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TRANSIENT BEHAVIOR OF REGULATED BROWNIAN
MOTION, I: STARTING AT THE ORIGIN

JOSEPH ABATE* AND
WARD WHITT**, AT & T Bell Laboratories

Abstract

A natural model for stochastic flow systems is regulated or reflecting
Brownian motion (RBM), which is Brownian motion on the positive real line
with constant negative drift and constant diffusion coefficient, modified by an
impenetrable reflecting barrier at the origin. As a basis for understanding how
stochastic flow systems approach steady state, this paper provides relatively
simple descriptions of the moments of RBM as functions of time. In Part I
attention is restricted to the case in which RBM starts at the origin; then the
moment functions are increasing. After normalization by the steady-state
limits, these moment c.d.f.’s (cumulative distribution functions) coincide with
gamma mixtures of inverse Gaussian c.d.f.’s. The first moment c.d.f. thus
coincides with the first-passage time to the origin starting in steady state with
the exponential stationary distribution. From this probabilistic characteriza-
tion, it follows that the kth-moment c.d.f is the k-fold convolution of the
first-moment c.d.f. As a consequence, it is easy to see that the (k +1)th
moment approaches its steady-state limit more slowly than the kth moment. It
is also easy to derive the asymptotic behavior as t— «. The first two moment
c.d.f.’s have completely monotone densities, supporting approximation by
hyperexponential (H,) c.d.f.’s (mixtures of two exponentials). The H,
approximations provide easily comprehensible descriptions of the first two
moment c.d.f.’s suitable for practical purposes. The two exponential com-
ponents of the H, approximation yield simple exponential approximations in
different regimes. On the other hand, numerical comparisons show that the
limit related to the relaxation time does not predict the approach to steady
state especially well in regions of primary interest. In Part II (Abate and Whitt
(1987a)), moments of RBM with non-zero initial conditions are treated by
representing them as the difference of two increasing functions, one of which
is the moment function starting at the origin studied here.

APPROACH TO STEADY STATE; RELAXATION TIMES; DIFFUSION PROCESSES;
QUEUES; STOCHASTIC FLOW SYSTEMS; FIRST-PASSAGE TIMES; INVERSE
GAUSSIAN DISTRIBUTION; COMPLETE MONOTONICITY

1. Introduction and summary

We focus on regulated (or reflecting) Brownian motion (RBM), which is
Brownian motion on the positive half line with constant negative drift y and
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constant diffusion coefficient 0%, modified by an impenetrable reflecting barrier
at the origin. RBM is a natural model for stochastic flow systems; see Harrison
(1985). It is the standard diffusion process used to approximate queues; see
Gaver (1968), Kleinrock (1976) and Newell (1982). For queues it arises as the
limit in the heavy-traffic limit theorems; see Borovkov (1965), (1984), Iglehart
and Whitt (1970a,b), Coffman and Reiman (1984) and Flores (1985).

We investigate the transient behavior of RBM. We describe the time-
dependent behavior of a system that is stationary except for the initial
condition. We thus hope to better understand how stochastic flow systems
approach steady state. We develop easily comprehensible closed-form ap-
proximations and we prove theorems providing insight about the qualitative
behavior.

1.1. Regulated Brownian motion starting at the origin. A key idea is to focus
on a special initial condition. In particular, we consider RBM starting at the
origin. This initial condition is easier to analyze because the moments as
functions of time are then increasing. We are thus able to normalize by the
steady-state limits and analyze these moment functions probabilistically. This
initial condition is also of interest because it routinely arises in simulations and
systems that occasionally restart empty. This special case also provides insight
about what happens more generally. Moreover, in Part II (Abate and Whitt
(1987a)), we apply approximations for this special case to generate approxima-
tions for other initial conditions. In Part II we show that moment functions
with non-zero initial conditions can be represented as the difference of two
increasing functions, one of which corresponds to the moment function starting
at the origin. Methods in this paper are then applied again in Part II to analyze
the second increasing function.

It should be noted that the general transient marginal distribution of RBM is
well known. In particular, if R(f) represents the state of RBM at time ¢, then

P(R()=y |R(0)=x)=1— cp(%”‘“)
(1.1) L
—exp (2uy/ GZ)CD(-—y?-—N)

where ®(t) is the standard normal c.d.f. (cumulative distribution function)
having mean 0 and variance 1; p. 49 of Harrison (1985). If u <0, then
P(R(t)Sy|R(0)=x)—1—exp (2uy/o*) as t—x, so that the steady-state
distribution is exponential. We believe that (1.1) has great value for under-
standing the essential nature of the transient behavior of stochastic flow
systems. We also believe that there is more to be learned by looking further
into the transient behavior.



562 JOSEPH ABATE AND WARD WHITT

In this paper we primarily study the moments E(R(¢)* | R(0) = 0), intending
to exploit the fact that the process starts at 0. Our point of departure is Gaver
(1968) and Kleinrock (1976). Gaver introduced regulated Brownian motion
{R(t):t=0} as an approximation for the virtual wait at time ¢ in an M/G/1
queue. Gaver then calculated the Laplace transform of the mean
E(R(t)|R(0)=x) and inverted it numerically, using the method in Gaver
(1966). Gaver’s work is summarized in Section 2.9 of Kleinrock (1976). In
formula (2.157) there, Kleinrock also inverts the Laplace transform for the
special case E(R(t)|R(0)=0) to obtain an explicit expression in the time
domain involving an incomplete gamma function.

It turns out, however, that even for a general initial condition it is possible
to obtain relatively tractable expressions in the time domain for the conditional
moments E(R(t)* | R(0) =x). Recently, Mitchell (1985) obtained an explicit
expression in the time domain for the first moment function by calculating and
differentiating the Laplace-Stieltjes transform of (1.1). Mitchell applies the
Laplace transform of ®((t—a)/b) to obtain the following result. We have
applied his approach to describe the second-moment function as well. (The
proof is sketched in Section 6.) Let ¢(¢) be the density of ®(t).

Theorem 1.1. If u=—1 and 0* =1, then
(a) (Mitchell)

EQR@)|R(O0)=x)=2""+1i¢ (%x)
“emxrrtfi-of )] -1 o ()

(b)

ER@|RO) =x)=27"+((x ~ 1)tt - ’%)‘P(%x)

+((t—x)>+t— 2‘1)[1 - CD(%)—‘)]
+e*(t+x— 2’1)[1 - <D<%C)]

Corollary 1.1.1. If u=—1 and 0> =1, then

(@) ER(t)|R(0)=0)=27"—(t + )[1 - D(:})] + g (12);

(b) E(R()*| R(0)=0)=2""=(1 -2t — 3)[1 — ®(t2)] — t}(1 + 1) p(£3).
Theorem 1.1 and Corollary 1.1.1 may seem very special because they are

restricted to the case 4 = —1 and 0% = 1. However, as noted by Gaver (1968),
this restriction is without loss of generality. As apparently has been known for a
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long time, see pp. 57-59 of Chandrasekhar (1943), all other cases with u <0
can be obtained from this one by an appropriate choice of measuring units for
space and time. For convenience in applications, it is significant that all
calculations need be done for only one pair of parameter values. We thus refer
to the case u=—1 and 0°=1 as canonical regulated Brownian motion. We
show how canonical RBM can be constructed and how to obtain results for
general u and o in Section 2. For the rest of the introduction, let u = —1 and
o’=1

As an immediate consequence of Theorem 1.1, we can describe the
asymptotic behavior as t— « by applying elementary properties of the normal
distribution, in particular, expansions for the tail 1 — ®(¢) for large ¢; pp. 175,
193 of Feller (1968). An alternate proof of part (a) based on results for the
M/M/1 queue on p. 180 of Cohen (1982) is also possible. (Additional details
about Corollary 1.1.2 are in unpublished appendices available from the
authors.) Let f(¢) ~ g(¢) mean that f(¢)/g(t)—1 as t— .

Corollary 1.1.2. As t—»,

(@) ER(») — E(R(t) | R(0) =x)
= (27) e*e 2 (2(1 — x)t72 — 2(x* — 6x + 6)t ") + 0(e )t 73)
_ {(2/n)%e’f(1 ~x)e ™t ifx#1
—(2/m)te™ "3 ifx=1,
(b) E(R(x)*) — E(R(t)| R(0)=1x)
= (27) tee "X (8(1 — x)t 73 — 8(x%+ 9x — 9)t73) + o7 3)
_ {8(2n)-%ex(1 —x)e 7 ifx#1
—8(27) e ifx=1.

The constant 2 in the denominator of the exponential argument in Corollary
1.1.2 is the relaxation time; see Blanc (1985), Cohen (1982), Keilson (1979)
and references there. Corollary 1.1.2 suggests that a simple exponential might
be a suitable approximation for sufficiently large ¢, i.e.,

(1.2) ER() = E(R(t) | R(0) =x) = A(x) exp (—rt)

for r=1. A primary purpose of this paper is to investigate this question.
Obviously the expression in Theorem 1.1 and the previously established
Laplace transform are suitable for generating numerical values. (Theorem 1.1
is especially convenient for obtaining numerical results, using rational ap-
proximations for the error function; p. 299 of Abramowitz and Stegun (1972).)
We are interested in the possibility of simple approximations such as (1.2) in
order to obtain a better understanding. We want to identify structure in the
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transient behavior of RBM to aid in developing approximations for more
complex stochastic flow systems such as the GI/G/1 queue.

In fact, we find that such a simple exponential approximation is justified for
the values of ¢ of primary interest when R(0) =0, but not in the form suggested
by Corollary 1.1.2 above. We conclude that the rate r should be significantly
greater than 3. In particular, we suggest the following simple exponential
approximation when R(0) = 0:

ER(<) — E(R(¢) | R(0) = 0) = [(5 — V/5)/20] exp (—(3 — V5)1)
=~0-138exp (—0-764¢t) for t=1.

(By Corollary 1.1.1, the mean E(R(t)|R(0)=0) reaches about 85% of its
steady-state limit at t=1.) Much of this paper is devoted to justifying
approximation (1.3). We summarize our results in the rest of Section 1 and
provide additional details in the following sections.

It is worth remarking that the difference between the means in (1.2) and
(1.3) also indicates how far the entire distribution P(R(¢)<y | R(0)=0) is
from the exponential limit, because, as noted below after Theorem 1.2, the
process (R(t)| R(0)=0) is stochastically increasing, so that P(R(f)>
y | R(0) =0) = exp (—2y) for all y. Consequently, the L, norm of the difference
between the c.d.f.’s is the difference between the means, i.e.,

IP(R(x) =) = P(R(t) =|R(0) =0)|l,

Ef IP(R(®) =y) = P(R(t) =y | R(0) = 0)| dy

1.3)

a[mmw>w@—fpmm>nR@=m@

= ER() — E(R() | R(0) = 0).

1.2. Moment c.d.f.’s. We normalize the moment functions by dividing by
the steady-state limits, defining

(1.4) H,(t) = E(R()*| R(0)=0)/E(R(»)*), t=0.

The normalization in (1.4) helps interpretation, because it separates the
steady-state limit E(R(~)*) from the proportion of this limit reached at time ¢.
The normalization and the condition R(0)=0 also allow us to study the
moment functions probabilistically.

Theorem 1.2. For each k, E(R(t)* | R(0) =0) is increasing in ¢, so that H,(¢)
in (1.4) is a legitimate c.d.f.

There are several ways to prove Theorem 1.2. One is by noting that the
Markov transition kernel of RBM is stochastically monotone, Chapter 4 of
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Stoyan (1983), so that the c.d.f. in (1.1) is stochastically increasing in ¢ when
R(0) =0; Section 1.2 of Stoyan (1983). (Other proofs appear in Section 3.)
This stochastic order in ¢ also holds for random initial conditions if R(0) is less
than or equal to the steady-state limit in the monotone likelihood-ratio
ordering, i.e., if R(0) has (in addition to a possible probability mass at the
origin) a density g(y) such that g(y)/2 exp (—2y) is decreasing in y for all y;
see Section 3 of Keilson and Kester (1977) for the birth-and-death analog,
from which the diffusion result follows. (See van Doorn (1980) for related
results.) The stochastic monotonicity argument also shows that H,(¢) in (1.4) is
strictly increasing. It is easy to see that the conditional first moment is initially
decreasing if P(R(0) = x >0) = 1. (This is proved in Part II.)

This probabilistic view leads us to new interpretations of the moment c.d.f.’s
H,(t). In fact, Theorem 1.2 above is a trivial corollary of Theorem 1.3 below.
Let T,, be the first-passage time from a to b for ordinary (unregulated)
Brownian motion with parameters u = —1 and o®=1, and let f(¢; a, b) be its
density. Obviously T, is the same with and without the barrier at 0 when
a > b, but not otherwise. Recall that T, has the inverse Gaussian density

' o x = t)z]
(1.5) f(t;x, 0)= T exp [ el t>0,
with associated c.d.f.
) _ t—x 2 (—t - x) >
(1.6) F(t;x, 0) @(—\77) rero(=75), izo,
and Laplace transform
wn  FER0=Eew(To= [ apufern 0w

=exp {—x[(1 +25): — 1]};

p- 363 of Karlin and Taylor (1975), p. 137 of Johnson and Kotz (1970) and
p-221 of Cox and Miller (1965). The inverse Gaussian distribution in
(1.5)-(1.7) plays a central role, both here and in Part II; all the quantities of
interest can be expressed in terms of it.

Here is a principal result of this paper, proved in Section 3.

Theorem 1.3. For each k,

mm=f&awmnmm

where g,(x) is a gamma density, the density of the sum of k i.i.d. exponential
random variables each with mean 1/2, and F(¢; x, 0) is the first-passage-time
c.d.f. in (1.6).



566 JOSEPH ABATE AND WARD WHITT

In the case kK =1, the gamma density g;(x) in Theorem 1.3 reduces to the
exponential stationary distribution. Hence, we have the following interesting
corollary. (An alternate proof using a coupling construction appears in Part
II.)

Corollary 1.3.1. The first-moment c.d.f. H(¢) in (1.4) coincides with the
c.d.f. of the equilibrium time to emptiness, i.e., the first-passage time to 0
starting in steady state with the exponential stationary distribution.

We can also relate the higher moment c.d.f.’s to the first-moment c.d.f.
H,(¢) in a simple way (proved in Section 3).

Corollary 1.3.2. For each k=1, H,(t) is the k-fold convolution of H,(t).

Corollary 1.3.2 is convenient for comparing the rate of approach to steady
state of the moments E(R(¢)* | R(0) =0) for different k. Intuitively, we would
expect that higher moments approach steady state more slowly. Corollary 1.3.2
makes this property easy to express and establish.

Corollary 1.3.3. For all k=1 and t=0, H,(t) = H;,,(t); i.e., the moment
c.d.f.’s H,(t) are stochastically increasing in k.

Theorem 1.3 and Corollary 1.3.2 make it easy to compute the moments of
the moment c.d.f.’s. Since E(T,) is known and relatively simple for small j,
we obtain simple formulas for the j of primary interest. In particular, since
ET, =x, Var(T,) =x and E(T3)) —3E(T,0)E(T?%) + 2E(T,)* = 3x, p. 139 of
Johnson and Kotz (1970), E(T%)) =x +x* and E(T3,) =3x + 3x*>+ x> With
higher moments, it is natural to work with cumulants (semi-invariants); p. 20
of Johnson and Kotz (1970). Since H,(t) is the k-fold convolution of H,(¢), the
jth cumulant of H,(¢) is just k times the jth cumulant of H,(¢). Similarly, since
the inverse Gaussian distribution is infinitely divisible, the jth cumulant of T,
is just x times the jth cumulant of Tj,.

Corollary 1.3.4. The moment-c.d.f. moments are

my= [ a0 = [ 8u)E(Ti0) dx.

For each k =1, the first three moments of H,(¢) are

Lok _k k(k+D)_k(k+3)
k1 2) k2-2 4 - 4 )

mk3=-3i‘+3k(k +1) +k(k +D(k+2) _k(k+4)(k +5)

2 4 8 8

Theorem 1.3 provides a basis for extending Corollary 1.1.2 to describe the
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asymptotic behavior of the complementary c.d.f. or survival function 1 — H,(¢)
and the density h,(¢) as t— « for all k. For the first-passage-time density in
(1.5), it is easy to see that f(¢; x, 0) ~ xe*(27) "3t ~3 exp (—¢/2) as t— . Hence,
we obtain the following from Theorem 1.3 (proved in Section 3).

Corollary 1.3.5. Foreach k=1, ast—x
hi(£) ~ k2*(2m) "3t 72 exp (—1/2)
and
1— Hi(t) ~ 2hi(t) ~ k251 2m) "2t 2 exp (—1/2).

Our proof of Theorem 1.3 uses the following relation among various
first-passage-time distributions for canonical (unregulated) Brownian motion
with negative drift, due to reversibility, which is also proved in Section 3. (See
Keilson (1979) and Kelly (1979) for background on reversibility.)

Theorem 1.4. For all x >0, P(Ty, =t) =exp (—2x)P(T,c=t), t 20.
Combining (1.5) and Theorem 1.4, we have the following corollary.
Corollary 1.4.1.

f(;0, x) =exp (—2x)f (t;x, 0) = \/2xm‘3 exp [—(xz-: Ul ], t=0.

1.3. Laplace transforms. The results in Section 1.2 are established by
probabilistic methods in Section 3. Additional insight can be obtained by
considering Laplace transforms. Let f(y, ) be the density of the c.d.f. (1.1) at
time ¢ under the condition R(0) = 0. As noted by Gaver (1968) in (2.11) there,
the time-transform of f(y,¢) has an especially simple exponential form,
namely,

a8 o= " exp (=s0f (v, 1) di = sry(s) exp (—ri(s)y)

where r,(s) =1+ (1+2s)}. Note that the Laplace transform of the inverse
Gaussian density f(¢; x, 0) in (1.7) is exp (—xrx(s)) where ry(s) = (1 +2s)2 — 1.
The functions r;(s) and —r,(s) are the roots of the equations 7> — 2r — 25 = 0;
see (2.6) and (2.7) of Gaver (1968), so that rr,=2s and r,—r,=2.
Consequently, the Laplace transform of the first-passage-time density f(¢; 0, x)
in Corollary 1.4.1 is exp (—x(r, + 2)) = exp (—xr,(s)).

We wish to draw attention to the separable form of (1.8): the space variable
y appears separately as a simple factor in the exponent. It is thus easy to obtain
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the time-transform of the moment function:

i (s) = f " exp (—st)E(R(t)* | R(0) = 0) dt
(1.9) - fo " exp (—st) fo "k (y, £) dy dt

= [ ¥57n65) exp (=) dy = K1)

The time-transform of the moment c.d.f. H,(¢) in (1.4) is just a scalar times
(1.9). More interestingly, we can represent the time-transform of the density
h,(¢t) of H,(t) as a simple product. In particular,

(1.10) hi(s)= f " exp (=st)he(t) dt = [2In(s)]

Hence, we have another proof that 4,(¢) is the k-fold convolution of A,(t), as
stated in Corollary 1.3.2. Moreover, we can apply (1.10) to calculate the
moments given in Corollary 1.3.4. Since

b= (5 - (OB,

and V1+2s=1+s—(1/2)s*+ (1/2)s> — (5/8)s* + O(s°), we obtain m,; = k/2,
my, = k(k +3)/4 and m;; = k(k + 4)(k + 5)/8 as in Corollary 1.3.4.
In Section 4 we apply (1.10) to derive the following recursion.

Theorem 1.5. For each k=1,
her(t) =2[1 - H ()] - 2[1 - H,_1(1)], t=0,
or, equivalently,
21 = Hy(®))=ho(t) + - - - + b s (0), t=0,
where Hy(t) = 1.

Corollary 1.5.1. The second-moment c.d.f. H,(¢) is the stationary-excess (or
equilibrium residual life) c.d.f. associated with H,(¢), i.e.,

ha(t) = 2[1 = Hy(1)] = 4(1 + 1)[1 — (t})] — 4rgp(e?).

Note that Corollaries 1.3.2 and 1.5.1 say that H,(¢) is simultaneously the
convolution of H;(¢) with itself and the associated stationary-excess c.d.f..
Except for the measuring units (time scale), this turns out to characterize
H(t), as we show in Section 4.3.

Corollary 1.5.2. A c.d.f. H(t) on the positive real line with mean m has its
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convolution equal to its stationary-excess c.d.f. if and only if H(¢) = H,(¢/2m),
t=0.

We also can invert the transforms to obtain explicit expressions for A.(t) in
the time domain in terms of parabolic cylinder functions; see Chapter 19 of
Abramowitz and Stegun (1972). In particular, from (4.22) and (4.25) on p. 240
of Oberhettinger and Badii (1973) together with D_,,_,(z) in Section 8.1.2 on
p- 326 of Magnus et al. (1966), we can identify the inverse h,(¢) of the
transform (1.10). The following provides another proof of Corollary 1.3.5.

Theorem 1.6. For each k,
hy(t) = k2K2m) "3t 2 exp (—t/2)w(k, t)
where
w(k, t) =t**D2exp (t/$u(k + 31, 1))—>1 as t—>o

and
u(k +3, t)=exp (t2/4)(k!)‘ljoo (u—t)* exp (—u?/2) du

using 19.8.1 and 19.14.3 of Abramowitz and Stegun (1972).

1.4. Approximations for the moment c.d.f.’s. Looking at the conditional
moments E(R(t)* | R(0) =0) via the associated moment c.d.f.’s H,(¢) in (1.4)
also suggests an approximation scheme. Since the moments of H,(t) are readily
available via Corollary 1.3.4, it is natural to approximate E(R(t)* | R(0) =0)
by fitting a convenient c.d.f. to the moments of H,(t). Using moments as the
basis for fitting c.d.f.’s is also likely to be appropriate if we are primarily
interested in a good fit for relatively large ¢, which is our goal here. In
particular, for k =1 and 2, we suggest using H, (hyperexponential) distribu-
tions for this purpose. They are mixtures of two exponentials: i.e., an H,
density has the form

(1.11) h(t) = p1A, exp (—A1t) + p2A, exp (—4at), t 20,

where p;+p,=1. We fit an H, distribution by matching the first three
moments to the three parameters in (1.11). The H, approximation in (1.11)
may itself seem rather complicated. It is significant in part because it is the
basis for developing the simple exponential approximation (1.3). As we will
show, one exponential component of (1.11) alone tends to be an excellent
approximation for H;(¢) in the region of primary interest, and this leads to
(1.3).

This H, approximation procedure is supported for k =1 and 2, which are the
cases of primary interest, by the following result. Recall that a function A(¢) is



570 JOSEPH ABATE AND WARD WHITT

completely monotone if it has nth derivative 4/ (¢) for all n and (—1)*A"(r) 2
0 for all n and ¢; see Keilson (1979). By Bernstein’s theorem, a probability
density function is completely monotone if and only if it is a mixture of
exponential densities. The following is proved in Section 4.

Theorem 1.7. For k=1 and 2, the moment c.d.f. H,(¢) has a completely
monotone density A,(t), i.e., is a mixture of exponential c.d.f.’s.

Corollary 1.7.1. There is one and only one H, c.d.f. matching the first three
moments of H,(¢) for k =1 and 2.

It is not possible to fit an H, c.d.f. to the first three moments m,,, m;, and
my; of Hi(t) for k =3 because c3=(m;, —m%)/m% =1 and my/mbmsy =
41/81<1.5 and c;<1 for k Z4; Section 3 of Whitt (1982). In fact, we will
show that the density h;(¢) is actually increasing near the origin, so that A;(¢) is
not even monotone; see Section 4.3.

Complete monotonicity also implies nice structural properties for the
distribution; see Keilson (1979).

Corollary 1.7.2. For k=1 and 2, the moment density A,(f) and the
complementary c.d.f. 1— H,(t) are log-convex. (The latter is equivalent to
H,(t) being DFR; e.g., p. 74 of Keilson (1979).)

We now briefly indicate how the stationary-excess relationship in Corollary
1.5.1 can be applied. We can combine Corollary 1.7.2 with the continuous-
time analog of Theorem 3.1 (i) of Whitt (1985) to obtain a stochastic
comparison stronger than Corollary 1.3.3.

Corollary 1.7.3. H,(t) is stochastically greater than H,(¢) in the likelihood-
ratio ordering; i.e., the ratio h,(¢)/h,(t) of the densities is non-decreasing in .

1.5. The approach to steady state. We sought the results above to under-
stand better how RBM approaches steady state. Intuitively, the physics of the
process is not too hard to understand. Except for the barrier at the origin,
regulated Brownian motion is a homogeneous process moving with constant
negative drift. The barrier counteracts this downward motion. Because of the
barrier at the origin, E(R(¢) | R(0)=0) increases. Since E(R(t)|R(0)=0)
increases, the barrier moves farther away as ¢ increases, so that the rate of
increase of E(R(¢) | R(0) =0) decreases as t increases.

The rate can actually be measured in several ways. The absolute rate is
described by the density 4,(¢), which is indeed decreasing as a consequence of
Theorem 1.7. The rate relative to the amount to go is described by the failure
rate or hazard rate hy(t)/[1 — Hy(¢)], which is the derivative of —log [1 — H,(¢)].
By Corollary 1.7.2, log[1 — H;(¢)] is convex, so that the failure rate is also
decreasing.
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Practically, this analysis means that the approach to steady state of H,(¢)
should probably not be especially well described by Corollary 1.1.2. The
inverse of the relaxation time is a candidate approximation for the rate; i.e.,
Corollary 1.1.2 suggests that h(¢)/[1 — H,(t)] = 3. However, Corollary 1.7.2
shows that the failure rate is decreasing, so that the limit 3 is a lower bound.
While we do not directly consider queueing processes here, our results support
empirical findings for queues in Roth (1981), Odoni and Roth (1983), Lee
(1985) and Lee and Roth (1986) showing that the inverse of the relaxation time
is only a crude lower bound on the rate of approach to steady state. The
relaxation time seems to describe the approach to steady state only for very
large ¢, beyond the region of primary practical interest. In other words, the
relaxation time seems to describe the system response to small perturbations
from equilibrium.

These observations are supported by Table 1 which gives numerical values
for the complementary first-moment c.d.f. 1 — H,(¢), the density 4,(¢) and the
failure rate 4,(t)/[1 — Hy(t)]. (Table 1 is based on Corollary 1.1.1 and values of
¢(t) and ®(¢) from Table 26.1 in Abramowitz and Stegun (1972).) We are
primarily interested in the times required for E(R(#) | R(0)=0) to reach
85%-99% of the steady-state value E(R(x)). Table 1 shows that this occurs
for 1 =t =4. The appropriate rate (failure rate) in this region is approximately
1-5-2-0 times the inverse of the relaxation time.

A candidate approximation for the approach to equilibrium is a simple
exponential fit to the first moment of H,(¢), i.e.,

E(R(=)) — E(R(1)" | R(0) = 0)
E(R(=)")

1.12) 1-H ()= =exp (—t/my,), t=0,

where m, is the mean of H,(t). (By Corollary 1.3.4, m,, = k/2.) For example,
for k =1, m,; = 3 whereas the relaxation time, say 7, from Corollary 1.1.2, is
7, = 2. The estimate 1/m,; = 2 for the rate of approach to steady state in (1.12)
is thus four times greater than predicted by the relaxation time alone, i.e.,
1/7,=0-5. We remark that approx:mation (1.12) for kK =1 was suggested for
queues by Davis (1960); m,, coincides with his notion of build-up time.

We have seen that 77, the inverse of the relaxation time, is properly viewed
as a lower bound on the rate of approach of Hj(¢) to steady state because of
the log-convexity of H;(t) established in Corollary 1.7.2. In a certain sense,
mii is an upper bound on this rate. By Theorem 1.7, the actual distribution
H,(t) is a mixture of exponential distributions, so that H;(t) is more variable or
spread out than the single exponential distribution with the same mean, as
given in (1.12). This can be made precise using the convex stochastic ordering;
p. 8 of Stoyan (1983). In a certain sense, the convex ordering shows that the
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TABLE 1
Numerical values associated with the first-moment c.d.f. H,(t)

Complementary
Time c.d.f. Density Failure rate
t 24 1-H,(t) hy(2) hy (/1 = Hy(1)]
0-0004 0-02 0-968 38-9 40-2
0-01 0-10 0-850 7-02 8-26
0-04 0-20 0-719 3.07 4.27
0-09 0-30 0-604 1-778 2-94
0-16 0-40 0-505 1-152 2:28
0-25 0-50 0-419 0-791 1-89
0-36 0-60 0-346 0-562 1-62
0-49 0-70 0-284 0-408 1-44
0-64 0-80 0-231 0-301 1-30
0-81 0-90 0-187 0-223 1-19
1-00 1-00 0-151 0-1666 1-11
121 1-10 0-120 0-1248 1-04
1-44 1-20 0-095 0-0935 0-98
1-69 1-30 0-075 0-0700 0-93
1-96 1-40 0-059 0-0524 0-89
2:25 1-50 0-046 0-0391 0-86
2-56 1-60 0-035 0-0291 0-82
2-89 1-70 0-027 0-0215 0-80
3-24 1-80 0-021 0-0159 0-77
3-61 1-90 0-015 0-0116 0-75
4-00 2-00 0-012 0-0085 0-74
6-25 2:50 0-0024 0-0016 0-67
9-00 3-00 0-00041 0-00025 0-63
12-25 3-50 0-000056 0-000033 0-60
16-00 4-00 0-0000062 0-0000039 0-58

approach to steady state is slower than an exponential with the same mean.
The following is another consequence of Theorem 1.7.

Corollary 1.7.3. For all tZ0, [y exp (—2u)du = [7[1— H,(u)] du.

The practical significance of this analysis is that we have precise relations
supporting the idea that (1.12) is optimistic, whereas the relaxation time in
Corollary 1.1.2 is pessimistic.

As a more refined approximation for k=1 and 2, we propose the H,
approximation (1.11) based on the first three moments of H,(¢). For example,
when k =1, the first three moments of the c.d.f. H,(¢) are m;; =3, m;; =1 and
my; =%. Hence, after carrying out the H, c.d.f. fit as indicated in Section 5,
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our approximation is

1— Hy(t) = (5 J;O\fs) exp (=3 +V3)1) + (5 _10\@) exp (=3 = V5)1)

~0-7236 exp (—5-2356t) + 0-2764 exp (—0-76397),  t=0.

(1.13)

For this approximate H, c.d.f., say H,(t), numerical values of the complemen-
tary c.d.f. 1-— H(t), density A,(f) and failure rate A,(¢)/[1— H,(t)] are
displayed in Table 2. The approximations in (1.12) and (1.13) are compared
with the exact values for 1 — H,(¢) in Table 3.

In fact, both approximations (1.12) and (1.13) can be viewed as H,
approximations. The simple exponential can be thought of as the natural H, fit
to only the first moment (the two component exponentials in the H, both have

TABLE 2
Numerical values associated with the H, approximation (1.13) for the
first-moment c.d.f. H(t)

Complementary
Time c.d.f. Density _ Failure rate
t 1-H,(1) hy(0) h(0)/[1 - Hy(1)]
0 1-00 3-99 3-99
0-0004 0-998 3-99 3-99
0-01 0-961 3-81 3-96
0-04 0-855 3-28 3-83
0-09 0-710 2:56 3-61
0-16 0-558 1-83 3-28
0-25 0-424 1-19 281
0-36 0-320 0-74 2:31
0-49 0-246 0-44 1-79
0-64 0-195 0-26 133
0-81 0-159 0-17 107
1-00 0-133 0-118 0-89
1-21 0-111 0-091 0-82
1-44 0-092 0-072 0-78
1-69 0-071 0-059 0-78
1-96 0-062 0-047 0-76
2:25 0-050 0-038 0-76
2-56 0-039 0-030 0-76
2-89 0-030 0-023 0-76
3-24 0-023 0-0178 0-76
3-61 0-0175 0-0134 0-76
4-00 0-0130 0-0099 0-76
6-25 0-0023 0-00178 0-76
9-00 0-00029 0-00022 0-76
12-25 0-000024 0-000018 0-76

16-00 0-0000014 0-0000010 0-76
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TABLE 3
A comparison of the hyperexponential, exponential and asymptotic approximations with exact
values of 1 — H,(t), the complementary first-moment c.d.f.

3-moment 2-moment 1-moment fit Asymptotic
Time Exact in H, Fit H, Fit exponential as t—
t Corollary 1.1.1 in (1.13) bal. means e *in (1.12)  (8/m)kr de~?

0-01 0-85 0-96 0-97 0-98

0-04 0-72 0-86 0-94 0-92

0-09 0-60 0-71 0-77 0-84

0-16 0-51 0-56 0-60 0-73

0-25 0-42 0-42 0-49 0-61

0-36 0-35 0-32 0-41 0-49

0-49 0-28 0-25 0-27 0-38

0-64 0-23 0-20 0-21 0-28

0-81 0-19 0-16 0-15 0-20

1-00 0-15 0-13 0-11 0-14 0-97
121 0-12 0-11 0-09 0-09 0-66
1-44 0-095 0-092 0-069 0-056 0-45
1-69 0-075 0-071 0-058 0-034 0-31
1-96 0-059 0-062 0-048 0-020 0-22
2:25 0-046 0-050 0-039 0-011 0-15
2-56 0-035 0-039 0-033 0-0060 0-108
2-89 0-027 0-030 0-027 0-0031 0-077
3-24 0-021 0-022 0-022 0-0015 0-054
3-61 0-015 0-018 0-018 0-0007 0-038
4-00 0-012 0-013 0-014 0-0003 0-017
6-25 0-0024 0-0023 0-0038 0-000004 0-0045
9-00 0-00041 0-00029 0-00075 — 0-00066
1225 0-000056 0-000024 0-00011 — 0-000081

the same mean), while (1.13) is the fit to the first three moments. There is also
a commonly used two-moment H, fit, where the third parameter is eliminated
by assuming balanced means, i.e., p;A7! =p,A5"; see (3.7) of Whitt (1982).
The two-moment H, approximation is also displayed in Table 3. Obviously
using more moments helps: the three-moment fit (1.13) is significantly better
than the two-moment fit, which in turn is significantly better than the
one-moment fit (1.12). Even the three-moment H, fit (1.13) is not good for
small ¢, but (1.13) seems adequate for engineering purposes for ¢>0-25 or,
equivalently, for H;(¢) Z0-60. The asymptotic value (8/7)3~? exp (—t/2) from
Corollary 1.1.2 is also displayed in Table 3. It only seems to be a reasonable
approximation for ¢ = 4.0 with H;(4) =0-988. It is about as accurate as the H,
approximation only for ¢ =9 with H,(9) = 0-9996. It is not highly accurate even
then. The asymptotic value gets to about 10% error when ¢ is about 49 with
1— H\(49)=10"".
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In Table 3, we see that the asymptotic value is indeed an upper bound on
1— Hy(t), as indicated by Corollary 1.7.2. The fact that the exponential tail
crosses 1 — Hy(t) exactly once illustrates the convex stochastic ordering in
Corollary 1.7.3. In contrast, note that the three-moment H, approximation
crosses 1 — Hy(¢) three times. Since the H, c.d.f. (1.13) is more variable than
the exponential (1.12) in the convex stochastic ordering, these tails cross only
once too. In general, approximations (1.12) and (1.13) tend to overestimate
1— H,(¢) for small ¢ and underestimate for large ¢.

In a certain sense, the H, density (1.13) also provides a bound on the true
distribution H;(¢t). In particular, both (1.12) and (1.13) are bounds in a
stochastic ordering based on Laplace transforms; see Theorem 2 in Whitt
(1984). As a consequence, for kK =1 we have all moments of the exponential
approximation (1.12) less than the corresponding moments of H,(¢), which are
in turn less than the corresponding moments of the H, approximation (1.13).
(We derive all moments of H;(¢) in Section 4.)

1.6. Three regimes. In our view, there are roughly three regimes, with
successively decreasing rates of approach to equilibrium. The first regime
applies to small ¢, the second to medium ¢, and the third to large ¢. The first
two regimes and their rates are reasonably well described by the two
exponential components of the H, c.d.f. approximation for H;(¢), whereas the
third regime is described by the relaxation time. To describe E(R(¢) | R(0) =
0), the second regime seems most important for practical purposes. Of course,
by Corollary 1.7.2, the actual rate of approach to equilibrium is steadily
decreasing, going from « at t =0 to about 0-5 as t— o, but thinking of three
regimes seems to help for practical understanding.

We regard 5-236 (1/5-236=0-191), 0-764 (1/0-764 =1-309) and 0-500
(1/0-50 = 2-00) as appropriate approximate rates (relaxation times) for H,(¢) in
the three regimes. Table 1 shows that 0-76, the rate in the second regime,
more realistically describes the rate of approach to steady state than the
inverse of the relaxation time, 0-50, when the process is for practical purposes
near steady-state, e.g. H(t) =0-95. Note that 1-309 falls between our ‘bounds’
0-50 and 2-0.

The three-regime interpretation is significant because it leads to simple
exponential approximations in each regime. In particular, it is natural to
approximate the complementary c.d.f. 1— H;(¢) by exp (—5-236¢) in the first
regime, by 0-276 exp (—0-764¢) in the second regime and by (8/m)% % x
exp (—t/2) or A exp (—0-500¢) where A = (8/7r)3t"% in the third regime. In the
second regime, which covers the region of greatest interest where 0-85=
H,(t) =0-99, we are suggesting just using the second exponential component of
(1.13). This is the proposed simple exponential approximation (1.3).
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TABLE 4
The performance of the three simple exponential approximations for the
complementary c.d.f. 1 — H;(¢) in the three regimes

First Second Third
Time Exact regime regime regime
t 1-Hy () e300 0-276e~°7%%  (8/m)4t" 1"

0 1-000 1-00

0-05 0-690 0-77

0-10 0-587 0-59

0-15 0-517 0-46

1-0 0-151 0-132

20 0-057 0-060

30 0-025 0-028

4-0 0-0115 0-0130

50 0-0056 0-0061

6-0 0-0028 0-0028

7-0 0-0015 0-0013

9-0 41x107* 29x107* 6-6x107*
16-0 6-2x107° 8:4x107°
25-0 41x1078 4-8x 1078
49-0 1:0x 107" 1-1x107%

The performance of these simple approximations for 1— H(¢) in the
separate regimes is shown in Table 4. The excellent performance should be
expected from Table 3 because the individual exponential components
dominate in the different regimes. In the first regime, exp (—0-764¢) = 1, while
in the second regime exp (—5-236t) =0. Of course, there are times between
the first two regimes where the full H, approximation (1.13) would be
preferred, but the main point is that a simple exponential is appropriate for the
region of primary interest, the second regime. For numerical values, it is
natural to use Theorem 1.1 or the Laplace transforms. For understanding, it is
natural to use (1.3) and (1.13).

The simple exponential approximation (1.3) based on the second component
of the three-moment H, approximation (1.13) can be justified for 1=¢t=7
another way. We can proceed empirically and do a log-linear regression from
the exact values of 1— H,(¢) for t=1,2,---,7 as given in Table 4. This
regression reproduces the exact values to the given accuracy and yields the
approximation 1— H,(t) =0-272 exp (—0-764¢t), providing additional justifica-
tion for (1.3). This empirical procedure for developing simple exponential
approximations for queues is used by Roth (1981), Odoni and Roth (1983),
Lee (1985) and Lee and Roth (1986). Our analysis here and in Abate and
Whitt (1986a,b), (1988) supports and complements their work.

Although we have considered only the special case in which R(0) =0, we
believe that our results provide useful insight more generally. For other
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TABLE 5
A comparison of the hyperexponential, exponential and asymptotic (Corollary 1.3.5)
approximations with exact values of 1— Hy(t), the complementary second-moment
c.d.f.

Exact by 3-moment fit 1-moment fit Asymptotic

Time numerical hyperexponential exponential ast—>x

t inversion in (5.11) e"in (1.12) 8(2/m)t te~ "
0-01 0-982 0-980 0-990
0-1 0-858 0-819 0-905
0-5 0-539 0-542 0-607 14-05
10 0-333 0-324 0-368 3-88
1.5 0-216 0-209 0-223 1-64
20 0-144 0-141 0-135 0-83
30 0-068 0-069 0-050 0-27
4.0 0-033 0-035 0-018 0-068
7-0 0-0045 0-0047 0-0009 0-0104
9-0 0-0012 0-0012 0-0001 0-0027

reasonable initial conditions, e.g., R(0) =3/4, we would expect that the rate of
approach to steady state of- ER(¢f) would be about 1/1:309=0.76 (second
regime) instead of 0-50 (third regime) when ER(t)/ER(«)=~0-95. In other
words, the rate of approach for ¢ reasonably large should be about 1.5 times
the inverse of the relaxation time.

1.7. Complementary-c.d.f. c.d.f.’s. The focus of this paper is on the
moments of RBM and the associated moment c.d.f.’s H,(¢) in (1.4), but other
characteristics of RBM can be treated in a similar way. In this subsection we
briefly discuss the complementary c.d.f. P(R(¢) >y | R(0) =0). From (1.1), we
obtain the following expression for the complementary-c.d.f. c.d.f., which we
denote by H,(¢):

P(R(t)>y | R(0)=0) -y —t
H,(0) = 2 = exp ()0,
w18 PER(+)>y) ( : )
+<1>( ); ‘), 120,

Since (R(t) | R(0)=0) is stochastically increasing in ¢, H,(¢) is a legitimate
c.d.f.. As a byproduct of the proof of Theorem 1.3, we obtain the following
representation.

Theorem 1.8. The complementary-c.d.f. c.d.f. H,(¢) in (1.14) coincides with
the first-passage-time c.d.f. P(T,,=¢) in (1.6).

Corollary 1.8.1. For all positive x and y, H,,,(t) is the convolution of H,(r)
and H,(¢).
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Corollary 1.8.2. The mean and variance of H,(t) are both y.

~! clearly an H,

Since the squared coefficient of variation is c;=y
approximation is not appropriate for y > 1.

Since P(R(t)>y | R(0) =0) =exp (—2y) the complementary c.d.f. is neces-
sarily small for large y, so as y increases we are considering rare events. The
complementary-c.d.f. c.d.f. H,(¢) in (1.14) is interesting because we normalize
by dividing by the limit. The behavior of H,(¢) is interesting and easy to
describe. Since the first-passage-time distribution (1.5) is infinitely divisible,
ET,=y and Var T,,=y, we can invoke a central limit theorem to obtain the

following result.
Corollary 1.8.3. lim,_,.. H,(y3(t + y)) = ®(¢).

The practical meaning of Corollary 3 is that for large y the c.d.f. H,(¢) has
almost all its increase in the interval (y — 2y?, y +2y?). As y gets large, first
P(R(»)>y)=-exp (—2y) gets small, but even relative to P(R(x)>y) the
complementary c.d.f. P(R(t) >y | R(0) = 0) is small for t <y — 2y

As in Section 1.3, we can also use Laplace transforms. In particular, we can
simply integrate the time-transformed density f(s, x) = s~ 'r,(s) exp (—r,(s)x)
in (1.8) to obtain the time-transformed complementary c.d.f. H,(s)=
{5 exp (—st)P(R(t) >y | R(0) =0) dt =s~" exp (—r,(s)y), using the separability
as before.

1.8. Density c.d.f.’s. As in Section 3, let f(y, t) be the density of rRBM at
time ¢, i.e., the density of the c.d.f. in (1.1) when R(0) =0. Paralleling (1.4)
and (1.14), let h,(¢) be the associated normalized density function, defined by

f». 9
f(y, )
Let f(y, s) and A,(s) be the Laplace transforms with respect to time. From
(1.8), we obtain

(1.15) hy(t) = =2"1e¥f(y, 1), t 2 0.

F(3.5) =" exp (=ny) = (2exp (=2y)) 3+ exp (~12)

(1.16)

= (2exp (~29)) 7- /(53 3, 0)
so that
(1.17) hy(s) =375, 0.

Since r,/2s is the Laplace transform of ®(¢7) + (27£>) ™% exp (—t/2),

(1.18) h (1) = t-%qs("Tty) + @(“Tty).



Transient behavior of regulated Brownian motion, I 579

(Alternatively, we can obtain (1.18) directly from (1.1) by differentiating with
respect to y in the case x =0.)
From Theorem 1.8 we can easily deduce the following.

Theorem 1.9. The normalized density function in (1.15) satisfies

(1.19) h,(t)=H,()—27" ‘—iZ—yy(t—)
and
(1.20) d%(’) =f(t;y, 0)(X§—y_1+ "2y7) 120,

so that h(¢) is increasing in ¢ (a legitimate c.d.f.) if and only if y = 1.

Typical values of A,(t) as a function of y and ¢ are given in Table 6.

TABLE 6
The ratio in (1.18) of the density f(y,t) starting at the origin to the steady-state limit
f(y, ©) =2e~% as a function of the state y and the time ¢

Time State y
t 0-20 0-50 0.90 1-00 1-50 2-00 3-00 12-00

0-05 1-68 0-26 0-0014 0-0002 0-0000 0-0000

0-10 1-58 0-67 0-057 0-024 0-000 0-0000

020 1-39 0-96 0-32 0-22 0-015 0-0003 —

030 129 1-039  0-54 0-42 0-080 0-007 0-0000

0-50 1-18 1-064  0-77 0-68 0-29 0-076 0-0013

075 111 1-055  0-89 0-83 0-51 0-24 0-020

1-:00 1.078 1-044  0-937 0-90 0-66 0-40 0-077

1-50 1-041 1-026 0-977 0-96 0-83 0-64 0-26

200 1-024 1-016 0-990 0-980 0-90 0-78 0-46

2:50 1-015 1-010 0-995 0-989 0-94 0-86 0-62

3.00 1-0093 1-0068 0-998 0-994 0-965 0-91 0-73

350 1-0061 1-0045 0-9989 0-9965 0-978 0-94 0-81

4.00 1-0041 1-0031 0-9994 0-9980 0-986 0-962 0-87 0-0000

500 1-0019 1-0014 0-9999 0-9992 0-9936 0-983 0-93 0-0022

6-00 1-0009 1-0007 1-0000—  0-9997 0-9970 0-9917 0-967 0-015

7-00 1-0005 1-0004 1-0000+  0-9999 0-9986 0-9959 0-982 0-055

800 1-0002 1-0002 1-0000+  0-9999 0-9993 0-9979 0-991 0-13

9-00 1-0001 10000+  1-0000—  0-9996 0-9989 0-995 0-24
10-00 1-0000+ — 0-9998 0-9994 0-9974 0-37
12-00 1-0000+ — 0-9999 0-9998 0-9993 0-62
14-00 1-0000+ — 1-0000— 1-0000— 0-9998 0-80
16-00 1-0000+ — — — 0-9999 0-90

20-00 1-0000+ — 1-0000—  0-981
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1.9. The rest of this paper. The rest of this paper is organized as follows. In
Section 2 we construct canonical RBM and indicate how to obtain corresponding
results for general u and o® In Section 3 we discuss the moment c.d.f.’s in
(1.4) and apply probabilistic argument to establish Theorems 1.2-1.4. In
Section 4 we analyze the moment c.d.f.’s using Laplace transforms, expanding
on Section 1.3 above. We also prove Corollary 1(a) to Theorem 1.1 and
Theorems 1.5-1.7 there. In Section 5 we indicate how to construct the H,-c.d.f.
approximations for the moment c.d.f.’s and expand on Section 1.4-1.7 above.
We also construct and evaluate the H, approximation for the second-moment
c.d.f. Hy(t) there. The H, approximation for H,(t) performs even better than
the H, approximation for H,(¢). Finally, we prove Theorem 1.1 in Section 6.
Other results for non-zero initial conditions appear in Part II.

1.10. Related work. Related results for queues are described in Abate and
Whitt (1987a,b,c), (1988)). In (1987b), (1988), we show that much of the nice
structure for RBM also holds for the queue-length process in the M/M/1
queue. Contrary to the impression given by much of the literature, it is
possible to give a relatively nice description of the transient behavior of the
M/M/1 queue, again under the special initial condition considered here. As an
analog of Theorem 1.3, we show that the normalized kth factorial moment
function coincides with a negative binomial mixture of first-passage-time
distributions (convolutions of the busy-period distribution). As an analogue to
(1.8), we show that the time-transform for the probability mass function as a
function of time has a simple geometric form. As an analog to Part II, we also
obtain results for the M/M/1 queue with non-zero initial condition.

In (1987c), we apply heavy-traffic limit theorems establishing con-
vergence to RBM to approximate the transient behavior of the queue-length
process in the GI/G/1 queue. However, we do not apply RBM directly. Instead,
we apply the heavy-traffic limit theorems twice, and use the exact results for
the M/M/1 queue. This permits us to consider more explicitly the role of the
traffic intensity in the transient behavior of the GI/G/1 queue. (This provides
a significant improvement when the traffic intensity is not near 1, but not
otherwise.) The interarrival-time and service-time distributions enter in the
approximations only through their first two moments. The second moments
alter the M/M/1 description only via a change in the time scale, just as the
parameters u and o® do here, see Corollary 2.3.2. Our theoretically-based
approximations for the transient behavior of the GI/G/1 queue are consistent
with the empirical results of Roth (1981), Odoni and Roth (1983), Lee (1985)
and Lee and Roth (1986). The H, approximation for the moment c.d.f. H,(t)
again seems suitable for practical engineering purposes. As in (1.3), a simple
exponential approximation is obtained by using the second component of this
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H, c.d.f. The present paper was motivated by our desire to analyze the
queues; the results here help us meet this objective.

2. Canonical regulated Brownian motion

In this section we mathematically define and characterize regulated Brow-
nian motion (RBM) in terms of standard Brownian motion (BM). We
construct canonical versions of both BM and RBM, having unit drift and unit
variance, from which all other versions can be constructed by an appropriate
choice of measuring units for time and space. (Canonical RBM coincides with
the ‘dimensionless diffusion’ suggested by Newell; see p. 614 of Gaver (1968),
but our construction is different.) Having a canonical version is useful because
all difficult calculations only need to be done for this one special case.

Let {B(t):t=0} be standard BM without drift, where B(0)=0,
B(t)£N(0,t), £ means equal in distribution and N(u, 0%) represents a
random variable with a normal distribution having mean u and variance 0?; see
Chapter 7 of Karlin and Taylor (1975). Let B(t; u, 0%, X) represent BM with
drift u and variance (diffusion) coefficient o®, starting at the random initial
position X, and define it by

2.1 B(t;u, 0>, X)=0B(t) +ut+X, t=0.

In (2.1) we assume that X is independent of {B(t): ¢t Z0}.
Since

(2.2) {B(at): tZ0} £ {a3B(r): t =0}

for any a >0, where equality in distribution applies to the entire stochastic
process, see p. 351 of Karlin and Taylor (1975), we can change the scale of
time and space to transform to and from canonical versions with o® replaced by
1 and u replaced by —1, 0 or +1 if u <0, u =0 or u>1, respectively. For
simplicity, we only consider the principal case of interest u <0, but similar
results hold in the other cases.

Proposition  2.1. If u<0, then {aB(bt;u, 0% X):tZ0} < {B(s;
—1,1,aX):t=0} and {B(t; u, 0% X): tZ0} £ {a"'B(b~'t; -1, 1, aX): =0}
for

23) a=|ul/d*, b=0*/u’, u=-1/ab and o*=1/a’b.
Proof. By (2.1) and (2.2),
aB(bt; u, 0%, a 'X) = aoB(bt) + aubt + aa~'X
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so that
{aB(bt; u, 0%, a~'X): t Z0} £ {aob?B(t) + aubt + X: t 20}
£ (B(t; aub, a*0®b, X): t Z0}.
We obtain aub = —1 and a®c®b = 1 with a = a®b/ab = |u|/0® and b = ¢*/u>.
RBM is the modification of BM corresponding to the imposition of an
impenetrable ‘reflecting’ barrier at the origin. Let r be the reflecting barrier

function mapping the space of continuous real-valued functions on [0, ) into
itself, defined by

CH ) =m0 =max{y®, ¥ - int y©)|, 120

The following elementary proposition identifies important properties of .

Proposition 2.2. For any a>0 and continuous function y = {y(t): t =0},
r(y)={r(y)(t): t=0} is a continuous function satisfying r(ay)=ar(y) and
r({y(at): t=0}) = {r(y)(at): t =0}.

Let RBM R(t; u, 0°, X) be defined in terms of B(t; u, 0%, X) by

{R(t; 1, 0%, X): 1 Z0} =r({B(t; u, 0%, X): 12 0})

2.5)
= {max {B(t; u, 0%, X), B(t; u, 0>, X) — inf B(s;pu, 0%, X)}: téO}.
0=s=t

It is easy to see that R(f;u, 0%, X) defined in (2.5) is a diffusion process
(continuous-time stochastic process with continuous sample paths and the
strong Markov property); see Harrison (1985).

As an immediate consequence of Propositions 2.1 and 2.2, we have the
following result.

Proposition 2.3. If u <0, then

{aR(bt;pu, 0%, X): tZ0} £ (R(t; -1, 1, aX): t =0}
and
{R(t; 1, 0% X): tZ0} £ {a'R(b"'t; -1, 1, aX): t 20}

for a and b in (2.3).
To obtain moments for the general (u, 0%) case from canonical RBM, we
can apply the following.
Corollary 2.3.1. If u <0, then
E[R(t; u, 0%, X)]=a " E[R(b7't; —1, 1, aX)"]
for a and b in (2.3).
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Let H,(t; u, 0°) represent the kth-moment c.d.f. in (1.4) for (u, 0%)-RBM;
i.e.; let
_E[R(t; u, 0%, 0)"]

= =
E[R(; u, o2, O)k]’ t20.

(26) Hk(t; u, 02)

Corollary 2.3.2. If u <0, then H,(t; u, 0*) = H(b~'t; —1, 1) = H (b 't) for
b~'=pu?/o”

From Corollary 2.3.2, we see that the parameters u and o alter the moment
c.d.f.’s by a simple transformation of the time scale, depending on the single
parameter b. It is significant that the transient behavior of (1, 0%)-RBM can be
analyzed by considering three separate phenomena: (1) the approach to steady
state of canonical RBM, (2) the impact of u and o® on the steady-state
distribution, which is determined by a™' = 0*/|u| and (3) the impact of u and
o0° on the time scale, which is determined by b~ = u?/0>.

Propositions 2.1 and 2.3 tell us that we can always choose the measuring
units for space and time appropriately so that, when u <0, we only need
consider {B(t; u, 0, X): tZ0} and {R(¢; u, 0%, X): t =0} for the special cases
of u = —1 and 0®= 1. This special case of RBM coincides with the ‘dimension-
less diffusion’ defined on p. 615 of Gaver (1968) in the classical way via the
forward differential (Fokker—Planck) equation. In the general case with

P(X=x)=1,

OF  oF o*3F
2.7 —_—— - ~——+__
@7 a . Fay T 252

where F =F(y;t, x; u, %) is the c.d.f. (cumulative distribution function)

v

(2.8) F(y;t, X;u, 0°) = P(R(t; —p, 0%, X)Sy), y=Z0.

The initial condition for (2.7) is specified by

1 y<x
) . )b
29) Fosoxm o=y V2
and the boundary condition is
(2.10) F(y;t,x;u,0°)=0,x>0,t>0 and y=0.

As Gaver indicates, we can also obtain the canonical dimensionless form, say
F(y;t,x)=F(y;t,x;—1,1), directly from (2.7) by performing a change of
variables for y and ¢ corresponding to (2.3). The marginal distributions of
regulated Brownian motion are described by the c.d.f. Fin (2.8). The solution
to (2.7)-(2.10) is given in (1.1). Other derivations are given in Harrison (1985).
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3. Supporting probabilistic arguments

Let R(t)=R(t; —1, 1, 0) represent canonical RBM starting at the origin. We
are interested in m,(t) = E[R(t)*], especially for k =1 and 2. We look at the
closely related moment c.d.f.’s H(t) = m(t)/m () = (2% /k)m,(t), t=0,
defined in (1.4), which we obtain from the fact that the kth moment of the
exponential distribution having mean A7! is (k)A %,

Proof of Theorem 1.3. Even with general initial conditions, we can easily
find an integral expression for each moment of R(¢). We can simply apply (1.1)
with

(3.1) ER@®)"|R(0)=x)= f: ky*~'P(R(t) >y | R(0) =x) dy;

p. 150 of Feller (1971). However, we can obtain significant simplification by
assuming R(0)=0. Let M(t) be the maximum process associated with
canonical unregulated Brownian motion with negative drift, starting at the
origin, i.e.,

(3.2) M(t) =max {B(s, —1,1,0): 0=s =t}, t=0.

A key property is that R(t) = (R(t) | R(0) = 0) is equal in distribution to M(t)
for each ¢ (but not as stochastic processes); p. 14 of Harrison (1985).

Moreover, we have the familiar inverse property connecting the maximum
process to first-passage times, namely,

(3.3) P(M(t)Zx) = P(Ty, =1)

for all positive ¢ and x. These properties together with Theorem 1.4 are all we
need:

ER(®)" | R(0)=0)

(3.4) - fo " e P(R(t) > x | R(0) = 0) d = fo "l P(M() > x) dx

= f kx*"'P(To, =t)dx = J kx*"'exp (—2x)P(T, o =t) dx.
0 0

After normalizing, we get

ER(®)“|RO)=0) _ 2*
E(R(»)") (k—1)!

- [ awrex 0 a

[ x*lexp (=2x)P(To=t) dx
0

as claimed in Theorem 1.3.
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Proof of Corollary 1.3.2. The density f(t;x +y, 0) of T, , is the convolu-
tion of f(¢;x, 0) and f(¢; y, 0) because T;,Oé T,y forally>0and T,,,0=

T,iyxt T, o where T,,,, and T,, are independent. Similarly, g.(x) is the
k-fold convolution of g,(x). Hence, the convolution of A, _,(¢) and h,(¢) is

[ Aucsormute=sy s = [ a5 [ s, 0 [ 100766 533, 00
= [ st as[ 8101 1six, 00 =535, 0) 0
= [ e[ 8@ +y, 0 dyax
= [ [ 162 0ge U1 -

- [ a@r 2,0z = heto

Proof of Corollary 1.3.5. Note that

2%xk~1 exp (—2x)
k1)

(2m)H3 exp (t/2)hi(t) = r’ x exp (—x?/2t)e* dx
0

o k_—x
= k2"f z I:' exp (—x*/2t) dx—> k2* as t— .
0 H
Given that h.(t) ~ At~ exp (—t/2), it suffices to consider the limit of
te[? Aqu~texp (—u/2)du as t—o. (If h(t)~g(t), then [h(u)du=
I7 g(W)[h(u)/g(u)] du where sup {|[A(u)/g(u)] —1|:u=t}—0 as t— ».) After
making the change of variables to y = u — ¢, we obtain

t%e”zf Agurexp(—u/2)du= j A"()%H)% exp(—y/2)dy—>2A, as t—x
t 0

Proofs of Theorem 1.2. We give four proofs of Theorem 1.2. First, it is an
immediate corollary to Theorem 1.3. Second, it is a trivial consequence of the
third term of (3.4): the maximum process obviously has non-decreasing sample
paths, so that P(M(t) > y) is increasing in ¢ for all y. The monotonicity of the
moments then follow directly from (3.4) or the fact that the entire distribution
P(R(t) =y | R(0) = 0) is stochastically increasing in t; i.e., P(R(t) >y | R(0) =
0) is increasing in ¢ for each y > 0. Third, this stochastic order also follows from
corresponding results for birth-and-death processes; see van Doorn (1980) and
references cited there. The stochastic order carries over when sequences of
the birth-and-death processes converge to regulated Brownian motion; see
Iglehart and Whitt (1970b) or Stone (1963). The appropriate birth-and-death
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process to consider is of course the number of customers in an M/M/1 queue.
Finally, the fourth proof is the stochastic monotonicity argument in Section
1.2. See Remark 4.1 for a fifth proof in the case k = 1.

Proofs of Theorem 1.4. First, Theorem 1.4 can easily be verified by direct
calculation using the known distributions for T;, and T,; see (11) on p. 14 and
(2) on p.46 of Harrison (1985). (Use the symmetry: 1—®(x)=®(—x).)
Second, a more revealing proof is provided by exploiting reversibility. The key
property is easily expressed in terms of discrete-time Markov chains with
integer state space, stationary distribution & and transition matrix P.
Reversibility holds if and only if the detailed balance conditions hold, i.e.,
m;Pj=mP;; p. 5 of Kelly (1979). As an easy corollary (closely related to the

]

Kolmogorov criterion, p.21 of Kelly (1979)), we have for any path

i, ..., I, 1.e., sequence of n successive states, the stationary distribution is
q y
(3.5) P([ib‘ ) in]) = ﬂiIPiliZPi2i3 T Pi,,_,i,,
=, Piy,_ Py = P([in, - - -, 1))

The specific process we want to consider is a simple random walk on the
non-negative integers with a reflecting barrier at 0. At each transition this
process moves up 1 with probability p and down 1 with probability 1 — p. The
stationary distribution s is geometric. Let T, be the first-passage time to b
from a given that c is not visited first after leaving a. The reversibility implies
that

(3.6) JTOP(Tgn=k)=”nP(TZO=k)

for all k and n. (See Sumita (1984) and especially Doney (1984) for related
results.) Now consider the same simple random walk on the integers without
the barrier. We represent the first-passage-time events {7, = k} and {T,,,= k}
for this unrestricted random walk as a union of disjoint events. Let L be the
time of the last visit to j in {0, 1, - - -, k} starting at j. We can write

]

(=8 =U U (Lo =7} 0 (T8 =m))

j=0m=

(o=} =0 U (Lw=p 0 {Ti=m))

so that

k

P(To,Sk) =3, S P(Low=j)P(T%=m)

j=0m=1
k—j

P(Too=k)=2, 2 P(Lx=j)P(Ti=m).

j=0m=1
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Obviously, P(Ly =j) = P(L,, =j) for all j, k and n because of the homoge-
neity. Hence, we can apply (3.6) to obtain

(3.7) 76P(Tyn = k) = 1, P(To S k)

for each k and n. Formulas (3.6) and (3.7) extend easily to the associated
continuous-time Markov processes by applying (3.6) and (3.7) to the jump
chain. Since the reverse path visits each state the same number of times as the
forward path, the time required to traverse the paths in each direction is
identical. Hence,

(3.8) ﬂop(nnét)=ﬂnp(]:,0§t)

holds for the homogeneous birth-and-death process on the integers. Theorem
1.4 is obtained as the limit, after appropriate normalization, when a sequence
of birth-and-death processes are considered that converge to Brownian
motion; Stone (1963). We use the fact that the geometric stationary probability
mass function 7, for the M/M/1 queue converges to the exponential stationary
density of Brownian motion (a local limit theorem, in this case elementary).

Remark 3.1. For related special properties of first-passage times for Brow-
nian motion and related processes, see p. 66 of Cox and Miller (1965), Doney
(1984), Phatarfod et al. (1971), Sumita (1984) and Takacs (1967). Reflection
and reversibility are obviously powerful tools.

4. Supporting Laplace-transform arguments

In this section we return to the Laplace transforms introduced in Section 1.3.
We treat the first two moment c.d.f.’s this way and then relate the other
moment c.d.f.’s to it.

4.1. The first-moment c.d.f. We describe the first-moment c.d.f. H(¢) in
(1.4) in more detail and prove Corollary 1.1.1(a). By (2.16) and (2.26) of
Gaver (1968), the Laplace transform of the time-dependent mean m(t) is

4.1) f " e=tmy(t) de = (s[1 + (1 + 25)1]) "

Let y(¢) be the gamma density with mean 1 and shape parameter 3, i.e.,
4.2) y(t) = 2at) " T exp (—/2), t=0.

Let v.(¢) be the stationary-excess or equilibrium residual-life density associated
with y(2); i.e., y(¢) = [T v(u) du; p. 28 of Cox (1962).

Theorem 4.1. The first-moment c.d.f. of canonical RBM is

(4.3) Hy(t) =1=2(1+0)[1 — ®(e3)] + 23 (t2),
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which has density
(4.4) ha(1) = 2t73¢p(12) — 2[1 = ()] = 2¥(1) - 7..(0), t 20,

Laplace—Stieltjes transform

(4.5) fo " et dHy (1) = fo " emthy(e) dt = hr(s) = 2/[1 + (14 25)1],

and nth moment

(4.6) o (H,) = fo " dH() = (1 + 1)y,

where m,, =(2n—1)(2n—3)--- 3)(1)=2"2":T((2n +1)/2) is the (2n)th

moment of N(0, 1). (m,(H;)=1/2, 1 and 15/4 forn=1, 2 and 3.)

Proof. We directly invert the transform of H,(tf) using (4.1). We apply
standard arguments for the inversion, referring to Abramowitz and Stegun
(1972). By (29.2.6) there, the factor s in the denominator allows us to identify
(2.19) as the transform of the alleged density A,(¢). By (29.2.12), the transform
of e”h, () is 2[1 + (25)2] 7' =2(1 — (25)})/(1 — 25) = 2(2s5)3/(2s — 1) — 2/(2s — 1).
By (29.3.8) and (29.3.38),

@)= (2/mt)t exp (—t/2) +erf ((t/2)7) — 1

where erf (z) is the error function defined in (7.1.1) there, from which we
obtain (4.4).
By integrating (4.4), we see that the c.d.f. H,(r) itself can be expressed as

1 1 ‘/;
Hi() = 40(t) — 2 — 2[1 — B(rh)] -2 f Y6 () dy

4.7) = (4+420)®(e2) — 2(1 + 1) — 2(1/7?) f ” ue ™ du

=2+ (4+20)[D(rF) - 1] - 2(1/at)y(3, 1/2)

where y(a, t) is the incomplete gamma function in Section 6.5.2 of Abramo-
witz and Stegun (1972). (Formula (4.7) coincides with (2.157) in Kleinrock
(1976).) Obtain (4.3) from (4.7) via

(4.8) 1-2772y(3, 1/2) =2[1 - D(e})] + 239 (1}),
invoking (6.5.22) and (26.2.30) of Abramowitz and Stegun (1972).



Transient behavior of regulated Brownian motion, 1 589

To obtain (4.6), make the change of variables x = 1
f (e dt = 4 f ¥ ((x) — x[1 — B(x)]) dx
0 0
=2m,, — 4[ x*" (1 — ®(x)) dx
0

— 2my, = (4/(2n +2)) f " 42 4o (x)

=2my, — (N + 1) "Mppir = (n + 1) 'y,

Remarks. 4.1. By Lemma 2, p. 175, of Feller (1968), the function k,(t%)/2 is
non-negative, so that we have a fifth proof of Theorem 1.2 for k =1, i.e., that
Hi(t) is a legitimate c.d.f.

4.2. Corollary 1.1.1(a) is equivalent to (4.3) because ER(») = 3.

4.3. The analysis above can also be done with the complementary c.d.f.

{()=1-Hy(t). If m, is the mean of H,(t), then mi'(1— HS(t)) is the
density of the associated stationary-excess distribution, say H7(¢). The kth
moments m, of these two distributions are thus related by m,(HY)=
my(Hy)/m(H,)(k + 1); p. 64 of Cox (1962). From (4.1) or (1.8) it follows
that the Laplace transform of Hi(¢) is

4.9 Hs)= fa exp (—st)H5(t) dt = [1+s + (1 +25)3] ' =2r,(s) %,

which has expansion

- 1 s 15
4.10 ®)=z-z+=5° 2
(4.10) i(s) 572t +o(s%) as s—0
so that, in agreement with (4.6), the first three moments of H,(t) are m, = 3,

m2=1and m3=%;§.

4.4. Corollary 1.1.2(a) for the case R(0) =0 can also be obtained directly
from (4.9) by applying Heaviside’s theorem; p. 254 of Doetsch (1974).

4.5. The mean m,(t) = E(R(t) | R(0) = 0) is linked in another curious way to
the gamma density y(¢) in (4.2). Let U(¢) represent the renewal function, i.e.,
the expected number of renewals in the interval (0, ), in an ordinary renewal
process with renewal-interval density y(t). The Laplace transform of U(¢) is
thus 7(s)/s(1 — 9(s)) where 9(s) = (1 +2s)"%, the Laplace transform of y(1).
Then the time-dependent excess life U(¢) — ¢ has Laplace transform
_ 1 1
Cs[(+25)i-1] 5P

171 1

T2 [3—1 +s+(1+2s)%]
=1/s[1+ (1 + 25)%] = rir(s).

U(s)—s72
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Hence, U(t) — t based on y(¢) coincides with m,(t). That y(¢) should appear at
all is evidently due to the fact that y(¢) = (27t)“2¢([x — t])/ V1), the density of
unrestricted BM, for x = 0. Thus, this excess-life relationship is evidently part of
the connection between RBM and BM. More generally, let T:(s) = Ffen-
F(s)]7' — (ms)~" be the Laplace transform of the density of U(t) —t when f(s)
is the transform of the interrenewal density f(¢) having mean m. It is well
known that U(t) —t =0, so that T;(s) = 0, when f(¢) is exponential. By above,
U(t) — t is my(t) when f(¢) = y(¢). It is also easy to see that hy(¢) is the unique
fixed point of the operator T, i.e., T;(s) = =f(s) if and only if f(¢t) = h,(t/2m).
Being a fixed point of the operator T turns out to be equlvalent to the
characterization in Corollary 1.5.2.

Proof of Theorem 1.7. Since h,(t) =2[1 — H,(t)], by Corollary 1.5.1, h,(¢) is
completely monotone if h;(¢) is. We must show that the nth derivative A{"(t)
satisfies (—1)"h{”(t)=0 for all n and . By direct calculation, the first
derivative of h,(t) is h{"(t) = —(2m) 23 exp (—t/2). By induction, for each n,
the nth derivative is of the form

h{() = (- 1)"20 Ayt "D exp (—1/2)

where {a,, :k =0} is a sequence of non-negative constants for each n.

4.2. The second-moment c.d.f. We now investigate the c.d.f. H,(f)=
my(t)/my(®) = 2m,(t) defined in (1.4). As indicated on pp. 611-612 of Gaver
(1968), the transform of H,(t) can be obtained by differentiating the time-
transformed density associated with (1.1). We omit details of the supporting
calculations here.

Theorem 4.2. The Laplace transform of my(f) is 2[s(1 +[1 + 2s]?)?]"! and
the Laplace transform of the complementary second-moment c.d.f. H5(t) =
1—Hy(t) is

VRN 1([1+2s]i—1+5s)
Hz(s)“fo () ds = T T 14

=57 [1+s5s—(1+2s)1],

(4.11)

which has expansion

55 7
(4.12) =1—Zs+1s2+o(s2) as s—0, (4.12)

so that the first three moments of H,(t) are m; =1, m, =3 and m;=21/2.

4.3. Higher-moment c.d.f.’s. We now focus on H,(¢) in (1.4) for k =3.
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Proof of Theorem 1.5. Let y(s)=(1+2s)3, r(s)=vy(s)+1 and r(s)=
Y(s) —1, so that r(s)r,(s) =2s. Then the transform of the density h,(t) is
hi(s)=2/ri(s) =ry(s)/s. Consequently, by (1.10), the transform of H$(t) =
1—-Hy() is

1- ﬁl(s) 1 2 ra(s) hz(s) hz(s)
1i(s) = s(l rl(s)> sn(s) 2 2

By induction, A%, ,(s) = A,(s)Hi(s) + H;(s) because
A =57 A= b)) =s7' A=A
=s 7' ([1 = hi] = [A — R = AS + A,
from which Theorem 1.5 follows.

Proof of Corollary 1.5.2. If a c.d.f. H(t) with mean m has its convolution
equal to its stationary-excess c.d.f. then its Laplace-Stieltjes transform A(s)
must satisfy [1— A(s)]/ms = h(s)?, which leads to a quadratic equation with
solution

h(s)=2/[1+ V1 + 4ms] = h,(2ms).

Behavior of H,(t) and h,(t) as t— 0. The asymptotic behavior of H,(¢) as
t—0 for each k can be determined by invoking Tauberian theorems, e.g.,
Theorem 1 on p. 443 of Feller (1971). Theorem 1.5 here then provides the
means to extend these results to the densities 4,(¢). (Alternatively, Theorem 4,
p. 446, of Feller can be used after showing that A, (¢) is ultimately monotone.)
The transform A(s) = (2/[1 + V1 + 2s])* is easily seen to be regularly varying
at © with exponent k/2, so that H,(s) is regularly varying with exponent
(k —2)/2 and hy(t) ~ A%~ as t— 0. Hence, h(t) is increasing at t =0 for
all k=3, so that h(t) cannot be monotone for k=3, let alone completely
monotone as is the case for k =1 and 2.

4.4. Transform inversion. There are numerous algorithms for the numerical
inversion of Laplace transforms. For example, there are three standard
routines currently available from the acm library of software algorithms:
Algorithm 368 (Stehfest (1970)); Algorithm 486 (Veillon (1974)); Algorithm
619 (Piessens and Huysmans (1984)). The first is referred to as the Gaver—
Stehfest method. Gaver (1966) first introduced the procedure. Stehfest (1970)
discovered a weighting function which vastly improves the accuracy of the
method. We employ this method for our results. It yields good (but not
exceptional) accuracy on a small computer (e.g., a PC) with little programming
effort.

The other two procedures are based on a Fourier series method first
introduced by Dubner and Abate (1968). For other procedures, see the
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excellent review paper by Davies and Martin (1979) which evaluates 14
methods on 16 test problems.

5. Hyperexponential approximations

5.1. Fitting H, distribution to three moments. Given the first three moments
m;, m, and mj, the H, parameters A,, A,, p; and p, for the density in (1.11)
can be obtained by solving a quadratic equation, as described in Section 3.1 of
Whitt (1982). We briefly describe a derivation originally shown to us by
Shlomo Halfin. We start with three equations in three unknowns: A7*p; +
A1 —-p)=m/k! for k=1,2,3. We first reduce this system to two
equations in two unknowns and then a single quadratic equation. Letting
y = A,/A,, we express the first two equations as

(y—Dp1=4m; -1
(y2 - 1)p1 = A%mz/z -1
so that we can divide the second equation in (5.1) by the first to obtain

_ Aymy = A3m,[2
T Bmy2-1

(5.1)

(5.2)

We next let wy=p;/A;m,, so that we can express the second and third
equations as A7 w; + A35(1 — wy) = v /k! for k =1, 2, v, =m,/2m; and v,/2=
ms/6my, which is the same form as the first two original equations, with (w,,
vy, Vv,) playing the role of (p,, m;, m,). Repeating the argument of (5.1) and
(5.2), we obtain

_ szl - A%Vz/z

(5.3) A%Vz/z— 1 )

Equations (5.2) and (5.3) are the resulting two equations in the two unknowns
y and A,. These equations can immediately be combined to obtain a single
quadratic equation for A; ' in terms of the known moments, namely,

_(my— )
2

(vimy — myv,) _
2

(my—v)A3? A+ 0

or
(5.9 Bmy)As2— (x + 1.5y* +3miy)As ' + mx =0
where x = mym; — 1.5m3 and y = m, — 2m?. The solution to (5.4) is

(5.5) A;={x+1.5%+3mly £ V(x + 1.5y + 3m?y)* — 12m3xy}/6m,y

for x and y above, p; =(m;—A;Y)/(A7'—A5') and p,=1—-p,. In order to
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have an H, fit it is necessary and sufficient that either x >0 and y >0 or x =0
and y =0, with the latter yielding an exponential distribution; see Section 3.1
of Whitt (1982). For k =1 and 2, x >0 and y >0, so that an H, fit is possible.
For k =3, y =0 but x >0, so that an H, fit is not possible. For k =4, y <0, so
that an H, fit is not possible. Other distributions could be fit to the first three
moments to approximate H,(¢) for k=3, but we do not pursue this because
only k =1 and 2 seem to be of significant practical interest.

The nature of the resulting H, distribution is perhaps better understood
using a different parameter triple, namely, (m,, ¢, r) where m, is the mean, c?
is the squared coefficient of variation (c*>=(m,—m?)/m3), and r is the
proportion of the total mean in the component with the smaller mean, i.e.,

(5.6) r=piAit (piAit + paAsY);

see (16) of Whitt (1984). The squared coefficient of variation gives a first-order
description of the variability, while the parameter r indicates the shape of the
distribution for given first two moments. An attractive feature of ¢ and r is
that they are independent of the measuring units, so that the numerical values
have meaning independent of m,. The standard two-moment H, fit is based on
the case of ‘balanced means’ corresponding to r=1/2. The parameter r
increases with the third moment (and thus also the skewness) for given first
two moments.

An alternate way to derive the parameters from the moments that goes
directly to r is first to normalize by setting d> = ms/m?} and then solve

y=3(c*—1)*/(d®>-9c*+3)
a=x[(c*—1)/(c*—1+2y})]:
2r=1—-a(y-1), pi=(1xa)2
Ay =pi/rmy, Ar=po/(1—r)m,.

(5.7)

We remark that (5.7) turns out to be especially convenient for the M/M/1
queue, because then y =2 independent of the traffic intensity; see Abate and
Whitt (1987b). The classical two-moment H, fit with r =3 arises when y =1.
The parameter v is decreasing in r for given first two moments. As additional
checks related to (5.7), there are the relations

Al>mi(c?+1)2>m;>A71>0

G-8) A4 AT = 2+ (@ - DIy

For ¢*>3, p;>4>p,. The parameter y in (5.7) can take on negative values
when 1<c¢?*<3, but o and y must have the same sign. For the H,
approximation to the first-moment c.d.f. in (1.13), » =0.276. Since this r is
quite different from 3, we should expect that the three-moment H, fit would



594 JOSEPH ABATE AND WARD WHITT

perform significantly better than the standard two-moment fit based on r =3,
as is demonstrated in Table 3.

In some applications, especially when it is desirable to obtain a good fit for
small ¢, we may want to fit the H, c.d.f. to the first two moments and the value
of the density at the origin. (Here, by (4.4), h,(t) ~ (27t)"? so that h,(0) = «.)
It is significant that the fitting scheme (5.7) is easily adapted for this purpose, it
suffices simply to replace the equation for y in (5.7) by

(5.9) Y =2(c* = 1)(A = [h(0)m,])/(c* = 3 + 2[h(O)m,] )
where h(0) is the value of the density at 0.

5.2. H, approximations via Laplace transforms. It is also possible and
natural to obtain the H, approximation (1.13) for the c.d.f. H(¢) directly from
the Laplace transform. In particular, we can recognize that the transform
A¢(s) of 1— Hy(t) in (4.9) looks something like the transform of a linear
combination of two exponentials. As an approximation, (4.9) can be converted
to the general H, form (s + a)/(bs®+ cs +d) if we can approximate (1 + 2s)%
by a rational approximation of the form (e +fs)/(g + hs). In particular, we
propose using a Padé approximant; see Baker (1975) and Section 16.4 of Luke
(1969). This does not a priori guarantee negative real roots, but if we use
(1+2s):=~(2+3s)/(2+s), both of which have Taylor’s series of the form
1+ s —s%/2+ o(s? as s— 0, then we obtain

(5.10) AS(s) =~ (s + 2)/(s* + 65 + 4),

which yields precisely (1.13) when inverted. This of course must occur because
we have specified H$(0) and the first two derivatives at s=0, which
corresponds to the first three moments. Theorem 1.7 guarantees that we will
obtain two real negative roots for H;(¢) in this case.

5.3 The second-moment c.d.f. For k =2, the H, approximation obtained by
(5.5) or (5.7) is

(5.11) Hy(t)=1-0.5exp (—2¢t) — 0.5 exp (—2¢t/3), t 0.

The approximation (5.11) is compared with the exact values in Table 5 (p.
575). The exact values of H,(t) were obtained by inverting the transform in
(4.11) as described in Section 4.4. (Instead we could apply Corollary 1.1.1(b).)
In Table 5 these exact values are compared with the approximating exponen-
tial c.df. 1—e™ in (1.12) with m,; =1 and the asymptotic value from
Corollary 1.3.5 as well as the H, c.d.f. in (5.11). Note that the quality of the H,
approximation in (5.11) for H,(t) is even better than the quality of the
approximation for H,(t). This can be explained in part by the fact that the
Hy(t) ~2t as t— 0, agreeing with (5.11). In other words, (5.11) turns out to
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match the value of the density at 0, i.e., h,(0) =2, as well as the first three
moments. As a consequence, (5.11) is a good approximation for all #=0. In
contrast, H,(t) ~ (8t/m)} as t— 0.

The parameter r for (5.11) is r=0-250. Since r =0-276 for (1.11) and
r =0-250 for (5.11), it might be better to use r ~0-25 instead of r =0-50 for
other H, approximations of this kind if only two moments are available.

6. Proof of Theorem 1.1

We briefly sketch the argument used by Mitchell (1985) to prove Theorem
1.1(a). It also extends easily to prove Theorem 1.1(b). We start with the
Laplace transform (with respect to the space variable) of the density of (1.1),
i.e.,

(6.1) foinn = exp(-sy) (i) dy.
The Laplace transform of ®((t —a)/b), t=0, is

$0)= [ exp (-sno(15%)

6.2)
=5 Y ®(—ab™") +[1 — D(bs —ab~ )] exp (—s(2a — b’s)/2)},
so that
(6.3) F(s;t, x) =[A + Bi(s)Ci(5)] = E(s)[A = By(s)Cafs)]
where
x—t t—x
a=1-o(7) = o(F)

Bi(s) =exp (—(x — t)s + t5*/2)

B,(s) =exp ((x —t)(s +2) + t(s +2)*/2)
(6.4)

Ci(s)=1—D(st: — (x — )t })
Co(s)=1—D(t3(s +2) + (x — )
E(s)=s/(s +2).

The first moment is then

E(R(t) | R(0) = x) =%ﬁ

S s=0

= —B,(0)C,(0) — B;(0)C1(0) + E'(0)[A — By(0)Cx(0)]
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while the second moment is
3*f(s;t, x)
BR©? | RO) =) =TT G

s=0
= By(0)C1(0) + 2B1(0)C1(0) + Bi(0)C,(0)
+27(A — B,(0)Cx(0)) + B3(0)C(0) + B,(0)C(0).
Additional details appear in unpublished appendices.
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