic behavior of
gi1(t, i) as t— .

Corollary 6.1.2. As t— o,
ig(t, i) ~§% tL(t, p)[1 = p " +ip " (p~"=1)] and 1-Gy(t, i)~ 18:(t, i).

Finally, we can combine Corollaries 5.2.3 and 6.1.2 to obtain a description of the
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asymptotic behavior of the general first moment function m,(¢, {). (This is to be
contrasted with the detailed analysis of six terms on p. 180 of Cohen (1982).)

Theorem 6.2. As t— x,
Q-

T T2L(t, p)[1 — 6i(2/p7)?]

my(®) = my(t, i) ~

or, equivalently,

my(t, i)

1-Hyt, i)=1- )

p—i/ztzL(t, p)[l - 91(2/pr)%]

for all i such that 1+ 6iV2/pt.

As in the remark after Corollary 4.2.4, Theorem 6.2 indicates (but does not
prove) that m,(t, i) is decreasing in ¢ for all ¢ if and only if 6i>Vpt/2=
[0(1 + Vp)]2/2. In other words, for M/M/1 the critical damping level in Figure 1 of
AWD is evidently iy = Vp/(1-Vp)=(1+ p~3)m; (). This is proved in Section 8.
The normalized critical damping level i;/m;(») is thus strictly decreasing in p,
approaching 2 as p— 1.

7. Connections to the unrestricted process

One way to analyse the M/M/1 queue is to relate the transition probabilities P,(r)
to the associated transition probabilities, say Q;(¢), in the unrestricted process on all
the integers obtained by removing the barrier at the origin. This approach with
reflection arguments was applied by Champernowne (1956) to express Py(t) in
terms of {Q,o(t):i=0}; see p. 13 of Prabhu (1965) and p. 17 of Conolly (1975).
(This approach is also related to the Wiener—Hopf factorization, which we will not
discuss; see Prabhu (1980).) We do mention that the basic functions z, and z, in
(2.4) have a direct interpretation for the unrestricted process. First, z; is the Laplace
transform of the first passage down one step for both the restricted and unrestricted
processes (there is no difference). Second, 1/z, is the Laplace transform of the first
passage time up one step in the unrestricted process.

In our time scale, the Champernowne (1956) analysis yields

(7.1) Poo(t) = Qoo(t) + Qon(r) +26 21 Qiolt), 20,
where -
(7.2)  Qy(t)=p" exp (—t/7) exp (—V)I(v) and
Qjo(t) = Qo,-/(=p7'Qq(1),  jZ0,
with v, I(v) and 7 as in Section 3. The associated Laplace transforms are
(7.3) Qu(s) = 0pZ)% ™" and Qyo(s) = 6% 1.
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From these expressions, it is easy to see, for j >0, that Qq(¢) and Q;y(t) are directly
related to the first-passage times down, i.e.,

(7.4) Qi) =(/Nf(t:4,0),  j>0,
while for j =0
(7.5) Qu(t) =exp (—t/T) exp (—v)IH(v) and Qu(s) = ¥

We remark that (7.4) can be connected to the general theory for Lévy processes; see
Theorem 6, p. 81 of Prabhu (1980).

In this section we go further and show that Py(¢) can be expressed solely in terms
of Qu(t). We were originally motivated by the desire to obtain an M/M/1 analog
and a better understanding of the RBM result in (4.4) of AWa, which states that

(7.6) hi() =2y() = ve(),  tZ0,

where y(f) is the gamma density with mean 1 and shape parameter }, and
v.(t) = [ v(u) du is the associated-stationary excess density. These objectives are
met here in Theorem 7.2 and Corollary 7.2.2 below.

For the M/M/1 queue, it is useful to focus on the function

(7.7) Yo(t) = 07'Qoo(t) = 67" exp (—t/7) exp (—V)L(v), =0,
which from (7.5) has Laplace transform 9,(s) = W(s)~". Since Q(t) >0, it is not
difficult to see that y,(¢) is a bona fide probability density function.
Theorem 7.1. The function y,(t) in (7.7) with transform 9,(s) =¥ ™"'=2/(r, + 1)
is a probability density function with moments m, = (1 —6), m,=2""(1+4p + p?)
and m3= (3(1 — )/2)(1 + 8p + p?), and lim,,_., y,(t) = y(t) = (2t) " exp (—¢/2).
Proof. The moments are easily deduced from the transform 9,(s)=¥~'. The
convergence as p— 1 closely parallels Theorem 3.5(a).

Corollary 7.1.1. The expected cumulative time spent at the origin by the
unrestricted process over all time is [§ Qoo(t) df = 6.

Our main result in this section expresses Py(¢) directly in terms of Qy(¢) (and its
derivative Qg(t)).

Theorem 7.2. Poo(t) =20 +2(1 — 6)Qoo(t) — [7 Qoo(ue) du + 62Q(2).
Proof. We start with (7.1). By transforms, it is not difficult to show that

(7.8) 26 2} Qio(t) = 6[1 — Qoo()] + fo Qoo(u) du.

In particular, from (7.3) the transform of the left side is

oo

26 3, Oiols) =269, (s) gzg = 9(5)Poo(s),
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while the transform of the right side is
0l — Qoo(s)] + 57 Qoo(s) =509, (s)[P + 1 — 5] = 7,(5) 01 /s = 7,(s) Pool(s)-

From the basic equation for motion (Chapman-Kolmogorov equations), we have in
our time scale

(7.9) Qbo(t) = 072Q01(r) — (1 — )67 Qoo().
Combining (7.1), (7.8) and (7.9) completes the proof.
We can combine Theorems 7.1 and 7.2 to express Py(t) in terms of v, (¢).

Corollary 7.2.1. Py(t) =26 + 0(1 — 0)[27,(t) — v,.(t)] + 0%y,(t) where 7v,.(¢) is
the stationary-excess density associated with y,(t), i.e., y,.(f)=(1—-0)""
J675(u) du.

From the conservation law for the first-moment function m; (¢, i) to be established
in Theorem 8.1, the first-moment density (starting at the origin) can be expressed as

(7.10) phi(t) = 67" Poo(t) - 2,
so that we obtain an M/M/1 generalization of (7.6).
Corollary 7.2.2. phy(t) = (1= 0)[2Y,(t) — ,.(t)] + 6%y, ().

Note that (7.6) is obtained from Corollary 7.2.2 by simply letting p— 1.
By Corollary 3.3.1 of AWb, h,(¢) is completely monotone.

Corollary 7.2.3. Py(t) —26 is completely monotone and thus decreasing and
convex with [§ [Poo(t) — 20] dt = p6.

8. Shape of the moment functions

Our object in this section is to rigorously determine the shape of the moment
functions my (¢, i) when i > 1. We apply results in Chapter 9 of van Doorn (1980) to
obtain a description paralleling our previous description for RBM in Section 8 of
AWa. The shape of m,(t, i) is essentially the same as for RBM.

Let m,(t, i) be the derivative of my(t, i) with respect to ¢ and so forth. We begin
with a basic conservation law; e.g., (2.7) on p. 178 of Cohen (1982). This
conservation law connects m(t, i) and its derivatives directly to Py(t) and its
derivatives.

Theorem 8.1 (conservation law). mi(t, i) = (26%) [Po(t)— (1 —p)] or,
equivalently,

my(t,i)=i+ (202)‘1f Po(u) du —t67".
0
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First proof. From the Chapman-Kolmogorov equations, Pj(t)=P; .,(t)—
(1+ p)Py(t) + pP;;_1(t) for j=1 without time scaling, so that elementary algebra
yields (still without time scaling)

mi(t, i) = ng;j(t) = Po()— (1 - p).

We obtain the second expression by integrating, using m,(0, i) =i.

Second proof. As in the alternate proof of Corollary 5.2.1, m;(t, i) coincides with
the expected virtual waiting time EW(¢), but here under the condition that there are
initially i customers in the system with unspecified service times. Then, without time
scaling,

t
EW(t)=i+pt—t+EI(t)=i+pt—t+fP,~0(u)du.
0

We apply Lemma 9.4.1(ii) and Theorem 9.4.3(ii) of van Doorn (1980) to
determine what the shape m,(¢, {) must be. Theorem 8.1 and (4.3) then allow us to
deduce what the shape of Py(t) and Py;(t) must be as well.

Theorem 8.2 (van Doorn). If my(¢, i) =0, then mi(s, i) = 0.
Corollary 8.2.1 (van Doorn). If mi(t, i) =0, then mi(u, i) =0 for all u =1.

The asymptotic theory (Theorem 6.2) then shows what the shape of m;(¢, i) must
be. See Figures 1 and 2 of AWa. (Alternatively we could invoke pp. 63-64 of van
Doorn (1980) together with his Theorem 8.2 above.)

Corollary 8.2.2. (a) For i Z(1+ p~#)my(®), Po(t) and Py(t) are strictly increas-
ing, and m;(t, i) is strictly decreasing and convex for all «.

(b) For 1=i=(1+ p #)my(), there is a time ¢; such that Py(t;) = p Py (t;) =
1— p, Py(t) and Py(¢) are increasing and m; (¢, i) is decreasing and convex on (0, t,),
and m, (¢, i) is increasing on (t;, ®).

We also apply a result about the first-passage-time density f(¢; 0, i) by Keilson
(1979) to further describe the shape.

Theorem 8.3. For 1=i=(1+ p~?)my(), there is a time t,>¢, such that Py(t)
and Py(t) are increasing and m,(t, i) is convex on (¢, t,), while Fy(¢) and F,(t) are
decreasing and m(t, i) is concave on (t,, ®).

Proof. By first principles, Py(t) = [4f(t—s;0,i)P,(s)ds, from which we can
deduce that Py,(¢) is unimodal. First, from the spectral representation as discussed in
van Doorn (1980), P;(¢) is a mixture of exponentials and so decreasing and thus
unimodal. Second, by pp. 59, 70 of Keilson (1979), f(¢;0, i) is distributed as the
convolution of exponentials, and so is strongly unimodal, i.e., the convolution of it
with any unimodal density is again unimodal.
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Remark 8.1. The general first-passage-time density f(¢;i, j) is known to be
unimodal (but not strongly unimodal); Keilson (1981). See Section 10 and Remark
10.1 for further discussion about shape.

Following the first proof of Theorem 8.1, we can also describe the derivatives of
the second-moment function.

Theorem 8.4. The derivatives of the second-moment function with respect to ¢ are

(@) mi(t, i)==2(1—p)my(t, i) — Po(t) +1+p
==2(1-p)my(t, i) —mi(t, i) + 2p
=2(1 - p)[mi() — my(t, i)] — mi(2, i)

(b) mi(t, i) = —2(1 = p)Po(t) — 2(1 — p)* — Pio(t).

From this analysis, we see that m,(t, i) can be expressed in terms of my,_y(¢, i),
m_o(t, i), -+, my(t, i), Po(t), so that the kth derivative of my(t,i) can be
expressed solely in terms of P(¢) and its first K —1 derivatives. We obtain the
following representation result.

Theorem 8.5. For each k =1, m, (¢, i) can be expressed solely (as a polynomial) in
terms of P,y(¢) and its first k — 1 derivatives.

Combining Theorem 8.5 and Corollary 4.2.7, we see that my(t,i) can be
expressed solely in terms of the busy-period c.d.f. B(t)= F(¢; 1, 0).

9. Renewal-process operators

An interesting feature of AWa is the way various quantities of interest are related
by certain renewal-process operators; see Corollaries 1.5.1 and 1.5.2, Remark 4.5
and Theorem 7.2 of AWa. For example, the two c.d.f.’s H,(¢) and G,(t) associated
with the second-moment function of RBM turn out to be simply the stationary-
excess c.d.f.’s of the corresponding c.d.f.’s H,(¢) and G,(¢) associated with the first
moment of RBM. The purpose of this section is to present wherever possible
M/M/1 analogs. (The same result does not hold for G,(¢) in M/M/1.) We omit the
proofs, which involve relatively elementary algebra.

In terms of transforms, the stationary-excess operator SE maps the transform f(s)
of a density f(¢f) on [0,~) with mean m, into the transform of another density
according to

©.1) SE(F)(s) =[1-F())/mus.
The normalized renewal-excess operator RE maps the same transform f(s) according
to

9.2) RE (f)(s) = (sz_ 1)[1 i(;()s) - m%s]
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Aside from the normalization, s[RE (f)] is the transform of U(t) —t/m; where
U(t) is the renewal function determined by renewal intervals with density f(¢). The
normalization is the steady-state limit. From Brown (1980), (1981), we know that
U(t) — t/m, is increasing in ¢ when f(¢) is IMRL (increasing mean residual life). That
will be the case for the densities f(f) we consider, so that RE (f) as well as SE (f)
will be the transform of a bona fide probability density.

Theorem 9.1. The stationary-excess operator SE satisfies:

(a) SE (5) =h, =fe05; (b) SE (feo) = (feo)zﬁ =SE (ﬁi);
0

rELE

2. " .__1_ h ) —
(©) ﬁ(2)=BSE(ﬁ1)=ﬁ1, (d) hz—(l_e)SE(hl)

(e) SE (?p) = ?pfeo'

Theorem 9.2. The renewal-excess operator RE satisfies:

(@) RE(b)=h,=Ffob; (b) RE (fo0)=feo;
() RE(h)=h; (d) RE(§,)=Ah,.

Even for the general GI/G/1 model, we can study Py(t) by considering the
alternating renewal process of successive idle and busy periods; see p. 82 of Cox
(1962). Let a(s) and b(s) be the Laplace—Stieltjes transforms of the idle-period and
busy-period distributions. The renewal argument yields

1-14a(s)

9.3) Pyo(s) = T3

For the special case of the M/G/1 model in our time scale an idle time has the
distribution of an interarrival time, so that i(s) = p/(p +26%), and

o (26°)(_86)

(9.4) Fools) ‘( P) >(1 - ﬁ(s)ﬁ(s))

and the expected cumulative idle time Ely(f) has transform
s (26 aG)

9.5) Io(s) =57 Poo(s) = ( P) )(s[l — a(s)E(s)]> ’

which has the simple interpretation that Ely(t) equals the mean interarrival time

multiplied by the expected number of full idle periods in [0, ¢] for the alternating

renewal process. The M/G/1 structure evidently gives this relatively simple form.
It turns out that a more remarkable formula holds for the M/M/1 model.
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Theorem 9.3.

20221
s(1—2z)

b(s)
s[1-56()]

Theorem 9.3 can be interpreted as Ely(t) equalling the mean service time
multiplied by the mean number of busy periods completed up to time ¢ in an
ordinary renewal process with time between renewals having the busy-period
distribution. We have yet to develop a direct probabilistic interpretation.

We can apply the renewal function structure in Theorem 9.3 to get bounds and
approximations for Ely(t), e.g., via p. 46 of Cox (1962), Lorden (1970) and Brown
(1980), (1981). However, we can do just as well directly via Corollary 4.2.6. Such a
direct approach is used by Kumar and Wong (1987).

I(s) =57 Pools) =

=(20)*

10. Connections to RBM

The scaling of space and time in (1.6) of AWb makes RBM appear as a special
case of the M/M/1 queue-length process; i.e., the limit as p— 1 appears as a proper
limit (Corollary 5.2.2 above), so that RBM appears explicitly as the case p =1.
However, in making the connection to RBM from results for the M/M/1 queue
here, it is important to remember that in this paper we scaled time but not space. To
obtain results for RBM, we thus need to introduce the space scaling by 6 and let
p—1

It is even more interesting, though, to establish a connection between RBM and
the M/M/1 model for p <1. Such a connection would help us understand how to
use RBM to approximate queues; e.g., see Duda (1984) and Whitt (1982). At least
in part, the connection between RBM and M/M/1 is embodied in the relation
between two systems of quadratic equations. First, RBM is characterized by the two
functions r;=r(s)=(1+2s)?+1 and —r,=—ry(s)=(1+s)?—1, which are the
roots of the quadratic equation (as functions of s) r> — 2r — 2s =0, see Section 1.3 of
AWa, while the queue-length process in the M/M/1 queue with scaled time is
characterized by the two functions z; = z;(s) = p (1 — 6r)) and z,=z,(s) = p (1 +
0r,), which are the roots of the quadratic equation pz*>—(1+p +26%)z+1=0;
see (2.4) and (2.5).

At first glance, there appears to be no simple connection between the RBM
system of quadratic equations with its roots r,(s) and r,(s) and the M/M/1 system of
quadratic equations with its roots z,(s) and z,(s). Note that r, and r, for M/M/1 in
(2.4) converge to r; and r, for RBM as p— 1, but RBM has no counterparts to z
and z,. However, Corollary 3.4.1 suggests a connection. We propose the following
operational calculus: first, since M/M/1 has been time scaled but not space scaled,
when the RBM state is x, let the M/M/1 state be n =x/6. (Assume that x is a
multiple of 8 so that the M/M/1 state is an integer.) Next, starting with some RBM
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quantity based on the functions r,(s) and r,(s) in exponential form exp (6r,(s)) and
exp (—6r,(s)), obtain the corresponding M/M/1 quantity for any given p by letting
z(s) =exp (—6ry(s)) and z,(s)=exp(Or(s)) so that z;z,=p '=exp(20)=
exp (1 — p) where z;(s) and z,(s) are understood to satisfy the M/M/1 quadratic
equations for the given p, rather than the original RBM quadratic equations.
Finally, when the RBM quantities r; and r, appear alone (not in the exponential
form above), simply replace them by their M/M/1 counterparts.

To illustrate, suppose that we want to identify the transform fy,(s; n, 0) of the first
passage time to 0 from # in the M/M/1 model with traffic intensity p. Of course this
transform is z7 as given in Theorem 3.1(a), but suppose that we only know about
RBM. For RBM the corresponding first-passage-time transform is fx(s;x, 0) =
exp (—xry(s)); see (1.7) of AWa and (3.5) here. Using the operational calculus
specified above, we set

(10.1) Fu(s; 1, 0) = fr(s; n6, 0) = exp (—nbry(s)) = z,(s)",

which produces the correct result. Similarly, the operational calculus produces
(3.2)—(3.4) for M/M/1 given (3.5)-(3.8) for RBM.

An obvious question is: how do we know when this operational calculus relating
M/M/1 and RBM will work? From Section 3, we see that it works for the
first-passage times both up and down. By Theorem 4.3, we have shown that the
M/M/1 transition probabilities can be expressed solely in terms of these first-
passage times, so that we see it works for the basic Markov transition probabilities
too. In particular, suppose that we want to identify the M/M/1 complementary
c.d.f. ¥, Py(t). By Corollary 4.2.5, we know it is p"F(t;n, 0) with transform
s~'p"z%. However, suppose that we start with RBM. From (1.8) and Section 1.7 of
AWa, we know that the corresponding transform for RBM is s~ exp (—rx)=
s~V exp (—(r, — 2)x). Applying the operational calculus yields s ~'p"z} for nf =x as
desired. The correspondence for the c.d.f. Y7, P;(¢) with general initial condition
follows from Theorem 4.3 and the analysis above.

The operational calculus also applies to p.m.f.’s and densities, but with an obvious
modification to account for the space scaling. In particular, to obtain the M/M/1
p-m.f. Py, (¢) from the RBM density g(x; ¢, 0) we need to multiply the RBM density

by 6. To see this, start with M/M/1 and apply the operational calculus to obtain

n+1l_n+1

p"Zi—p" it pizi_ plzd p"z16n
= = = 1 — = ——
(10.2) Fon(s) s s - s dTPm=T
= 05" 'r(s) exp (—ri(s)x) = 68(x; s, 0).

Of course, in general the operational calculus for going from RBM to M/M/1
must be applied with caution because p in M/M/1 is replaced by 1 in RBM and thus
cannot be identified from RBM. The operational calculus can thus only be a guide.
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The limitations are illustrated by the fomulas describing the asymptotic behavior as
t—x, e.g., Corollary 5.2.3. However, as we noted above, in many cases no
extraneous p terms arise.

If the operational calculus is valid for M/M/1 p.m.f.’s and RBM densities, then
we must be able to go from M/M/1 to RBM. This limit for M/M/1 p.m.f.’s as
p—1 does not follow directly from the standard heavy-traffic limit theorems in
Iglehart and Whitt (1970); the standard heavy-traffic theorems only yield conver-
gence of the associated c.d.f.’s. However, convergence of the p.m.f.’s (a local limit
theorem) can be established, e.g., via the Bessel function representation for P;(t).
Another classic proof would parallel Section 1.3 of Itd and McKean (1965). We
present a different proof which is based on the following conjecture, and so is
incomplete. We believe that both the conjecture and the proof are of considerable
interest, however.

Conjecture 10.1. For each i and j, the p.m.f. P;(¢) is a unimodal function of ¢.

In Corollary 8.2.2 and Theorem 8.3, we have established Conjecture 10.1 for the
cases in which i =0, j=0 and i =j. Consequently, the local limit theorem below is
established for these cases.

Remark 10.1. Conjecture 10.1 is known to be invalid for general birth-and-death
processes, e.g., Rosenlund (1978) and p. 97 of Karlin (1964). A related result for
first-passage times is contained in Keilson (1981). Our proof of Theorem 10.1 does
not depend on the full strength of Conjecture 10.1

We also employ the following order properties of the p.m.f.’s.

Lemma 10.1. For all positive ¢, i and j, P, ;. (t) = Py(t) = p'Py(t).

Proof. To establish the second inequality, note that the p.m.f.’s starting at 0
increase in the monotone-likelihood-ratio stochastic order as ¢ increases, Theorem
4.5(b) of Keilson and Sumita (1982), so that Py(f)/Py(f) increases in f. Since
Pyj(©)/ Py(®) = p/, the second inequality holds. To establish the first inequality,
apply a coupling argument, as in Section 11 of AWa. Consider two processes, one
starting at i and the other at 0, with all potential transitions in both processes
generated by a single Poisson process with intensity (1 + p)/267 (A + u before time
scaling). Given an event in the Poisson process, both processes go up with
probability p/(1+ p); and both go down with probability 1/(1 + p), with a down
transition resulting in no change at the origin. The proof is completed by induction
on i, j and the number of transitions in the Poisson process.

It is significant that the refined limit behavior in Theorem 10.1 below is not valid
for other GI/G/1 systems. (It is not difficult to show this for M/G/1 systems.) This
confirms that M/M/1 is related to RBM in a special way.
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Theorem 10.1. For any ¢t >0,

},1_,“} 07 Pro-11yo-(t) =8(¥5 1, X)

{25 (25

+2exp (—2y)d><-_—y:/—++f) )

)

where g(y; ¢, x) is the density of RBM at time ¢ starting at x.

Proof based on Conjecture 10.1 (and thus complete when x=0, y=0 or
x =y). First, note that 6~'P,¢-1,6-1(f) can be regarded as a probability density
function in y (in the histogram form) for each 6 and . By Stone (1963) or Iglehart
and Whitt (1970), for each ¢ the associated c.d.f.’s converge to the RBM c.d.f.
G(y;t, x) associated with the density g(y;¢ x) for all x, y and ¢. This serves to
identify the limit of any convergent subsequence of the sequence of normalized
p-m.f.’s. (This identification can also be established directly with the transforms: the
time transform of Y;_, P;(t) is p"F(s;n, 0)/f(s;0, i) by Theorem 4.3(a). Conver-
gence of the space-scaled version then follows as in the proof of Corollary 3.4.1.)

The proof is completed by a compactness argument. It suffices to show for any
€>0 and p, with 0<p,<1 that the set {G‘IP[xe-lL[ye_ll(t):poép<1} of real-
valued functions on the interval [, ®) is compact in a topology inducing pointwise
convergence, i.c., that every subsequence has a further subsubsequence converging
pointwise to an integrable limit. Since the p.m.f.’s are unimodal in y for each 0 and
t, see Keilson and Kester (1978), so is any limit as 6 — 0, which implies that any
limit function is integrable. As in Theorem 3.5, we can apply the Lebesgue
dominated convergence theorem (with Lemma 10.1) to get convergence of the
associated c.d.f.’s from convergence of the densities. Hence, the limit of any
convergent subsequence must have c.d.f. G(y;¢, x) and thus must be g(y; ¢, x).

We established the desired compactness by applying Conjecture 10.1. The
unimodality implies that P,,(¢) is a function of bounded variation, so that it can be
expressed as the difference of two non-decreasing functions, say, P,,(t) = A;,(t) —
B;,(t) where B,,(0)=0. We can thus apply the Helly selection theorem with each
monotone component separately; p. 227 of Billingsley (1968). Moreover, the
unimodality implies that

(10.3) sup max {A;,(t), B;x(1)} = sup P,(1),

so that to establish compactness it suffices to demonstrate boundedness for the
normalized form of P,,(¢), i.e., to show that
(10.4) Sup O_IP[XO—I]’[),O—I]([) < 0o,

t=¢
po=p<1
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By Lemma 10.1, to establish (10.4) it suffices to consider only the case x =y =0.
However, this special case is covered by Theorem 3.5 and Corollary 4.2.3:

2p[1 - B(t
lim 8~ Py(t) = lim 2pL-BOI
p—1 p—1 1 —pP

(10.5) =2t"3¢(t2) — 2[1 — ®(t3)] +2
=2t71¢(t}) + 20(t1) = g(0; ¢, 0).

Note that (10.5), Corollary 4.2.3 and Theorem 10.1 explain the form of the
heavy-traffic limit for the busy-period c.d.f. in Theorem 3.5.

11. Summary

In this paper we have developed some new ways to analyze the transient behavior
of the M/M/1 queue. Perhaps the main idea is that some transient results of interest
can be obtained quite easily without deriving or applying the complete expression
for P,(t). First, the transform B(s) in (2.6) emerges early in the analysis. Then the
transform f (s, i, 0) for the first-passage time down can easily be obtained from it, as
indicated in the proof of Theorem 3.1(a). Next, by various means (Section 4), we
can obtain interesting expressions for Fy(¢), one of which is solely in terms of the
first-passage-time c.d.f.’s F(¢; i, 0). Although this procedure does not seem to yield
new ways to get P;(¢) when neither i =0 nor j =0, from Theorem 4.3 we see that
P;(t) can also be expressed solely in terms of the first-passage-time distributions (up
as well as down). The connection to the first-passage times can be explained in
various ways: via the Laplace transform relations here, via the probabilistic proofs in
AWa, b and via duality; see Siegmund (1976), Chapter 3 of van Doorn (1980) and
Clifford and Sudbury (1985).

A special role is played by the initial condition starting at the origin. Not only do
we develop nice expressions for Py (t) in Section 4, but we obtain nice expressions
for the factorial moments m(t, 0) starting at the origin in Section 5 (and in AWDb).
Focusing on the zero initial condition yields the new factorization in Section 2,
which is exploited in Sections 5 and 6 to produce nice characterizations of the
moment function m, (¢, i) for general initial state i. The asymptotic behavior of the
first moment m,(¢, i) as t— « in Theorem 6.2 is especially easy to derive this way.

A major goal in this paper has been to express many transient descriptions in
terms of basic building blocks. We have just reviewed how we can go from P,(¢) to
F(t;i, 0) to Py,(¢). Formula (4.3) shows that we can go back and forth between Py(t)
and Py(t). By Corollary 4.2.3, we can in turn express the busy-period c.d.f.
B(t)=F(t;1, 0) directly in terms of Py(t). (More generally, for the M/G/1 queue
the connection between F(t; 1, 0) and Py(¢) follows from the theory of regenerative
phenomena by regarding Py(t) as the p-function; see Kingman (1966), (1972), e.g.,
p. 432 of the former.) Section 8 shows that we can also express the moment
functions m, (¢, i) for all k and i in terms of Py(¢) (and its derivatives), which can in
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turn be expressed in terms of Py(t). Theorem 7.2 shows that we can further express
Py(t) solely in terms of the corresponding transition probability function in the
unrestricted process, Qg(f), or equivalently in terms of the density function
¥,(t) = 07'Qu(?) in (7.7), a principal ingredient being the modified Bessel function
I(v). It is rather remarkable that all these functions of time can be expressed in
terms of y, (). Figure 1 depicts the logical connections.

The full transition probability function P,,(¢) can be expressed in terms of Q,,(?),
—o<p<®, (Champernowne (1956)) or F(t;n,0) and F(¢;0, n) (Theorem 4.3).
We remark that we can obtain Q,,(¢) from P, (¢) via Q;,(t) = lim,,, .« P, p4n—-i(t).

e—vl()(v) / PiO(t) \
Qor)(f) — Rm([)ipnn(t) my(t, i)
% (1) F(t; 1, 0)

Figure 1. Logical relations among formulas for the M/M/1 transient behavior. (A — B means that B can
be expressed directly in terms of A.)

The last three sections of this paper present supplementary results. In Section 8
we apply Section 9 of van Doorn (1980) to show that the shape of the M/M/1
moment functions is indeed essentially the same as for RBM; cf. Section 8 of AWa.
We also show that m, (¢, i) can be expressed in terms of Py(¢) there. In Section 9 we
establish some curious connections to renewal processes. Finally, in Section 10 we
propose an operational calculus for obtaining M/M/1 formulas directly from RBM
formulas. Overall, we have succeeded in producing M/M/1 analogs for almost all
the RBM formulas derived in AWa. (We have not obtained a nice characterization
of the second-moment difference c.d.f. G,(¢); it does not satisfy the nice stationary-
excess relation in (7.9) of AWa.) It is well known that the M/M/1 queue-length
process is the discrete analog of RBM; e.g., see Stone (1963) and references there.
With the proper scaling, it is not difficult to see the close connection in the
descriptive characteristics.

In conclusion, the M/M/1 model can be viewed from quite a few different
perspectives. The structure here should also be available from other approaches;
e.g., Bessel functions, the spectral representation and martingales. A detailed
analysis of the M/M/1 model is important in part because it is an elementary special
case of so many models.

Appendix: Discussion of the time scaling

In this appendix we discuss the time scaling in (2.1). Our time scale measures time
in units of 1/(26%) =2/(1— p)* mean service times. Thus a time ¢ in the original
M /M /1 model with arrival rate A and service rate u is transformed into 26%ut in the
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new scale with arrival rate p/(26%) and service rate 1/(26%). As indicated in Section
2.2 of AWD, this scaling is designed to reveal the close connections to RBM as
p—1. As p— 1, the new parameter 0 in (2.4) satisfies 8 = (1 — p)/2— 0.

A simple prescription for converting to this time scale is to transform the arrival
rate A into p/(26%) and the service rate u to 1/(26°) in any equation involving A and
p. To go back to the original (A, u)-time scale, replace 6 by V1/2u and time ¢ by
t/(26°u). In any time scale, p = (arrival rate)/(service rate).

For example, in the original time scale the double transform P(z, s) in (2.7) is

21— u(1 = 2)P(s)
Az = &)(n ~2)

(A1) P(z,5)=

where

(A.2) 3

_(A+p+s) - V(A +p+s)—4iu
24

and n =u/AE; see (1.29) on p. 9 of Prabhu (1965). We obtain (2.7) and the
quadratic equation pz>— (1+ p +26%)z + 1 =0 by simply substituting p/(26?) for
A and 1/(26?) for u in (A.1) v

This prescription also works for the Chapman-Kolmogorov equations of motion:
without time scaling we have

(A.3) Po(t) = uPy1(8) = (A + ) Po(t) + AP, _1(2);
after time scaling, we have
(A.4) 260°P;() = Poss(t) = (p + DPu() + pPaoy ().

To illustrate how we can go back and forth this way, note that before time scaling
the conservation law in Theorem 8.1 is

(A.5) my(t, i) = A = u[1 = Py(1)]
and the busy period density in Theorem 3.1(b) is

(A.6) b(©) = e (~(h+ WOLEVARD;
p- 16 of Prabhu (1965). After time scaling, we have
vy n_ P 1 1
(A.7) mi(t, 1) =55 = 553 [1 = Fo(0] =53 [Po(t) = (1 = p)]

and

(A.8) b(t)= \/—ll—);exp (=(1+ p)t/26>)L(Vpt/ %) = vlz—texp (—t/7) exp (—=v)L(v)

where v = Vpt/6? and 7 = (1 + Vp)?/2 as defined in Section 3.
Since the derivative (g'(¢)) of a function g(¢) = f(ct) satisfies g'(t) = cf'(ct) for a
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scalar ¢, the operator (d/dt) is mapped into [1/(2u6?)](d/dt) when ¢ is mapped into
t/26% i.e., f'(¢) in the original scale is mapped into (2u6?)~'f’(t) in the new scale.
To illustrate, mq(¢, i) appears without time scaling in (A.5). To get to the
time-scaled version in (A.7), it suffices to divide by 2u6.
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