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Abstract

Many service systems have demand that varies signi�cantly by time of day, making it costly to provide su�cient capacity
to be able to respond very quickly to each service request. Fortunately, however, di�erent service requests often have
very di�erent response-time requirements. Some service requests may need immediate response, while others can tolerate
substantial delays. Thus it is often possible to smooth demand by partitioning the service requests into separate priority
classes according to their response-time requirements. Classes with more stringent performance requirements are given higher
priority for service. Lower capacity may be required if lower-priority-class demand can be met during o�-peak periods. We
show how the priority classes can be de�ned and the resulting required �xed capacity can be determined, directly accounting
for the time-dependent behavior. For this purpose, we exploit relatively simple analytical models, in particular, Mt=G=∞ and
deterministic o�ered-load models. The analysis also provides an estimate of the capacity savings that can be obtained from
partitioning time-varying demand into priority classes. c© 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In many service systems, demand varies signi�-
cantly by time of day; e.g., see [5]. If a �xed capacity is
used to meet all demand, then it is natural to focus on
peak demand and use busy-hour engineering or some-
thing similar in order to determine the appropriate ca-
pacity. We then may do steady-state analysis over the
busy hour; see [10] and references cited there. Alter-
natively, if capacity too can be made time-dependent,
as with service agents in telephone call centers, then it
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is natural to do time-dependent sta�ng, as in [8] and
references cited there.
Whether or not capacity can be made time-

dependent, having signi�cant variation of demand
over time can be costly. If the capacity must be �xed,
then a much higher capacity may be needed to meet
peak demand than average demand. Even if capacity
can be adjusted, it is often quite costly to do so. For
example, it may not be easy to rapidly change the
number of service agents in telephone call centers,
because the service agents may be required to have
minimum-length shifts. The expense of adjusting the
work force and other aspects of production capacity
is well established in the literature; e.g., see [6].
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Hence, it is natural to consider ways to alter
the time-varying demand. A familiar method is
time-varying pricing, such as lower telephone rates
during o�-peak hours. The demand over time can
often be smoothed (leveled) by having lower prices
during periods of otherwise low-demand; e.g., see [1].
Instead of altering the time of the service request, an

alternative way to smooth demand is to alter the time
that service must be provided. The service provider
might o�er di�erent response times for di�erent prices.
Even without pricing, customers may have very di�er-
ent response-time requirements. For example, some
calls to police require immediate response, while oth-
ers do not. Thus, it is natural to partition the demand
according to the response-time requirement. If such
partitioning is not initially evident, then it may be
possible to induce it by an appropriate pricing
policy.
Concrete applications are copying and message

(e.g., fax) communication services. The service
providers might o�er immediate service (e.g., within
10 min, in part depending on the job length), two-hour
service and next-day service, each at successively
lower prices. The options are somewhat like regular
mail and express mail, but in our context a major
motivation for introducing the di�erent response-time
guarantees is to smooth out daily demand.
The service provider may well have su�cient ca-

pacity to meet daily demand but insu�cient capacity
to provide immediate service to all service requests.
The service provider could just serve everybody on a
�rst-come �rst-served basis, but greater bene�t – both
pro�t to the service provider and customer satisfac-
tion – is likely when demand is partitioned, because
there should be signi�cant di�erences among customer
response-time requirements; i.e., it may be possible to
provide immediately service when immediate service
is really important, once we identify those cases.
We implement our partitioning scheme by assign-

ing priorities to the di�erent classes. Service requests
from higher-priority classes are met before service
requests from lower-priority classes. We let service
be on a �rst-come �rst-served (FCFS) basis within
each priority class. We think of the priority disci-
pline as being preemptive-resume (i.e., upon arrival
of a higher-priority job, the higher-priority job pre-
empts a lower-priority job in service, and later the
lower-priority job resumes service where it left o�),

but we do not dwell on that detail. The appropriate
priority scheme may depend on the application.
Of course, there already is a large literature on pri-

ority queues, e.g., see [7] and Chapter 3 of [9], no
doubt motivated in part by the situations that we con-
sider. However, this literature, like most of the queue-
ing literature more generally, does not discuss models
with time-dependent arrival rates. The present paper
is part of a long-term e�ort to develop methods for an-
alyzing queueing models with time-dependent arrival
rates. (The references give other examples.)
In this paper we directly model the time-dependent

o�ered load. With the time-dependent o�ered load
speci�ed, we indicate how the di�erent service classes
can be de�ned and how a constant capacity can be set.
We apply ideas in Jennings et al. [8] and in Du�eld
andWhitt [2], so we will be brief here. However, there
are interesting new ideas. As before, a main idea is to
simplify the analysis by focusing on o�ered load in-
stead of carried load and associated delays and=or lost
demand due to blocking. We use a normal approxima-
tion to approximate the distribution of the o�ered load.
As in Du�eld and Whitt [2], we also use a determinis-
tic approximation, which may be the time-dependent
mean o�ered load, to approximate the delays associ-
ated with having insu�cient capacity. That is, we use
deterministic methods to approximately describe the
build up of queues, and the associated delays, when
demand exceeds capacity. That part of our approach
corresponds to a deterministic uid approximation and
thus follows Newell [11]; also see [5,14]. A deter-
ministic uid model tends to be appropriate when the
aggregate demand is made up of a relatively large
number of small demands, as is likely to occur in a
message communication service. A seminal contribu-
tion on deterministic uid approximations was [12].
Segal [15] has recently proposed a mathematical pro-
gramming approach with a discrete-time determinis-
tic model to determine a good order of service (queue
discipline) in each period.
Here is how the rest of this paper is organized: In

Section 2 we show how capacity can be set to meet
peak demand and daily demand. Both methods use
a normal approximation to describe the demand. In
Section 3 we consider the case in which the service
requests are partitioned into two classes, one with a
immediate-service requirement and the other with a
daily-service requirement. In Section 4 we show how
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the analysis in Section 3 should be modi�ed when
the two kinds of work are associated with a common
service request, and thus come together in a single
arrival process.
In Section 5 we show how a deterministic uid

model can be used to treat other classes with
intermediate-response-time requirements, in between
immediate and daily. Our use of a deterministic uid
model to solve the problem of meeting a response-time
constraint is di�erent from our previous normal ap-
proximations. For models such as Mt=M=c with a
speci�ed capacity c, the time-dependent queue-length
distribution could be computed exactly, e.g., see
[8,13,16]. Ong and Taa�e [13] also develop meth-
ods for computing the time-dependent waiting-time
distribution in this model with the FCFS discipline.
That approach might be extended to priority classes,
but it has not yet been. So far, there evidently have
not yet been any methods developed to compute the
time-dependent waiting-time distribution with priori-
ties. Even with the deterministic uid approximation
proposed here, the waiting-time formula associated
with any speci�ed capacity in (5.15) is somewhat
complicated (but still computationally feasible).
Hence we also give simple lower and upper bounds
on the maximum waiting time in Section 6. Finally,
in Section 7 we state our conclusions.

2. Peak demand and daily demand

Let A(t) denote the number of arrivals (service re-
quests) in the interval [0; t]. We assume that the arrival
process {A(t): t¿0} is a nonhomogeneous Poisson
process with (deterministic) arrival rate �(t) at time t.
Let Sn be the service requirement of the nth arriving
customer. We assume that {Sn: n¿1} is a sequence
of independent and identically distributed (i.i.d.) ran-
dom variables with a general cumulative distribution
function (cdf) G, i.e., P(Sn6t) = G(t).
There are two natural models for the o�ered load.

The �rst counts the service requirement the instant it
arrives, while the second counts the service require-
ment spread over time. In the �rst model, the total
demand (o�ered load) in the interval [0; t] is

D(t) =
A(t)∑
i=1

Si; t¿0; (2.1)

which has mean�(t)E[S], where S is a generic service
time and �(t) =

∫ t
0 �(u) du. We call the derivative

�(t)E[S] the o�ered load at time t. The �rst model
tends to be appropriate for a single-server model, such
as might represent a communication link with �xed
available bandwidth (output rate) c serving messages
or packets in a �rst-come-�rst-served (FCFS) order.
In the second model, the o�ered load is the num-

ber of busy servers in anMt=G=∞ service system with
arrival process A(t) and service times Sn. The idea
is that, with ample capacity, the nth service request
would start service immediately upon arrival and be
in service for a duration Sn after arrival. This second
model is appropriate for the situation in which mul-
tiple services are being performed concurrently. The
capacity c in the actual system then is represented by
the number of servers. We shall work with the sec-
ond model, but our methods apply to both models. We
shall also use the �rst model later.
With the Mt=G=∞ model for o�ered load, the num-

ber of busy servers at each time t has a Poisson dis-
tribution with mean

m(t) =
∫ t

−∞
Gc(t − u)�(u) du= E

[∫ t

t−S
�(u) du

]
= E[�(t − Se)]E[S]; (2.2)

where Gc(t) ≡ 1 − G(t) is the complementary cdf
and Se is a random variable with the service-time
stationary-excess distribution, i.e.,

Ge(t) ≡ P(Se6t) = 1
E[S]

∫ t

0
Gc(u) du; (2.3)

e.g., see [3].
We could also extend the model to allow the ser-

vice requirement of each customer to be for a ran-
dom number of servers for the speci�ed holding time,
but we do not. With this extension, the total demand
at each time has a compound Poisson distribution,
i.e., it is distributed as the random (Poisson) sum of
the random-server requirements. With or without this
generalization, we approximate the o�ered load dis-
tribution at each time by a normal distribution, as in
[8]. In the extension, we need to calculate the vari-
ance of the compound Poisson distribution, which is
a standard calculation; e.g., see Chapter 12 of [4] and
Eq. (2.6) below. When the distribution is Poisson, the
time-dependent variance equals the mean m(t).
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We could also allow non-Poisson (Gt) ar-
rival processes (with time-dependent rates) and
time-dependent service-time cdf’s, but we do not.
See [8] for ways to treat these extensions.
To select the capacity to meet peak demand, we

consider the time of day, say t∗, where the mean of-
fered load m(t) in Eq. (2.2) is maximum. Following
Section 3 of [8], we let the number of servers, s, be

s= dm(t∗) + 0:5 + z�
√
m(t∗)e; (2.4)

where � is the target delay probability (probabil-
ity of having to wait before beginning service),
P(N (0; 1)¿z�) = � with N (0; 1) being a standard
(mean 0, variance 1) normal random variable, and
dxe is the least integer greater than or equal to x. For
re�nements to this estimate to account for having
only �nitely many servers, see Section 4 of [8]. Also
see [8] for comparisons with numerical results and
simulations that justify Eq. (2.4).
If instead we elected to use the model of o�ered load

in Eq. (2.1), then we could still set capacity by Eq.
(2.4), but using the modi�ed mean �(t)E[S], which
turns out to be the pointwise stationary approximation
(PSA) for the in�nite-server mean; see [3,10] and ref-
erences therein.
In order to see the potential bene�ts of smoothing

demand over the day, we next consider the capacity
required to meet daily demand (any time over the day),
and compare that capacity requirement with the greater
capacity required to meet peak demand. Suppose that
we measure time in minutes and that a day consists of a
full 24 h =T minutes, where T=1440.We also assume
that the starting point of the day can be wherever we
choose, in order to avoid end e�ects. Then the total
number of arrivals during a day, A(T ), has a Poisson
distribution with mean

�T =
∫ T

0
�(t) dt: (2.5)

Ignoring end e�ects, the total demand over a day is
the random sum D(T ) for D(t) in Eq. (2.1). That is,
when we consider demand over a full day, we may
count the service requirement the instant it arrives. Let
a generic service time S have mean m and variance
�2. Then D(T ) has a compound Poisson distribution
with mean and variance

ED(T ) = �Tm and VarD(T ) = �T (�2 + m2)

(2.6)

for �T in Eq. (2.5). Like the time-dependent mean
m(t) in Eq. (2.2), but unlike the stationary demand
where �(t) has been replaced by the average demand
�� ≡ �T =T , the variance of the total demand in Eq. (2.6)
depends on the service-time cdf G beyond its mean m.
Now we consider the number of servers, say sT ,

needed to meet all demand over a day. (Again we
ignore end e�ects.) The total capacity over a day can
be regarded as TsT , the length of the day multiplied
by the number of servers. As before, we use a normal
approximation. Thus, paralleling Eq. (2.4), we let

TsT ≈ ED(T ) + z�̂
√
VarD(T ) + 0:5; (2.7)

where �̂ is the target probability of meeting the daily
demand and P(N (0; 1)¿z�̂) = �̂ or, more precisely,

sT =

⌈
ED(T ) + z�̂

√
VarD(T ) + 0:5
T

⌉
: (2.8)

We might be more demanding in a daily require-
ment than a peak requirement, so that we could have
�̂ substantially less than �, but still we may have sT
substantially less than s in Eq. (2.4). A rough es-
timate (lower bound) for sT is E[D(T )]=T . When
m(t∗)� E[D(T )]=T , there is potential for substantial
gain by replacing a peak-demand constraint with a
daily-demand constraint.

3. Partitioning demand into two classes

We now suppose that the total demand can be par-
titioned into two independent classes, part of which
must be met immediately and part of which must be
met on a daily basis. Thus the total Poisson arrival pro-
cess can be decomposed into two independent Pois-
son arrival processes, and the total arrival rate �(t) is
divided into two components: an immediate-service
demand �i(t) and a daily-service demand �d(t), i.e.,

�(t) = �i(t) + �d(t); t¿0: (3.1)

This partitioning may be achieved by introducing
two di�erent prices. These two prices might even
be time-dependent. Before the prices are introduced,
there may be considerable uncertainty about the re-
sulting partitioning. Indeed, the sum of the rates after
introducing the new prices need not equal the rate
before the prices are set. We do not address the fore-
casting issue here and we do not study the e�ect of
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price upon demand. We assume that the two demand
rates �i(t) and �d(t) are known. The service-time dis-
tributions may depend on the classes too. Hence we
assume that service-time random variables Si and Sd
with associated cdf ’s Gi and Gd are available.
We can now determine the capacity required to meet

peak demand. It is the capacity in Eq. (2.4), using
an appropriate target �, where m(t) in Eq. (2.2) is
calculated using �i(t) and Gi instead of �(t) and G. If
the o�ered load model is Eq. (2.1), then instead of Eq.
(2.4) we would replace m(t) by �(t)E[S]. As noted
earlier, this is a convenient simple approximation for
Eq. (2.4) as well.
We call the capacity required to meet immediate

demand si. Note that the daily demand requirement
�d(t) and Sd play no role in setting si. We must also
specify the target probability of experiencing delay
� for the immediate-delivery class. We should have
�i(t) substantially less than �(t), so that si should
be substantially less than s, yielding the bene�t of the
approach.
We now turn to the capacity needed to meet daily

requirements. We now consider total daily demand for
both classes,Di(T ) andDd(T ), respectively. We com-
pute each as in Eq. (2.1), using the de�ning variables
for that class. Then, assuming that the two kinds of
demand are independent, we add the means and vari-
ances to get the total mean and variance; i.e., by Eq.
(2.6), the mean and variance of the total daily demand
are

ED(T ) = �iTmi + �dTmd ; (3.2)

VarD(T ) = �iT (�2i + m
2
i ) + �dT (�

2
d + m

2
d): (3.3)

We then let the capacity required to meet daily demand
be sT as in Eq. (2.8) using an appropriate target delay
probability �̂ and Eqs. (3.2) and (3.3). We call this
capacity sd. Finally, we let the overall capacity be the
maximum of the two capacities si and sd.
If there is a signi�cant di�erence between si and

sd, then there will be excess capacity for one class.
With prices, it is natural to consider price adjustments
to make the two capacities si and sd nearly equal.
Alternatively, prices could be set so that revenue is
maximized subject to the constraints that both kinds
of demand are met. For that, though, we need to know
how the demand rates depend on the prices. We have
provided a framework wherein that can be studied.

4. A common arrival process

In the previous section we considered the case in
which the two kinds of service requests arrive in sep-
arate independent streams. Now we consider the case
in which the two kinds of work are associated with a
single service request, arriving together in a single ar-
rival process with rate �(t). The idea now is that part of
the required work should be done immediately, while
part can be delayed. For example, taking an order from
a customer may need to be done immediately, but it
may be possible to process the order afterwards. In
general, interacting with the customer and providing
immediately needed service typically must be done
immediately, but writing reports can be delayed.
When the two kinds of work arrive in a common

arrival process, there is no change in the analysis of
high-priority work. However, there is a change in the
analysis of the requirement to meet daily demand. As-
suming that �i(t) = �d(t), the previously calculated
mean in Eqs. (2.5) and (3.2) is all right, but the vari-
ance in Eq. (3.3) should be calculated di�erently.
For the daily demand, it is natural to have a single

arrival process with arrival rate �(t). Then the daily
demand has mean and variance just as in Eq. (2.6),
using the total mean �T in Eq. (2.5), where the mean
m and variance �2 of the service time apply to both
kinds of work, i.e.,

m= E(Si + Sd) ; (4.1)

�2 = Var (Si + Sd) ; (4.2)

where Si and Sd are the service times associated with
the two kinds of work. Now we allow the two com-
ponents of work to be correlated, so that

�2 = �2i + �
2
d + 2Cov(Si; Sd) ; (4.3)

where Cov(Si; Sd) is the covariance. Even if the two
components of work are uncorrelated, the variance
formula is di�erent from Eq. (3.3). Now the mean is
�Tm and the variance is

VarD(T ) = �T (�2 + m2)

= �T (�2i + �
2
d + 2Cov(Si; Sd)

+m2i + m
2
d + 2mimd): (4.4)

With the revised variance formula (4.4), we can
choose the capacity using Eqs. (2.7) and (2.8), just
as before.
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5. Other demand classes with response-time limits

We now consider how we can introduce other
classes with response-time requirements in between
immediate service and daily service. For example, we
might want to have a class for which service should
be provided within two hours of any request.
For simplicity, we only consider three classes, but

more can be treated in essentially the same way. In
addition to the immediate and daily demand classes
with arrival rates �i(t) and �d(t), suppose that we have
a class with response-time constraint (e.g., delay less
than or equal to r minutes) having arrival-rate func-
tion �r(t). Now, instead of Eq. (3.1), we assume that
the total arrival rate can be partitioned into three com-
ponents, i.e.,

�(t) = �i(t) + �r(t) + �d(t); t¿0: (5.1)

Paralleling Section 3, we also have service-time vari-
ables Si; Sr and Sd.
To treat the immediate-service class we do just as

in Section 3 (or Section 4, if they arrive in a common
arrival process), considering only class i. To treat the
response-time requirement, we combine the i and r
classes, letting the time-dependent mean m(t) be the
sum of the two separate means, each computed as in
Eq. (2.2). (The sum of two independent Poisson vari-
ables is again Poisson.) We indicate how to determine
the required capacity sr below. To treat the daily re-
quirement we combine all three classes, in the same
way we combined two classes in Section 3 (or Sec-
tion 4, if they arrive in a common arrival process).
We let the �nal required capacity be the maximum of
the three determined capacities si; sr and sd.
To determine the new response-time capacity re-

quirement sr , we consider a single (aggregate) class
(containing classes i and r). We suppose that the
time-dependent mean o�ered load m(t) has been com-
puted. We show how to determine if any �xed capac-
ity is adequate to meet the new response-time request.
The required capacity to meet the new response time
requirement, sr , is the minimum �xed capacity such
that the response-time constraint is met. We now use a
di�erent approach. We use a simple deterministic uid
model to estimate the response time (as a function of
time), given a speci�cation of capacity and demand.
For simplicity, we assume that capacity is a constant

c, but the reasoning also applies to time-dependent
deterministic capacity.
As in Section 8 of Du�eld and Whitt [2] and in

previous deterministic uid model analyses, e.g., in
[5,11] we simplify the delay analysis by assuming that
the demand (o�ered load) is a deterministic function
of time �(t). The idea behind this approximation
is that the uctuations over time should be more
important than the stochastic uctuations. In this
deterministic model, we assume that work arrives
deterministically and continuously at rate �(t) and is
processed deterministically and continuously at rate c.
In reality, both input and output may be random. Then
�(t) and c are both deterministic approximations.
The �rst natural value for �(t) is simply the

time-dependent mean m(t), which we have assumed is
available. To be conservative, allowing for stochastic
uctuations, we may alternatively let the deterministic
demand be inated by some standard deviations, i.e.,

�(t) = m(t) + z�
√
m(t) (5.2)

for some �, where P(N (0; 1)¿z�)=�, as in Eq. (2.4),
but not necessarily the same �.
If we use the alternative model for o�ered load in

Eqs. (2.1) and (2.6), then Eq. (5.2) would be replaced
by

�(t) = ED(t) + z�
√
VarD(t) (5.3)

where

ED(t) = �i(t)mi + �d(t)md; (5.4)

VarD(t) = �i(t)(�2i + m
2
i ) + �d(t)(�

2
d + m

2
d): (5.5)

Similar changes should be made in the setting of Sec-
tion 4.
We also impose simplifying technical regularity

conditions. We assume that the deterministic demand
�(t) is piecewise smooth, i.e., it is di�erentiable ex-
cept for only �nitely many jump discontinuities. We
also assume that it is right-continuous with left lim-
its. These restrictions evidently impose no practical
limitations.
We start by determining the queue length q(t) of

work remaining to be processed at time t. We get
queues and delays because �(t)¿c for some t. We
only consider a single day. Over a longer period, we
are thinking of approximately periodic behavior over
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Fig. 1. A single period of high demand.

successive days. Let the average demand over a day
be

��=
1
T

∫ T

0
�(t) dt: (5.6)

We assume that ��¡c, so that demands do not build
up over successive days. We also assume that �(t)¿c
for some t, so that there are delays.
Given the deterministic demand �(t) and capacity c,

we can determine the (deterministic) time-dependent
queue length q(t). Assuming that the day starts with
an empty queue, the queue becomes positive for the
�rst time at time

t1 = min{t¿0: �(t)¿c}: (5.7)

The queue then remains positive until time

t2 = min
{
t ¿ t1:

∫ t

t1
(�(u)− c) du= 0

}
: (5.8)

When there is a single period of high demand, as in
Fig. 1, the queue remains positive until the time t2
at which the area below the curve �(t) − c in the
subsequent period of low demand (the shaded region
in Fig. 1) equals the total area above the curve during
the period of high demand, which begins at t1 (the
striped region in Fig. 1). Indeed,

q(t) = 0; 06t6t1; (5.9)

q(t) =
∫ t

t1
(�(u)− c) du¿ 0; t1¡t¡ t2: (5.10)

More generally, there may be multiple periods of
high demand. (The case of two high-demand periods
is depicted in Fig. 2.) For k¿0, recursively de�ne
the times by setting t0 = 0,

t2k+1 = min{t¿t2k : �(t)¿c}; (5.11)

Fig. 2. Demand over a day with two high periods.

t2k+2 = min
{
t¿t2k+1:

∫ t

t2k+1

(�(u)− c) du= 0
}
:

(5.12)

Then

q(t) = 0; t2k ¡ t¡ t2k+1; (5.13)

q(t) =
∫ t

t2k+1

(�(u)− c) du¿ 0; t2k+1¡t¡ t2k+2:

(5.14)

The next step is to determine an associated estimate
of delay experienced by a class-r arrival at time t. It is
important to note that this estimate should depend on
the priority structure, because a class-r arrival must
wait, not only for all the work that has accumulated
at time t, but also for all higher-priority work that
arrives after time t (before the high-priority piece of
work can complete service). The remaining work in
the system is just q(t). The available capacity at time
u after time t is [c−�i(u)]+, where [x]+ =max{0; x}.
Here �i(t) represents the total time-dependent demand
of all classes having higher priority than r. (With only
the three classes i; r and d, this is just �i(t).) Hence,
using the uid model, the waiting time before a class-r
arrival at time t can begin service is

w(t) = inf
{
u¿0: q(t) =

∫ t+u

t
[c − �i(v)]+ dv

}
:

(5.15)

Graphically, we can calculate q(t) for any t by plot-
ting �(u) for u6t, and we can calculate w(t) given
q(t), by plotting �i(u) for u¿t. In words, w(t) is the
time u such that the area under the curve [c− �i(v)]+
over the interval (t; t + u) �rst equals q(t).
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For convenience, it is natural to use discrete-time
approximations to compute both q(t) and w(t). Then
we would assume that there are demands �k at evenly
spaced time points tk ; e.g., we might let

�k ≡
∫ (tk+tk+1)=2

(tk−1+tk )=2
�(u) du: (5.16)

The integrals in Eqs. (5.6), (5.8), (5.10), (5.12),
(5.14) and (5.15) would then be replaced by sums.
From Eq. (5.15), we can compute the waiting time

for a set of representative time points and determine
the maximum waiting time, say wmax. We say that a
response time limit r is met by capacity c if
wmax(c)6r. We let the minimum capacity c such that
wmax(c)6r be the required capacity sr . We can �nd
sr by performing a search over candidate capacities,
employing Eq. (5.15) in each case. The search is fa-
cilitated by the fact that q(t), w(t), and wmax, are all
decreasing in c; e.g., we can use bisection search.
It is also of interest to see how sensitive the required

capacity sr is to key parameters. We can see the e�ect
of random uctuations by repeating the analysis after
changing the target delay probability � in Eqs. (5.2)
and (5.3). We can also consider changes in the other
parameters. By calculating the required capacity sr as
a function of the other parameters, we can see the
sensitivity of sr to the other parameters.

6. Bounds on the maximum delay

Since the time-dependent delay in Eq. (5.15) is
somewhat complicated, it may be useful to have
bounds that can serve as convenient simple approx-
imations. A lower bound is obtained by acting as
if the delay at time t for class r is just the time re-
quired to process the workload at time t, as if the
FCFS discipline were in e�ect for the classes under
consideration. Then the maximum delay becomes the
maximum queue length divided by c. For this lower
bound, the waiting times are maximized when the
queue lengths are maximized. Clearly, if the lower
bound delay is too large, then so will be the actual
delay in Eq. (5.15).
The local maxima of the queue length process

{q(t): t¿0} are those points t at which the demand
crosses the capacity from above, i.e., t for which

�(t−)¿c while �(t)¡c. We now de�ne these times.
With u0 = 0, let uk be de�ned recursively for k¿1 by

uk =min{t: uk−1¡t6T; �(uk−)¿c; �(uk)¡c};
(6.1)

where K is the number of such time points, which we
assume is �nite. Then the maximum queue length, say
qmax, is the maximum of q(uk) over k; 16k6K . An
example with two high-demand periods is shown in
Fig. 2.
We now specify an upper bound on the delay. For

it, we act as if the new arrival at time t is a small
quantity in a separate lowest-priority class. Then we
must wait until the �rst time after t at which the queue
is empty. This upper bound is attained by considering
the particles initiating busy periods. The upper-bound
waiting time is the sum of the lower-bound waiting
time associated with the last particle in the busy period
and the length of the busy period. For example, in
Fig. 2, the lower bound is the maximum of t2 − u1
and t4 − u2, while the upper bound is the maximum
of t2 − t1 and t4 − t3.
These simple bounds enable us to bound the capac-

ities that need to be considered when we seek the min-
imum required capacity sr . The bounds themselves
may sometimes serve as adequate approximations,
e.g., when there is considerable uncertainty about the
model parameters. Since both lower and upper bounds
are available, their di�erence provides a bound on the
error from using these approximations. It is signi�cant
that the upper (lower) bound tends to be correct when
the proportion of class-r demand among all class-r or
higher demand, �r(t) ≡ �r(t)=(�i(t)+ �r(t)), tends to
be consistently near 0 (1). This is evident because the
assumptions underlying the bounds are then satis�ed.
This limiting behavior suggests an approximation
based on both bounds when �r(t) ≈ �r for all t (or
only those t yielding large congestion), namely,

wmax ≈ �rwLmax + (1− �r)wUmax; (6.2)

where wLmax and w
U
max are the lower and upper bounds.

7. Conclusions

Our analysis shows how service requests can
be partitioned into priority classes according to
response-time requirements, and how the capacity
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needed to meet all requirements can be determined.
The highest priority class is for immediate response.
We use an Mt=G=∞ model and a normal approxima-
tion, with a target probability that a service request
will have to be delayed before beginning service,
to determine the capacity required for this highest
priority class (Section 2).
The lowest priority is for demand to be met over

the course of a day (or any other chosen suitably long
period). We again use a normal approximation with
another target small probability that daily demand will
all be met (Section 2). In Section 3 we showed how
all service requests can be partitioned into two classes,
one for immediate response and one for daily response.
The required capacity is then the maximum of the two
requirements. In Section 4 we showed how to modify
the analysis of daily demand to represent the case in
which both types of work come in a common arrival
process.
In Section 5 we showed how to treat other classes

with the requirement that the response time for each
request (before beginning service) be less than some
speci�ed value r. For any given response-time limit r,
we combine the demand of that class with all higher
priority classes to determine a deterministic approxi-
mation for the time-dependent queue length q(t). We
then use a deterministic uid model to determine the
capacity required to meet this response-time require-
ment. For the deterministic uid model, the required
capacity is the minimum capacity such that the maxi-
mum waiting time over the day is less than or equal to
r. To compute the waiting time, we must take account
of the priority structure. The �nal formula is (5.15).
Thus, there is a required capacity generated for

each priority class, each involving all higher priority
classes. As the priority level decreases, the constraint
loosens (because the limit r increases), but also the
relevant o�ered load increases (because the set of ser-
vice requests that are included grows), so that it is
not a priori evident which capacity requirement will
be dominant. The �nal required capacity is the max-
imum of all the required capacities for the individual
priority classes.
The priority classi�cation should be relatively ef-

�cient when the individual requirements are not too
di�erent. When there are signi�cant di�erences, then
there is excess capacity available for some of the
classes at the overall capacity limit. When there are

signi�cant di�erences, it is natural to consider modi�-
cations in the priority-class de�nitions to balance the
capacity requirements.
Finally, we can compare alternative priority

schemes by comparing their total capacity require-
ments. We can see how much more capacity is re-
quired if all requests are given immediate service
(often a big di�erence). We can see how much less
capacity is required if all requests are given only daily
service (often a little di�erence). The analytical mod-
els provide a convenient quick rough-cut analysis.
The proposed results can be con�rmed and re�ned
by computer simulations and, after deployment, by
system measurements.
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